$\mathfrak{s l}(2)$ Operators and Markov Dynamics on Branching Graphs

Leonid Petrov

Department of Mathematics, Northeastern University, Boston, USA Institute for Information Transmission Problems, Moscow, Russia

October 7, 2011

Young diagrams

Partitions

$$
\begin{gathered}
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell(\lambda)}>0\right), \\
\lambda_{i} \in \mathbb{Z}
\end{gathered}
$$

Young diagrams

Partitions

$$
\begin{gathered}
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell(\lambda)}>0\right), \\
\lambda_{i} \in \mathbb{Z}
\end{gathered}
$$

Young diagrams

$\#\{$ boxes that can be added to $\lambda\}$
$=\#\{$ boxes that can be deleted from $\lambda\}+1$.

Young diagrams

Content of a box

$c(\square):=\operatorname{column}(\square)-\operatorname{row}(\square)$

Young diagrams
Content of a box

$$
c(\square):=\operatorname{column}(\square)-\operatorname{row}(\square)
$$

0	1	2	3	4	5	6	7
-1	0	1	2	3			
-2	-1	0	1	2			
-3	-2						
-4							

Young diagrams

$x_{1}, \ldots, x_{k}:=$ contents of boxes that can be added to λ, $y_{1}, \ldots, y_{k-1}:=$ contents of boxes that can be removed from λ

Young diagrams

$x_{1}, \ldots, x_{k}:=$ contents of boxes that can be added to λ, $y_{1}, \ldots, y_{k-1}:=$ contents of boxes that can be removed from λ

Kerov's identities ['90s]

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i}-\sum_{j=1}^{k-1} y_{j} & =0 \\
\sum_{i=1}^{k} x_{i}^{2}-\sum_{j=1}^{k-1} y_{j}^{2} & =2|\lambda|
\end{aligned}
$$

($|\lambda|=$ number of boxes)

Kerov's identities ['90s]

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i}-\sum_{j=1}^{k-1} y_{j} & =0 \\
\sum_{i=1}^{k} x_{i}^{2}-\sum_{j=1}^{k-1} y_{j}^{2} & =2|\lambda|
\end{aligned}
$$

($|\lambda|=$ number of boxes)

$$
\sum_{i=1}^{n} x-\sum_{i=1}^{n} \sum_{n=1}^{y}
$$

Linear Transformations

$\mathbb{Y}:=$ lattice of all Young diagrams ordered by inclusion
$\mathbb{C Y}:=$ linear space with basis $\{\underline{\lambda}\}_{\lambda \in \mathbb{Y}}$

Linear Transformations

$\mathbb{Y}:=$ lattice of all Young diagrams ordered by inclusion
$\mathbb{C Y}:=$ linear space with basis $\{\underline{\lambda}\}_{\lambda \in \mathbb{Y}}$
Operators in $\mathbb{C Y}$

$$
U^{\circ} \underline{\lambda}:=\sum_{\nu=\lambda+\square} \underline{\nu}, \quad D^{\circ} \underline{\lambda}:=\sum_{\mu=\lambda-\square} \underline{\mu}
$$

Then

$$
\left[D^{\circ}, U^{\circ}\right]:=D^{\circ} U^{\circ}-U^{\circ} D^{\circ}=I d
$$

Kerov's operators [Okounkov '00]

$$
U \underline{\lambda}:=\sum_{\nu=\lambda+\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\nu}
$$

Kerov's operators [Okounkov '00]

$$
\begin{aligned}
& U \underline{\lambda}:=\sum_{\nu=\lambda+\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\nu} \\
& D \underline{\lambda}:=\sum_{\mu=\lambda-\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\mu}
\end{aligned}
$$

Kerov's operators [Okounkov '00]

$$
\begin{aligned}
& U \underline{\lambda}:= \sum_{\nu=\lambda+\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\nu} \\
& D \underline{\lambda}:=\sum_{\mu=\lambda-\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\mu} \\
& H \underline{\lambda}:=\left(2|\lambda|+z z^{\prime}\right) \cdot \underline{\lambda} \\
& \quad z, z^{\prime} \in \mathbb{C}-\text { parameters. }
\end{aligned}
$$

Kerov's operators [Okounkov '00]

$$
\begin{aligned}
& U \underline{\lambda}:=\sum_{\nu=\lambda+\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\nu} \\
& D \underline{\lambda}:=\sum_{\mu=\lambda-\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\mu} \\
& H \underline{\lambda}:=\left(2|\lambda|+z z^{\prime}\right) \cdot \underline{\lambda} \\
& z, z^{\prime} \in \mathbb{C}-\text { parameters. }
\end{aligned}
$$

$\mathfrak{s l}(2)$ commutation relations (\Leftarrow Kerov's identities)

$$
[D, U]=H, \quad[H, U]=2 U, \quad[H, D]=-2 D
$$

Differential posets [Stanley] Dual graded graphs [Fomin], '80s

Generalize $\left[D^{\circ}, U^{\circ}\right]=I d$ for other objects.

