Colored Particle Systems on the Ring: Stationarity from Yang-Baxter equation

Leonid Petrov
(University of Virginia)
October 6, 2023
ASEP workshop at SCGP

Multispecies ASEP and its stationary measure

(Results)

Colored ASEP (multispecies ASEP, mASEP)

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites
$k, k+1$ swap at rate (color n : highest priority)
$\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i}
particles of color i (conserved quantities)

Colored ASEP (multispecies ASEP, mASEP)

- There is a unique stationary distribution

$\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ in each "sector"

$$
\vec{N}=\left(N_{1}, \ldots, N_{n}\right), \text { where } \eta_{j} \in\{0,1, \ldots, n\}
$$

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites
$k, k+1$ swap at rate (color n : highest priority)
$\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i}
particles of color i (conserved quantities)

Colored ASEP (multispecies ASEP, mASEP)

- There is a unique stationary distribution

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites
$k, k+1$ swap at rate (color n : highest priority)
$\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i}
particles of color i (conserved quantities)
$\vec{N}=\left(N_{1}, \ldots, N_{n}\right)$, where $\eta_{j} \in\{0,1, \ldots, n\}$
- For $n=1$ (single color), it is uniform among all $\binom{N}{N_{1}}$ configurations

Colored ASEP (multispecies ASEP, mASEP)

- There is a unique stationary distribution

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites $k, k+1$ swap at rate (color n : highest priority)
$\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i} particles of color i (conserved quantities) $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ in each "sector" $\vec{N}=\left(N_{1}, \ldots, N_{n}\right)$, where $\eta_{j} \in\{0,1, \ldots, n\}$
- For $n=1$ (single color), it is uniform among all $\binom{N}{N_{1}}$ configurations

Colored ASEP (multispecies ASEP, mASEP)

- There is a unique stationary distribution

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites
$k, k+1$ swap at rate (color n : highest priority)
$\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i}
particles of color i (conserved quantities)
$\vec{N}=\left(N_{1}, \ldots, N_{n}\right)$, where $\eta_{j} \in\{0,1, \ldots, n\}$
- For $n=1$ (single color), it is uniform among all $\binom{N}{N_{1}}$ configurations

Colored ASEP (multispecies ASEP, mASEP)

- There is a unique stationary distribution

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites $k, k+1$ swap at rate (color n : highest priority)
$\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i} particles of color i (conserved quantities)

Colored ASEP (multispecies ASEP, mASEP)

- There is a unique stationary distribution

- Particles have colors (types) in $\{1, \ldots, n\}$.
- Particles of colors $\left(i_{k}, i_{k+1}\right)$ at adjacent sites $k, k+1$ swap at rate (color n : highest priority) $\operatorname{Rate}\left(\left(i_{k}, i_{k+1}\right) \rightarrow\left(i_{k+1}, i_{k}\right)\right)= \begin{cases}q, & i_{k}>i_{k+1} \\ 1, & i_{k}<i_{k+1}\end{cases}$
- $q \in[0,1)$ is the parameter
- Lives on a ring with N sites; there are N_{i} particles of color i (conserved quantities)
$\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ in each "sector" $\vec{N}=\left(N_{1}, \ldots, N_{n}\right)$, where $\eta_{j} \in\{0,1, \ldots, n\}$
- For $n=1$ (single color), it is uniform among all $\binom{N}{N_{1}}$ configurations
- For many colors, nontrivial correlations
- Multiline queues: [Angel 2006], [Ferrari-Martin 2007] (mTASEP, $q=0$), [Martin 2018] (full mASEP)
- Matrix Ansatz: [Prolhac-Evans-Mallick 2009]
- Macdonald polynomials: [Cantini-de Gier-Wheeler 2015], [Corteel-Mandelshtam-Williams 2018]
- We use integrable vertex models

Main result for mASEP [Aggarwal-Nicoletti-P. 2023]

