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Linear Transformations

Y := lattice of all Young diagrams ordered by inclusion

CY := linear space with basis {λ}λ∈Y

Operators in CY

U◦λ :=
∑

ν=λ+�

ν, D◦λ :=
∑

µ=λ−�

µ

Then
[D◦,U◦] := D◦U◦ − U◦D◦ = Id .
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Kerov’s operators [Okounkov ‘00]
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sl(2) commutation relations (⇐ Kerov’s identities)

[D,U] = H , [H ,U] = 2U , [H ,D] = −2D
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Differential posets [Stanley]

Dual graded graphs [Fomin], ‘80s

Generalize [D◦,U◦] = Id for other objects.

Branching graphs

G :=
⊔∞

n=0Gn, Gn — finite, G0 := {∅}
κ > 0 — edge multiplicity function
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Differential posets, dual graded graphs

Operators in CG

U◦x :=
∑

y : y↘x

κ(x , y) · y , D◦x :=
∑

z : z↗x

κ(z , x) · z .

Branching graph G is called r -self-dual (r > 0) iff

[D◦,U◦] = r · Id .

(also more general r-duality is tractable)
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Differential posets, dual graded graphs

(Combinatorial) dimension

dimλ := #{paths (with weights) from ∅ to λ}

Enumerative consequences

For r -self-dual branching graphs,∑
λ∈Gn

(dimλ)2 = rnn!.

Much more in [Stanley ‘88, ‘90], [Fomin ‘94 and other works].

MU◦D◦

n (λ) :=
(dimλ)2

rnn!
— probability measure on Gn for all n.
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Ideal branching graphs

G = lattice of finite order ideals in some poset L
+ an edge multiplicity function κ > 0.

µ↗ λ (connected by an edge) iff µ ⊂ λ and |λ| = |µ|+ 1

For the Young graph Y:

L = Z2
≥0, κ ≡ 1.
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Ideal branching graphs

Examples:

1 Chain

2 Pascal triangle
3 Young graph with edge multiplicities:

Young (simple edges)
Kingman (branching of set partitions)
Jack (β)
Macdonald (q, t)

4 Shifted shapes

5 Rim-hook and shifted rim-hook shapes (fixed # of boxes
in a rim-hook)

6 3D Young diagrams (= plane partitions)
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Kerov’s operators

Definition

Operators U ,D,H in CG are called Kerov’s operators if

1 Uλ =
∑

ν : ν↘λ κ(λ, ν)q(ν/λ)ν,

Dλ =
∑

µ : µ↗λ κ(µ, λ)q(λ/µ)µ

for some function q(·) on the underlying poset L

2 Hλ = c|λ| · λ for all λ ∈ G
3 These operators satisfy sl(2) relations

[D,U] = H , [H ,U] = 2U , [H ,D] = −2D
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Kerov’s operators

(·, ·) — standard inner product in CG: (λ, µ) = δλ,µ.

Hλ = (2|λ|+θ)λ, where θ = (H∅,∅); assume θ > 0

“Enumerative” consequences

∑
λ∈Gn

(Un∅, λ)(Dnλ,∅) = θ(θ + 1) . . . (θ + n − 1)n! =: (θ)nn!

rn −→ (θ)n deformation
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Kerov’s operators and probability measures

Probability measure on Gn for all n

MUD
n (λ) =

1

(θ)nn!
(Un∅, λ)(Dnλ,∅) =

(dimλ)2

(θ)nn!

∏
b∈λ

q(b)2
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Classification of Kerov’s operators

Problem

Find all Kerov’s operators on a given ideal graph

(G — chain ⇒ irreducible lowest weight sl(2)-modules)

Often Kerov’s operators are parametrized by several complex
parameters

UD-self-dual graph G
For G to have Kerov’s operators,

[D◦,U◦] must be a diagonal operator.