Differential posets [Stanley] Dual graded graphs [Fomin], '80s

Generalize $\left[D^{\circ}, U^{\circ}\right]=I d$ for other objects.
Branching graphs
$\mathbb{G}:=\bigsqcup_{n=0}^{\infty} \mathbb{G}_{n}, \quad \mathbb{G}_{n}$ - finite, $\quad \mathbb{G}_{0}:=\{\varnothing\}$
$\kappa>0$ - edge multiplicity function

Differential posets [Stanley] Dual graded graphs [Fomin], '80s

Generalize $\left[D^{\circ}, U^{\circ}\right]=I d$ for other objects.
Branching graphs

$$
\begin{aligned}
& \mathbb{G}:=\bigsqcup_{n=0}^{\infty} \mathbb{G}_{n}, \quad \mathbb{G}_{n}-\text { finite, } \quad \mathbb{G}_{0}:=\{\varnothing\} \\
& \kappa>0 \text { — edge multiplicity function }
\end{aligned}
$$

Differential posets, dual graded graphs

Operators in $\mathbb{C} \mathbb{G}$

$$
U^{\circ} \underline{x}:=\sum_{y: y \lambda_{x}} \kappa(x, y) \cdot \underline{y}, \quad D^{\circ} \underline{x}:=\sum_{z: z / x x} \kappa(z, x) \cdot \underline{z} .
$$

Differential posets, dual graded graphs

Operators in $\mathbb{C} \mathbb{G}$

$$
U^{\circ} \underline{x}:=\sum_{y: y \backslash x} \kappa(x, y) \cdot \underline{y}, \quad D^{\circ} \underline{\underline{x}}:=\sum_{z: z \neq x} \kappa(z, x) \cdot \underline{z} .
$$

Branching graph \mathbb{G} is called r-self-dual $(r>0)$ iff

$$
\left[D^{\circ}, U^{\circ}\right]=r \cdot l d .
$$

(also more general \mathbf{r}-duality is tractable)

Differential posets, dual graded graphs

(Combinatorial) dimension
$\operatorname{dim} \lambda:=\#\{$ paths (with weights) from \varnothing to $\lambda\}$

Differential posets, dual graded graphs

(Combinatorial) dimension

$$
\operatorname{dim} \lambda:=\#\{\text { paths (with weights) from } \varnothing \text { to } \lambda\}
$$

Enumerative consequences

For r-self-dual branching graphs,

$$
\sum_{\lambda \in \mathbb{G}_{n}}(\operatorname{dim} \lambda)^{2}=r^{n} n!.
$$

Much more in [Stanley '88, '90], [Fomin '94 and other works].

Differential posets, dual graded graphs

(Combinatorial) dimension

$$
\operatorname{dim} \lambda:=\#\{\text { paths (with weights) from } \varnothing \text { to } \lambda\}
$$

Enumerative consequences

For r-self-dual branching graphs,

$$
\sum_{\lambda \in \mathbb{G}_{n}}(\operatorname{dim} \lambda)^{2}=r^{n} n!.
$$

Much more in [Stanley '88, '90], [Fomin '94 and other works].

$$
M_{n}^{U^{\circ} D^{\circ}}(\lambda):=\frac{(\operatorname{dim} \lambda)^{2}}{r^{n} n!}-\text { probability measure on } \mathbb{G}_{n} \text { for all } n .
$$

Generalizing $\mathfrak{s l}(2)$ operators

For the Young graph:

$$
\begin{aligned}
& U \underline{\lambda}:=\sum_{\nu=\lambda+\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\nu} \\
& D \underline{\lambda}:=\sum_{\mu=\lambda-\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\mu} \\
& H \underline{\lambda}:=\left(2|\lambda|+z z^{\prime}\right) \cdot \underline{\lambda}
\end{aligned}
$$

Generalizing $\mathfrak{s l}(2)$ operators

For the Young graph:

$$
\begin{aligned}
& \underline{\lambda}:=\sum_{\nu=\lambda+\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\nu} \\
& D \underline{\lambda}:=\sum_{\mu=\lambda-\square} \sqrt{(z+c(\square))\left(z^{\prime}+c(\square)\right)} \cdot \underline{\mu} \\
& H \underline{\lambda}:=\left(2|\lambda|+z z^{\prime}\right) \cdot \underline{\lambda}
\end{aligned}
$$

How to introduce dependence on the box in general?