- We define a vertex model on the cylinder $\{-n,-n+1, \ldots,-2,-1\} \times(\mathbb{Z} / N \mathbb{Z})$
- The mASEP configuration $\eta=\left(\eta_{1}, \ldots, \eta_{N}\right)$ encodes the boundary condition.
- $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ is proportional to the partition function with the boundary η, which involves the summation over the wrappings $\mathbf{M}(-n), \ldots, \mathbf{M}(-1)$. There are infinitely many arrows of color m wrapping around column ($-m$).
- Weights are denoted by $\mathbb{W}_{s, x}^{(-m)}(\mathbf{A}, k ; \mathbf{C}, \ell)$, $\mathbf{A}, \mathbf{C} \in \mathbb{Z}_{\geq 0}^{n}, k, \ell \in\{0,1, \ldots, n\}$

Main result for mASEP [Aggarwal-Nicoletti-P. 2023]

Theorem. $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ is proportional to $\sum_{\mathbf{M}(-n), \ldots, \mathbf{M}(-1)} \sum_{\text {path conf }}$ of products of the weights $\mathbb{W}_{s_{m}, x_{m}}^{(-m)}$ over all $n \times N$ vertices, with boundaries \emptyset, η.

	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
 1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Infinitely many vertical arrows of color m; $m<k<\ell \leq n$

Main result for mASEP [Aggarwal-Nicoletti-P. 2023]
Theorem. $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ is proportional to $\sum_{\mathbf{M}(-n), \ldots, \mathbf{M}(-1)} \sum_{\text {path conf }}$ of products of the weights $\mathbb{W}_{S_{m}}^{(-m)} x_{m}$ over all $n \times N$ vertices, with boundaries \emptyset, η.

 1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
 1	$x\left(1-q^{A_{\ell}}\right) q^{\mathbf{A}_{[\ell+1, n]}}$	$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Infinitely many vertical arrows of color m; $m<k<\ell \leq n$

- The sum path conf is over path configurations in the $n \times N$ rectangle with boundaries $\emptyset, \mathbf{M}, \eta, \mathbf{M}$.

Main result for mASEP [Aggarwal-Nicoletti-P. 2023]
Theorem. $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ is proportional to $\sum_{\mathbf{M}(-n), \ldots, \mathbf{M}(-1)} \sum_{\text {path conf }}$ of products of the weights $\mathbb{W}_{S_{m}, x_{m}}^{(-m)}$ over all $n \times N$ vertices, with boundaries \emptyset, η.

 1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
 1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Infinitely many vertical arrows of color m; $m<k<\ell \leq n$

- The sum path conf is over path configurations in the $n \times N$ rectangle with boundaries $\emptyset, \mathbf{M}, \eta, \mathbf{M}$.
- Parameters s_{m}, x_{m} do not affect $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ on the ring. Positivity is automatic.

Main result for mASEP [Aggarwal-Nicoletti-P. 2023]
Theorem. $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ is proportional to $\sum_{\mathbf{M}(-n), \ldots, \mathbf{M}(-1)} \sum_{\text {path conf }}$ of products of the weights $\mathbb{W}_{S_{m}, x_{m}}^{(-m)}$ over all $n \times N$ vertices, with boundaries \emptyset, η.

 1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
 1	$x\left(1-q^{A_{\ell}}\right) q^{\mathbf{A}_{[\ell+1, n]}}$	$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Infinitely many vertical arrows of color m; $m<k<\ell \leq n$

- The sum path conf is over path configurations in the $n \times N$ rectangle with boundaries $\emptyset, \mathbf{M}, \eta, \mathbf{M}$.
- Parameters s_{m}, x_{m} do not affect $\operatorname{Prob}_{N_{1}, \ldots, N_{n}}\left(\eta_{1}, \ldots, \eta_{N}\right)$ on the ring. Positivity is automatic.
- Similar result on the line (with fewer parameters for positivity). The remaining parameters are responsible for the color densities.