(more general than Stanley–Fomin’s differentiality/duality).
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Classification of Kerov’s operators

Unified characterization of many interesting measures

1 Pascal — Bernoulli scheme with Beta priors (no U◦,D◦)

2 Young graph with edge multiplicities:

Young (simple edges) — z-measures on partitions
[Kerov, Olshanski, Vershik ‘93]
Kingman — two-parameter Poisson-Dirichlet measures
[Kingman ‘70s, Pitman ‘92]
Jack (β) — z-measures with Jack parameter [Kerov ‘00]
Macdonald (q, t) — no U,D, but [D◦,U◦] = 1−q

1−t · Id
3 Shifted shapes — [Borodin ‘97]

4 Rim-hook, shifted rim-hook — natural analogues of z-
and Borodin’s measures with many parameters

5 3D Young diagrams — nothing /
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Remark about Jack (β) z-measures

[Kerov ‘00], [Borodin–Olshanski ‘05],
[Strahov, ‘10: β = 1 and 4]

The measures on partitions arising from the Young graph with
Jack edge multiplicities are natural discrete analogues of:

β random matrix ensembles

N-particle random point configurations on R with joint density

const ·
N∏
i=1

µ(dxi) ·
∏

1≤i<j≤N

|xi − xj |β.

Young graph corresponds to β = 2.
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Main results

1 Characterize various interesting measures on partitions in
a unified way

2 Define Markov dynamics associated with these measures

3 Derive properties of dynamics in a unified way

4 On an abstract level — diagonalize the generator of
dynamics

5 In concrete examples — go much further (use Fock space
structure):

Young graph — determinantal dynamics
Schur graph of shifted shapes — determinantal random
point fiels + Pfaffian dynamics
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Down and up Markov transition kernels on G

Down Markov transition kernels

As a branching graph, G comes with a natural family of down
Markov transition kernels p↓n,n−1 from Gn to Gn−1:

p↓n,n−1(λ, µ) :=
κ(µ, λ) dimµ

dimλ
,

where |µ| = n − 1, |λ| = n.∑
µ : |µ|=n−1

p↓n,n−1(λ, µ) = 1.

(randomly remove one element from λ)
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Down and up Markov transition kernels on G

Fact (⇐ sl(2) commutation relations)

The measures {MUD
n } are compatible with the down transition

kernel p↓n,n−1:

MUD
n ◦ p↓n,n−1 = MUD

n−1,

i.e., ∑
λ∈Gn

MUD
n (λ)p↓n,n−1(λ, µ) = MUD

n−1(µ).

(random removal preserves measures MUD
n )
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Down and up Markov transition kernels on G

Up Markov transition kernels

There are up Markov transition kernels p↑n,n+1 from Gn to Gn+1:

p↑n,n+1(λ, ν) :=
MUD

n+1(ν)

MUD
n (λ)

p↓n+1,n(ν, λ),

where |λ| = n, |ν| = n + 1.

They depend on {MUD
n } and

MUD
n ◦ p↑n,n+1 = MUD

n+1.

(randomly add an element to λ in a way preserving Mn)
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Down and up Markov transition kernels on G

Up Markov transition kernels
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Mixed measures

From {MUD
n } to measures on the whole graph G

MUD
ξ (λ) := (1− ξ)θξ|λ|

(θ)|λ|
|λ|!

·MUD
|λ| (λ)

= (1− ξ)θξ|λ|
(

dimλ

|λ|!

)2∏
b∈λ

q(b)2

” = ”(1− ξ)θ
(

e
√
ξU∅, λ

)(
e
√
ξDλ,∅

)

Example: Chain G = Z≥0

MUD
ξ (n) = (1− ξ)θξn

(θ)n
n!

:= πθ,ξ(n).
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Example: Chain G = Z≥0

Birth and death process nθ,ξ preserving πθ,ξ on Z≥0

Prob
(
nθ,ξ(t + dt) = n − 1 | nθ,ξ(t) = n

)
=

n

1− ξ
+ o(t);

Prob
(
nθ,ξ(t + dt) = n + 1 | nθ,ξ(t) = n

)
=
ξ(n + θ)

1− ξ
+ o(t)
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Markov process λξ preserving MUD
ξ (for general G)

1 |λξ(t)| ≡ nθ,ξ(t)

2 boxes are added/deleted to/from λξ
according to p↑n,n+1 and p↓n,n−1
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Averages w.r.t. MUD
ξ

Operator Gξ

Let
Gξ := e

√
ξU(1− ξ)

H
2 e−

√
ξD .