Ideal branching graphs

$\mathbb{G}=$ lattice of finite order ideals in some poset L

+ an edge multiplicity function $\kappa>0$.
$\mu \nearrow \lambda$ (connected by an edge) iff $\mu \subset \lambda$ and $|\lambda|=|\mu|+1$

For the Young graph \mathbb{Y} :

$$
L=\mathbb{Z}_{\geq 0}^{2}, \quad \kappa \equiv 1
$$

Ideal branching graphs

Examples:

(1) Chain
(2) Pascal triangle
(3) Young graph with edge multiplicities:

- Young (simple edges)
- Kingman (branching of set partitions)
- Jack (β)
- Macdonald (q, t)
(4) Shifted shapes
(5) Rim-hook and shifted rim-hook shapes (fixed \# of boxes in a rim-hook)
(6) 3D Young diagrams (= plane partitions)

Kerov's operators

Definition

Operators U, D, H in $\mathbb{C} \mathbb{G}$ are called Kerov's operators if
(1) $U \underline{\lambda}=\sum_{\nu: \nu \searrow \lambda} \kappa(\lambda, \nu) q(\nu / \lambda) \underline{\nu}$,

$$
D \underline{\lambda}=\sum_{\mu: \mu \nearrow \lambda} \kappa(\mu, \lambda) q(\lambda / \mu) \underline{\mu}
$$

for some function $q(\cdot)$ on the underlying poset L

Kerov's operators

Definition

Operators U, D, H in $\mathbb{C} \mathbb{G}$ are called Kerov's operators if
(1) $U \underline{\lambda}=\sum_{\nu: \nu \searrow \lambda} \kappa(\lambda, \nu) q(\nu / \lambda) \underline{\nu}$,
$D \underline{\lambda}=\sum_{\mu: \mu \nearrow \lambda} \kappa(\mu, \lambda) q(\lambda / \mu) \underline{\mu}$
for some function $q(\cdot)$ on the underlying poset L
(2) $H \underline{\lambda}=c_{|\lambda|} \cdot \underline{\lambda}$ for all $\lambda \in \mathbb{G}$

Kerov's operators

Definition

Operators U, D, H in $\mathbb{C} G$ are called Kerov's operators if
(1) $U \underline{\lambda}=\sum_{\nu: \nu \searrow \lambda} \kappa(\lambda, \nu) q(\nu / \lambda) \underline{\nu}$,

$$
D \underline{\lambda}=\sum_{\mu: \mu \nearrow \lambda} \kappa(\mu, \lambda) q(\lambda / \mu) \underline{\mu}
$$

for some function $q(\cdot)$ on the underlying poset L
(2) $H \underline{\lambda}=c_{|\lambda|} \cdot \underline{\lambda}$ for all $\lambda \in \mathbb{G}$
(3) These operators satisfy $\mathfrak{s l}(2)$ relations

$$
[D, U]=H, \quad[H, U]=2 U, \quad[H, D]=-2 D
$$

Kerov's operators

(\cdot, \cdot) - standard inner product in $\mathbb{C} \mathbb{G}:(\underline{\lambda}, \underline{\mu})=\delta_{\lambda, \mu}$.

Kerov's operators

(\cdot, \cdot) - standard inner product in $\mathbb{C} \mathbb{G}:(\underline{\lambda}, \underline{\mu})=\delta_{\lambda, \mu}$.

$$
H \underline{\lambda}=(2|\lambda|+\theta) \underline{\lambda}, \quad \text { where } \theta=(H \underline{\varnothing}, \underline{\varnothing}) ; \quad \text { assume } \theta>0
$$

Kerov's operators

(\cdot, \cdot) - standard inner product in $\mathbb{C} \mathbb{G}:(\underline{\lambda}, \underline{\mu})=\delta_{\lambda, \mu}$.

$$
H \underline{\lambda}=(2|\lambda|+\theta) \underline{\lambda}, \quad \text { where } \theta=(H \underline{\varnothing}, \underline{\varnothing}) ; \quad \text { assume } \theta>0
$$

"Enumerative" consequences

$$
\sum_{\lambda \in \mathbb{G}_{n}}\left(U^{n} \underline{\varnothing}, \underline{\lambda}\right)\left(D^{n} \underline{\lambda}, \underline{\varnothing}\right)=\theta(\theta+1) \ldots(\theta+n-1) n!=:(\theta)_{n} n!
$$

Kerov's operators

(\cdot, \cdot) - standard inner product in $\mathbb{C} \mathbb{G}:(\underline{\lambda}, \underline{\mu})=\delta_{\lambda, \mu}$.

$$
H \underline{\lambda}=(2|\lambda|+\theta) \underline{\lambda}, \quad \text { where } \theta=(H \underline{\varnothing}, \underline{\varnothing}) ; \quad \text { assume } \theta>0
$$