Matching to previous results

 1			$x q^{\mathbf{A}_{[m+1, n]}}$
 1			$s q^{\mathbf{A}_{[m+1, n]}}$

$$
\mathbf{M}(-4) \quad \mathbf{M}(-3) \quad \mathbf{M}(-2) \quad \mathbf{M}(-1)
$$

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions:

1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x q^{\mathbf{A}_{[m+1, n]}}$
 1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions: $\sum_{\eta_{j}}\left(M, M^{\prime}\right)=\varnothing \sum_{M(-n)}^{M^{\prime(-n)}} \sum_{M}$

1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x q^{\mathbf{A}_{[m+1, n]}}$
1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions: $\sum_{\eta_{j}}\left(M, M^{\prime}\right)=\varnothing \sum_{M(-n)}^{M^{\prime(-n)}} \sum_{M}$

1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x q^{\mathbf{A}_{[m+1, n]}}$
1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions: $\sum_{\eta_{j}}\left(M, M^{\prime}\right)=\varnothing \sum_{M(-n)}^{M^{\prime(-n)}} \sum_{M}$

1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x q^{\mathbf{A}_{[m+1, n]}}$
1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions: $\sum_{\eta_{j}}\left(M, M^{\prime}\right)=\varnothing \eta_{M(-n)}^{M^{\prime(-n)}} \eta_{M(-1)}^{M^{\prime}(-1)}$
- [Martin 2018] found a multiline queue sampling algorithm that nontrivially corresponds to MPA

 1			$x q^{\mathbf{A}_{[m+1, n]}}$
			$s q^{\mathbf{A}_{[m+1, n]}}$

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions: $X_{\eta_{j}}\left(M, M^{\prime}\right)=\left.\phi\right|_{M(-n)} ^{M^{\prime(-n)}} \mid$
- [Martin 2018] found a multiline queue sampling algorithm that nontrivially corresponds to MPA
- $s=q, x=1$ gives Martin's "alternative queues" (resolves conjecture); interpolation $s \in[0,1)$.

1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
1			$s q^{\mathbf{A}_{[m+1, n]}}$

Matching to previous results

- The vertex model for $s=0, x=1$ is essentially the Matrix Product Ansatz (MPA) solution [Prolhac-EvansMallick 2009]. The matrices are row partition functions:

- [Martin 2018] found a multiline queue sampling algorithm that nontrivially corresponds to MPA
- $s=q, x=1$ gives Martin's "alternative queues" (resolves conjecture); interpolation $s \in[0,1$).
- We can use row-dependent x_{j} and weighted wrappings to produce nonsymmetric Macdonald polynomials like [Cantini-de Gier-Wheeler 2015], [Corteel-Mandelshtam-Williams 2018]; apparently different from [Borodin-Wheeler 2019]

1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$x q^{\mathbf{A}_{[m+1, n]}}$
 1		$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

Two other particle systems [Aggarwal-Nicoletti-P. 2023]

We present vertex models for stationary measures of two more systems on the ring and the line

Two other particle systems [Aggarwal-Nicoletti-P. 2023]

We present vertex models for stationary measures of two more systems on the ring and the line

- Colored stochastic q-Boson (q-TAZRP), introduced by [Takeyama 2015]
- A particle of color i hops from k to
$k-1(\bmod N)$ according to an independent
exponential clock with rate
$x_{k}^{-1}\left(1-q^{\left.\mathbf{V}(k)_{i}\right)} q^{\mathbf{V}(k)_{[i+1, n]} \text {. }}\right.$
- Tableau/queue model for stationary distributions [Ayyer-Mandelshtam-Martin 2022]; we match to our vertex models

Two other particle systems [Aggarwal-Nicoletti-P. 2023]
(5)

We present vertex models for stationary measures of two more systems on the ring and the line

- Colored stochastic q-Boson (q-TAZRP), introduced by [Takeyama 2015]
- A particle of color i hops from k to
$k-1(\bmod N)$ according to an independent exponential clock with rate $x_{k}^{-1}\left(1-q^{\left.\mathbf{V}(k)_{i}\right)} q^{\mathbf{V}(k)_{[i+1, n]}}\right.$.
- Tableau/queue model for stationary distributions [Ayyer-Mandelshtam-Martin 2022]; we match to our vertex models
- Colored q-PushTASEP of capacity P
- [Borodin-Wheeler 2018], [Bukh-Cox 2019], [Angel-Ayyer-Martin, in progress 2023]
- A particle activates with rate $x_{k}^{-1}\left(q^{-A_{j}}-1\right) q^{\mathrm{P}-A_{[j+1, n]}}$
- Active particle hops from site to site, where it can either stop; stop activate another particle of lower color; or move through, with prob.