It is a unitary operator in `2(G) (:= CG with standard inner
product)

Proposition

〈f 〉MUD
ξ

:=
∑
λ∈G

f (λ)MUD
ξ (λ) = (G−1ξ fGξ∅,∅).

Remark: Fock space structure of Young and Schur graphs allow
to study MUD

ξ and dynamics λξ in great detail
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Generator of dynamics λξ

Generator acting in `2(G,MUD
ξ )

(Af )(λ) :=
∑
ρ∈G

Qλ,ρf (ρ),

Qλ,ρ — jump rates of λξ.

Isometry `2(G,MUD
ξ )←→ `2(G)

`2(G,MUD
ξ ) 3 f ←→ f · (MUD

ξ )
1
2 ∈ `2(G)

operator A in `2(G,MUD
ξ )←→ operator B in `2(G)
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Generator of dynamics λξ

Generator acting in `2(G)

B = −1

2
Gξ (H − θ) G−1ξ .

Spectrum of B in `2(G)

Eigenvalue (−n), where n = 0, 1, 2, . . ., with multiplicity #Gn.

Eigenfunctions of B in `2(G)

Let Fλ := Gξλ (for all λ ∈ G), then

BFλ = −|λ|Fλ, λ ∈ G.
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Diagonalization of the generator

Isometry `2(G)←→ `2(G,MUD
ξ )

functions Fλ in `2(G)

l

functions

Mλ :=

( √
ξ

1− ξ

)|λ|(∏
b∈λ

q(b)

)
· Fλ · (MUD

ξ )−
1
2

in `2(G,MUD
ξ )
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Explicit formula/definition of Mλ

(does not require the existence of Gξ)

Mλ(ρ) : =
∑
µ⊆λ

(
ξ

ξ − 1

)|λ|−|µ| ∏
b∈λ/µ

q(b)2

×
× |ρ|!

(|λ| − |µ|)!(|ρ| − |µ|)!

dim(µ, λ) dim(µ, ρ)

dim ρ

where

dim(µ, λ) := the number of paths (with weights)
from µ to λ.
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Functions Mλ

1 Diagonalize the generator of the Markov dynamics λξ:
AMλ = −|λ|Mλ, λ ∈ G

2 Form a (Hilbert space) basis in `2(G,MUD
ξ )

3 Form an orthogonal basis:

(Mλ,Mµ)MUD
ξ

= δλ,µ
ξ|λ|

(1− ξ)2|λ|

∏
b∈λ

q(b)2.
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Example: Chain G = Z≥0. Meixner polynomials

Mn(x) =

=
n∑

k=0

(
ξ

ξ − 1

)n−k (
n

k

)
Γ(θ + n)

Γ(θ + k)
· x(x − 1) . . . (x − k + 1).

— monic Meixner orthogonal polynomials.

(Mn,Mm)πθ,ξ = δn,m
ξnn!(θ)n
(1− ξ)2n

G = Y — Meixner symmetric functions [Olshanski ‘10,‘11]
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Characterization of Meixner polynomials Mn

Mn (n = 0, 1, . . .) are the unique polynomials such that

1 Mn = xn + lower degree terms

2 These polynomials are eigenfunctions of our generator:

AMn = −n ·Mn, n = 0, 1, . . .
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Final remarks

The general-case functions Mλ on G can be characterized in a
similar manner.

Operators U◦, D◦ (in particular, on the (q, t)-Young graph)
gives rise to similar dynamics. There is explicit diagonalization.
For the chain G = Z≥0 — monic Charlier orthogonal polyno-
mials (w.r.t. Poisson weight).
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