"Enumerative" consequences

$$
\sum_{\lambda \in \mathbb{G}_{n}}\left(U^{n} \underline{\varnothing}, \underline{\lambda}\right)\left(D^{n} \underline{\lambda}, \underline{\varnothing}\right)=\theta(\theta+1) \ldots(\theta+n-1) n!=:(\theta)_{n} n!
$$

$$
r^{n} \longrightarrow(\theta)_{n} \quad \text { deformation }
$$

Kerov's operators and probability measures

Probability measure on \mathbb{G}_{n} for all n

$$
M_{n}^{U D}(\lambda)=\frac{1}{(\theta)_{n} n!}\left(U^{n} \underline{\varnothing}, \underline{\lambda}\right)\left(D^{n} \underline{\lambda}, \underline{\varnothing}\right)=\frac{(\operatorname{dim} \lambda)^{2}}{(\theta)_{n} n!} \prod_{b \in \lambda} q(b)^{2}
$$

Classification of Kerov's operators

Problem

Find all Kerov's operators on a given ideal graph

Classification of Kerov's operators

Problem

Find all Kerov's operators on a given ideal graph
(\mathbb{G} - chain \Rightarrow irreducible lowest weight $\mathfrak{s l}(2)$-modules)

Classification of Kerov's operators

Problem

Find all Kerov's operators on a given ideal graph
(\mathbb{G} - chain \Rightarrow irreducible lowest weight $\mathfrak{s l}(2)$-modules)
Often Kerov's operators are parametrized by several complex parameters

Classification of Kerov's operators

Problem

Find all Kerov's operators on a given ideal graph
(\mathbb{G} - chain \Rightarrow irreducible lowest weight $\mathfrak{s l}(2)$-modules)
Often Kerov's operators are parametrized by several complex parameters

UD-self-dual graph \mathbb{G}
For \mathbb{G} to have Kerov's operators,
[D°, U°] must be a diagonal operator.
(more general than Stanley-Fomin's differentiality/duality).

Classification of Kerov's operators

Unified characterization of many interesting measures
(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)

Classification of Kerov's operators

Unified characterization of many interesting measures
(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]

Classification of Kerov's operators

Unified characterization of many interesting measures
(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]

Classification of Kerov's operators

Unified characterization of many interesting measures
(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
- Jack (β) - z-measures with Jack parameter [Kerov '00]

Classification of Kerov's operators

Unified characterization of many interesting measures
(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
- Jack (β) - z-measures with Jack parameter [Kerov '00]
- Macdonald (q, t) - no U, D, but $\left[D^{\circ}, U^{\circ}\right]=\frac{1-q}{1-t} \cdot I d$

Classification of Kerov's operators

Unified characterization of many interesting measures
(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
- Jack (β) - z-measures with Jack parameter [Kerov '00]
- Macdonald (q, t) - no U, D, but $\left[D^{\circ}, U^{\circ}\right]=\frac{1-q}{1-t} \cdot I d$
(Shifted shapes - [Borodin '97]

Classification of Kerov's operators

Unified characterization of many interesting measures

(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
- Jack (β) - z-measures with Jack parameter [Kerov '00]
- Macdonald (q, t) - no U, D, but $\left[D^{\circ}, U^{\circ}\right]=\frac{1-q}{1-t} \cdot l d$
(Shifted shapes - [Borodin '97]
(Rim-hook, shifted rim-hook - natural analogues of zand Borodin's measures with many parameters

Classification of Kerov's operators

Unified characterization of many interesting measures

(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) - z-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
- Jack (β) - z-measures with Jack parameter [Kerov '00]
- Macdonald (q, t) - no U, D, but $\left[D^{\circ}, U^{\circ}\right]=\frac{1-q}{1-t} \cdot l d$
© Shifted shapes - [Borodin '97]
(Rim-hook, shifted rim-hook - natural analogues of zand Borodin's measures with many parameters
© 3D Young diagrams - nothing

Classification of Kerov's operators

Unified characterization of many interesting measures

(1) Pascal - Bernoulli scheme with Beta priors (no U°, D°)
(2) Young graph with edge multiplicities:

- Young (simple edges) $-z$-measures on partitions [Kerov, Olshanski, Vershik '93]
- Kingman - two-parameter Poisson-Dirichlet measures [Kingman '70s, Pitman '92]
- Jack (β) - z-measures with Jack parameter [Kerov '00]
- Macdonald (q, t) - no U, D, but $\left[D^{\circ}, U^{\circ}\right]=\frac{1-q}{1-t} \cdot l d$
(Shifted shapes - [Borodin '97]
(Rim-hook, shifted rim-hook - natural analogues of zand Borodin's measures with many parameters
© 3D Young diagrams - nothing ©

Remark about Jack $(\beta) z$-measures

[Kerov '00], [Borodin-Olshanski '05], [Strahov, '10: $\beta=1$ and 4]
The measures on partitions arising from the Young graph with Jack edge multiplicities are natural discrete analogues of:

Remark about Jack $(\beta) z$-measures

[Kerov '00], [Borodin-Olshanski '05],
[Strahov, '10: $\beta=1$ and 4]
The measures on partitions arising from the Young graph with Jack edge multiplicities are natural discrete analogues of:
β random matrix ensembles
N-particle random point configurations on \mathbb{R} with joint density

$$
\text { const } \cdot \prod_{i=1}^{N} \mu\left(d x_{i}\right) \cdot \prod_{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{\beta} .
$$

Young graph corresponds to $\beta=2$.

Main results

(1) Characterize various interesting measures on partitions in a unified way

Main results

(1) Characterize various interesting measures on partitions in a unified way
(2) Define Markov dynamics associated with these measures

Main results

(1) Characterize various interesting measures on partitions in a unified way
(2) Define Markov dynamics associated with these measures
(3) Derive properties of dynamics in a unified way

Main results

(1) Characterize various interesting measures on partitions in a unified way
(2) Define Markov dynamics associated with these measures
(3) Derive properties of dynamics in a unified way
(9) On an abstract level - diagonalize the generator of dynamics

Main results

(1) Characterize various interesting measures on partitions in a unified way
(2) Define Markov dynamics associated with these measures
(Derive properties of dynamics in a unified way
(1) On an abstract level - diagonalize the generator of dynamics
(In concrete examples - go much further (use Fock space structure):

- Young graph - determinantal dynamics
- Schur graph of shifted shapes - determinantal random point fiels + Pfaffian dynamics

Down and up Markov transition kernels on \mathbb{G}

Down Markov transition kernels
As a branching graph, \mathbb{G} comes with a natural family of down Markov transition kernels $p_{n, n-1}^{\downarrow}$ from \mathbb{G}_{n} to \mathbb{G}_{n-1} :

$$
p_{n, n-1}^{\downarrow}(\lambda, \mu):=\frac{\boldsymbol{\kappa}(\mu, \lambda) \operatorname{dim} \mu}{\operatorname{dim} \lambda}
$$

where $|\mu|=n-1,|\lambda|=n$.

$$
\sum_{\mu:|\mu|=n-1} p_{n, n-1}^{\downarrow}(\lambda, \mu)=1
$$

(randomly remove one element from λ)

Down and up Markov transition kernels on \mathbb{G}

Fact ($\Leftarrow \mathfrak{s l}(2)$ commutation relations)

The measures $\left\{M_{n}^{U D}\right\}$ are compatible with the down transition kernel $p_{n, n-1}^{\downarrow}$:

$$
M_{n}^{U D} \circ p_{n, n-1}^{\downarrow}=M_{n-1}^{U D},
$$

i.e.,

$$
\sum_{\lambda \in \mathbb{G}_{n}} M_{n}^{U D}(\lambda) p_{n, n-1}^{\downarrow}(\lambda, \mu)=M_{n-1}^{U D}(\mu) .
$$

(random removal preserves measures $M_{n}^{U D}$)

Down and up Markov transition kernels on \mathbb{G}

Up Markov transition kernels

There are up Markov transition kernels $p_{n, n+1}^{\uparrow}$ from \mathbb{G}_{n} to \mathbb{G}_{n+1} :

$$
p_{n, n+1}^{\uparrow}(\lambda, \nu):=\frac{M_{n+1}^{U D}(\nu)}{M_{n}^{U D}(\lambda)} p_{n+1, n}^{\downarrow}(\nu, \lambda)
$$

where $|\lambda|=n,|\nu|=n+1$.

Down and up Markov transition kernels on \mathbb{G}

Up Markov transition kernels

There are up Markov transition kernels $p_{n, n+1}^{\uparrow}$ from \mathbb{G}_{n} to \mathbb{G}_{n+1} :

$$
p_{n, n+1}^{\uparrow}(\lambda, \nu):=\frac{M_{n+1}^{U D}(\nu)}{M_{n}^{U D}(\lambda)} p_{n+1, n}^{\downarrow}(\nu, \lambda),
$$

where $|\lambda|=n,|\nu|=n+1$.
They depend on $\left\{M_{n}^{U D}\right\}$ and

$$
M_{n}^{U D} \circ p_{n, n+1}^{\uparrow}=M_{n+1}^{U D}
$$

(randomly add an element to λ in a way preserving M_{n})

Mixed measures

From $\left\{M_{n}^{U D}\right\}$ to measures on the whole graph \mathbb{G}

$$
\begin{aligned}
M_{\xi}^{U D}(\lambda) & :=(1-\xi)^{\theta} \xi^{|\lambda|} \frac{(\theta)_{|\lambda|}}{|\lambda|!} \cdot M_{|\lambda|}^{U D}(\lambda) \\
& =(1-\xi)^{\theta} \xi^{|\lambda|}\left(\frac{\operatorname{dim} \lambda}{|\lambda|!}\right)^{2} \prod_{b \in \lambda} q(b)^{2} \\
& "="(1-\xi)^{\theta}\left(e^{\sqrt{\xi} U} \underline{\varnothing}, \underline{\lambda}\right)\left(e^{\sqrt{\xi} D} \underline{\lambda}, \underline{\varnothing}\right)
\end{aligned}
$$

Mixed measures

From $\left\{M_{n}^{U D}\right\}$ to measures on the whole graph \mathbb{G}

$$
\begin{aligned}
& M_{\xi}^{U D}(\lambda):=(1-\xi)^{\theta} \xi^{|\lambda|} \frac{(\theta)_{|\lambda|}}{|\lambda|!} \cdot M_{|\lambda|}^{U D}(\lambda) \\
&=(1-\xi)^{\theta} \xi^{|\lambda|}\left(\frac{\operatorname{dim} \lambda}{|\lambda|!}\right)^{2} \prod_{b \in \lambda} q(b)^{2} \\
& " \\
&="(1-\xi)^{\theta}\left(e^{\sqrt{\xi} U} \underline{\varnothing}, \underline{\lambda}\right)\left(e^{\sqrt{\xi} D} \underline{\lambda}, \underline{\varnothing}\right)
\end{aligned}
$$

Example: Chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$

$$
M_{\xi}^{U D}(n)=(1-\xi)^{\theta} \xi^{n} \frac{(\theta)_{n}}{n!}:=\pi_{\theta, \xi}(n)
$$

Example: Chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$

Birth and death process $\mathbf{n}_{\theta, \xi}$ preserving $\pi_{\theta, \xi}$ on $\mathbb{Z}_{\geq 0}$

$$
\begin{aligned}
& \operatorname{Prob}\left(\mathbf{n}_{\theta, \xi}(t+d t)=n-1 \mid \mathbf{n}_{\theta, \xi}(t)=n\right)=\frac{n}{1-\xi}+o(t) \\
& \operatorname{Prob}\left(\mathbf{n}_{\theta, \xi}(t+d t)=n+1 \mid \mathbf{n}_{\theta, \xi}(t)=n\right)=\frac{\xi(n+\theta)}{1-\xi}+o(t)
\end{aligned}
$$

Markov process $\boldsymbol{\lambda}_{\xi}$ preserving $M_{\xi}^{U D}($ for general $\mathbb{G})$

(1) $\left|\boldsymbol{\lambda}_{\xi}(t)\right| \equiv \mathbf{n}_{\theta, \xi}(t)$
(2) boxes are added/deleted to/from $\boldsymbol{\lambda}_{\xi}$ according to $p_{n, n+1}^{\uparrow}$ and $p_{n, n-1}^{\downarrow}$

Averages w.r.t. $M_{\xi}^{U D}$

Operator G_{ξ}

Let

$$
G_{\xi}:=e^{\sqrt{\xi} U}(1-\xi)^{\frac{H}{2}} e^{-\sqrt{\xi} D} .
$$

It is a unitary operator in $\ell^{2}(\mathbb{G})(:=\mathbb{C} \mathbb{G}$ with standard inner product)

Averages w.r.t. $M_{\xi}^{U D}$

Operator G_{ξ}

Let

$$
G_{\xi}:=e^{\sqrt{\xi} U}(1-\xi)^{\frac{H}{2}} e^{-\sqrt{\xi} D} .
$$

It is a unitary operator in $\ell^{2}(\mathbb{G})(:=\mathbb{C} \mathbb{G}$ with standard inner product)

Proposition

$$
\langle f\rangle_{M_{\xi}^{U D}}:=\sum_{\lambda \in G} f(\lambda) M_{\xi}^{U D}(\lambda)=\left(G_{\xi}^{-1} f G_{\xi} \underline{\varnothing}, \underline{\varnothing}\right) .
$$

Averages w.r.t. $M_{\xi}^{U D}$

Operator G_{ξ}

Let

$$
G_{\xi}:=e^{\sqrt{\xi} U}(1-\xi)^{\frac{H}{2}} e^{-\sqrt{\xi} D} .
$$

It is a unitary operator in $\ell^{2}(\mathbb{G})(:=\mathbb{C} \mathbb{G}$ with standard inner product)

Proposition

$$
\langle f\rangle_{M_{\xi}^{U D}}:=\sum_{\lambda \in \mathbb{G}} f(\lambda) M_{\xi}^{U D}(\lambda)=\left(G_{\xi}^{-1} f G_{\xi} \underline{\varnothing}, \underline{\varnothing}\right) .
$$

Remark: Fock space structure of Young and Schur graphs allow to study $M_{\xi}^{U D}$ and dynamics $\boldsymbol{\lambda}_{\xi}$ in great detail

Generator of dynamics $\boldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)$

$$
\begin{aligned}
& (A f)(\lambda):=\sum_{\rho \in \mathbb{G}} Q_{\lambda, \rho} f(\rho), \\
& Q_{\lambda, \rho} \text { - jump rates of } \boldsymbol{\lambda}_{\xi} .
\end{aligned}
$$

Generator of dynamics $\boldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)$

$$
\begin{aligned}
& (A f)(\lambda):=\sum_{\rho \in \mathbb{G}} Q_{\lambda, \rho} f(\rho), \\
& Q_{\lambda, \rho}-\text { jump rates of } \boldsymbol{\lambda}_{\xi} .
\end{aligned}
$$

Isometry $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right) \longleftrightarrow \ell^{2}(\mathbb{G})$

$$
\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right) \ni f \longleftrightarrow f \cdot\left(M_{\xi}^{U D}\right)^{\frac{1}{2}} \in \ell^{2}(\mathbb{G})
$$

Generator of dynamics $\boldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)$

$$
\begin{aligned}
& (A f)(\lambda):=\sum_{\rho \in \mathbb{G}} Q_{\lambda, \rho} f(\rho), \\
& Q_{\lambda, \rho}-\text { jump rates of } \lambda_{\xi} .
\end{aligned}
$$

Isometry $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right) \longleftrightarrow \ell^{2}(\mathbb{G})$

$$
\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right) \ni f \longleftrightarrow f \cdot\left(M_{\xi}^{U D}\right)^{\frac{1}{2}} \in \ell^{2}(\mathbb{G})
$$

operator A in $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right) \longleftrightarrow$ operator B in $\ell^{2}(\mathbb{G})$

Generator of dynamics $\boldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^{2}(\mathbb{G})$

$$
B=-\frac{1}{2} G_{\xi}(H-\theta) G_{\xi}^{-1} .
$$

Generator of dynamics $\boldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^{2}(\mathbb{G})$

$$
B=-\frac{1}{2} G_{\xi}(H-\theta) G_{\xi}^{-1} .
$$

Spectrum of B in $\ell^{2}(\mathbb{G})$
Eigenvalue $(-n)$, where $n=0,1,2, \ldots$, with multiplicity $\# \mathbb{G}_{n}$.

Generator of dynamics $\boldsymbol{\lambda}_{\xi}$

Generator acting in $\ell^{2}(\mathbb{G})$

$$
B=-\frac{1}{2} G_{\xi}(H-\theta) G_{\xi}^{-1} .
$$

Spectrum of B in $\ell^{2}(\mathbb{G})$
Eigenvalue $(-n)$, where $n=0,1,2, \ldots$, with multiplicity $\# \mathbb{G}_{n}$.

Eigenfunctions of B in $\ell^{2}(\mathbb{G})$
Let $\mathfrak{F}_{\lambda}:=G_{\xi} \underline{\lambda}$ (for all $\lambda \in \mathbb{G}$), then

$$
B \mathfrak{F}_{\lambda}=-|\lambda| \mathfrak{F}_{\lambda}, \quad \lambda \in \mathbb{G} .
$$

Diagonalization of the generator

Isometry $\ell^{2}(\mathbb{G}) \longleftrightarrow \ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)$
functions \mathfrak{F}_{λ} in $\ell^{2}(\mathbb{G})$

$$
\mathfrak{\imath}
$$

functions

$$
\begin{gathered}
\mathfrak{M}_{\lambda}:=\left(\frac{\sqrt{\xi}}{1-\xi}\right)^{|\lambda|}\left(\prod_{b \in \lambda} q(b)\right) \cdot \mathfrak{F}_{\lambda} \cdot\left(M_{\xi}^{U D}\right)^{-\frac{1}{2}} \\
\text { in } \ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)
\end{gathered}
$$

Explicit formula/definition of \mathfrak{M}_{λ}

(does not require the existence of G_{ξ})

Explicit formula/definition of \mathfrak{M}_{λ}

(does not require the existence of G_{ξ})

$$
\begin{aligned}
\mathfrak{M}_{\lambda}(\rho): & =\sum_{\mu \subseteq \lambda}\left(\frac{\xi}{\xi-1}\right)^{|\lambda|-|\mu|}\left(\prod_{b \in \lambda / \mu} q(b)^{2}\right) \times \\
& \times \frac{|\rho|!}{(|\lambda|-|\mu|)!(|\rho|-|\mu|)!} \frac{\operatorname{dim}(\mu, \lambda) \operatorname{dim}(\mu, \rho)}{\operatorname{dim} \rho}
\end{aligned}
$$

where
$\operatorname{dim}(\mu, \lambda):=$ the number of paths (with weights) from μ to λ.

Functions \mathfrak{M}_{λ}

(1) Diagonalize the generator of the Markov dynamics $\boldsymbol{\lambda}_{\xi}$: $\boldsymbol{A M}_{\lambda}=-|\lambda| \mathfrak{M}_{\lambda}, \quad \lambda \in \mathbb{G}$

Functions \mathfrak{M}_{λ}

(1) Diagonalize the generator of the Markov dynamics $\boldsymbol{\lambda}_{\xi}$: $A \mathfrak{M}_{\lambda}=-|\lambda| \mathfrak{M}_{\lambda}, \quad \lambda \in \mathbb{G}$
(2) Form a (Hilbert space) basis in $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)$

Functions \mathfrak{M}_{λ}

(1) Diagonalize the generator of the Markov dynamics $\boldsymbol{\lambda}_{\xi}$: $A \mathfrak{M}_{\lambda}=-|\lambda| \mathfrak{M}_{\lambda}, \quad \lambda \in \mathbb{G}$
(2) Form a (Hilbert space) basis in $\ell^{2}\left(\mathbb{G}, M_{\xi}^{U D}\right)$
(3) Form an orthogonal basis:

$$
\left(\mathfrak{M}_{\lambda}, \mathfrak{M}_{\mu}\right)_{M_{\xi}^{u D}}=\delta_{\lambda, \mu} \frac{\xi^{|\lambda|}}{(1-\xi)^{2|\lambda|}} \prod_{b \in \lambda} q(b)^{2} .
$$

Example: Chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$. Meixner polynomials

$$
\begin{aligned}
& \mathfrak{M}_{n}(x)= \\
& =\sum_{k=0}^{n}\left(\frac{\xi}{\xi-1}\right)^{n-k}\binom{n}{k} \frac{\Gamma(\theta+n)}{\Gamma(\theta+k)} \cdot x(x-1) \ldots(x-k+1) .
\end{aligned}
$$

- monic Meixner orthogonal polynomials.

Example: Chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$. Meixner polynomials

$$
\begin{aligned}
& \mathfrak{M}_{n}(x)= \\
& =\sum_{k=0}^{n}\left(\frac{\xi}{\xi-1}\right)^{n-k}\binom{n}{k} \frac{\Gamma(\theta+n)}{\Gamma(\theta+k)} \cdot x(x-1) \ldots(x-k+1) .
\end{aligned}
$$

- monic Meixner orthogonal polynomials.

$$
\left(\mathfrak{M}_{n}, \mathfrak{M}_{m}\right)_{\pi_{\theta, \xi}}=\delta_{n, m} \frac{\xi^{n} n!(\theta)_{n}}{(1-\xi)^{2 n}}
$$

Example: Chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$. Meixner polynomials

$$
\begin{aligned}
& \mathfrak{M}_{n}(x)= \\
& =\sum_{k=0}^{n}\left(\frac{\xi}{\xi-1}\right)^{n-k}\binom{n}{k} \frac{\Gamma(\theta+n)}{\Gamma(\theta+k)} \cdot x(x-1) \ldots(x-k+1) .
\end{aligned}
$$

- monic Meixner orthogonal polynomials.

$$
\left(\mathfrak{M}_{n}, \mathfrak{M}_{m}\right)_{\pi_{\theta, \xi}}=\delta_{n, m} \frac{\xi^{n} n!(\theta)_{n}}{(1-\xi)^{2 n}}
$$

$\mathbb{G}=\mathbb{Y}$ - Meixner symmetric functions [Olshanski '10,'11]

Characterization of Meixner polynomials \mathfrak{M}_{n}

$\mathfrak{M}_{n}(n=0,1, \ldots)$ are the unique polynomials such that
(1) $\mathfrak{M}_{n}=x^{n}+$ lower degree terms

Characterization of Meixner polynomials \mathfrak{M}_{n}

$\mathfrak{M}_{n}(n=0,1, \ldots)$ are the unique polynomials such that
(1) $\mathfrak{M}_{n}=x^{n}+$ lower degree terms
(2) These polynomials are eigenfunctions of our generator:

$$
A \mathfrak{M}_{n}=-n \cdot \mathfrak{M}_{n}, \quad n=0,1, \ldots
$$

Final remarks

The general-case functions \mathfrak{M}_{λ} on \mathbb{G} can be characterized in a similar manner.

Final remarks

The general-case functions \mathfrak{M}_{λ} on \mathbb{G} can be characterized in a similar manner.

Operators U°, D° (in particular, on the (q, t)-Young graph) gives rise to similar dynamics. There is explicit diagonalization. For the chain $\mathbb{G}=\mathbb{Z}_{\geq 0}$ - monic Charlier orthogonal polynomials (w.r.t. Poisson weight).