$$
1-q^{\mathrm{P}-|\mathbf{B}|},\left(q^{-B_{d}}-1\right) q^{\mathrm{P}-B_{[d+1, n]},} q^{\mathrm{P}-B_{[c, n]}}
$$

Stationarity from Yang-Baxter equation

"Toy" example: stationarity for the single-color stochastic six-vertex model in the quadrant
(Explain the main idea in a simpler setting than the ring)
"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]
"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.
"Toy" example: stationarity for the single-color stochastic six-vertex model

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.
"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

- Stationarity. Assume that the boundary conditions are Bernoulli with densities ρ_{h}, ρ_{v}.
Then for $\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}}$, the distribution is
stationary in the quadrant.

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

$$
\stackrel{\rho_{v}\left(1-\rho_{n}\right)}{\uparrow} \stackrel{\rho}{i}^{\rho_{n}\left(1-\rho_{v}\right)\left(1-\delta_{2}\right)}+\prod^{\rho_{v}\left(1-\rho_{n}\right) \delta_{1}}
$$

- Stationarity. Assume that the boundary conditions are Bernoulli with densities ρ_{h}, ρ_{v}.
Then for $\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}}$, the distribution is stationary in the quadrant.

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]

$$
u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

The weights with $a_{1}=a_{2}=1, b_{1}=\delta_{1}, c_{1}=1-\delta_{1}, b_{2}=\delta_{2}$, $c_{2}=1-\delta_{2}$ are stochastic: $\sum_{i_{2}, j_{2}} w\left(i_{1}, j_{1} ; i_{2}, j_{2}\right)=1$.

Converges to ASEP along the diagonal as
$\delta_{1}, \delta_{2} \rightarrow 0$ and q stays fixed (so, $u \rightarrow 1$)

$$
\begin{aligned}
& \rho_{v}\left(1-\rho_{h}\right) \quad \rho_{h}\left(1-\rho_{v}\right)\left(1-\delta_{2}\right) \\
& \hat{\rho}^{\rho}+\cdots \cdots \\
& \rho_{v}\left(1-\rho_{h}\right)
\end{aligned}
$$

"Toy" example: stationarity for the single-color stochastic six-vertex model

$$
\begin{array}{cccccccc}
\vdots & & & - & \vdots & & \\
\hdashline & - & & - & - \\
1 & 1 & \delta_{1} & \delta_{2} & 1-\delta_{1} & 1-\delta_{2}
\end{array}
$$

$$
\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

- Yang-Baxter equation. For fixed q, and fixed $i_{1}, i_{2}, i_{3} \in\{0,1\}$, the joint distribution of j_{1}, j_{2}, j_{3} in two pictures is the same:

"Toy" example: stationarity for the single-color stochastic six-vertex model

[Gwa-Spohn 1992], [Borodin-Corwin-Gorin 2014], [Aggarwal-Borodin 2016]
$\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}$
- Yang-Baxter equation. For fixed q, and fixed $i_{1}, i_{2}, i_{3} \in\{0,1\}$, the joint distribution of j_{1}, j_{2}, j_{3} in two pictures is the same:

"Toy" example: stationarity for the single-color stochastic six-vertex model

$$
\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

"Toy" example: stationarity for the single-color stochastic six-vertex model
$\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}$

- Fusion [Kulish-Reshetikhin-Sklyanin 1983], [Corwin-P. 2015] - a way to construct new YBE solutions from existing ones.

"Toy" example: stationarity for the single-color stochastic six-vertex model
$\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}$
- Fusion [Kulish-Reshetikhin-Sklyanin 1983],
[Corwin-P. 2015] - a way to construct new YBE
 solutions from existing ones.

$\frac{1-x q^{g}}{1+x}$

$$
\frac{x\left(1-q^{g}\right)}{1+x}
$$

$$
\frac{x}{1+x}
$$

$$
\frac{1}{1+x}
$$

"Toy" example: stationarity for the single-color stochastic six-vertex model

$$
\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

- Fusion [Kulish-Reshetikhin-Sklyanin 1983],
[Corwin-P. 2015] - a way to construct new YBE

solutions from existing ones.

$\frac{1-x q^{g}}{1+x}$

$$
\frac{1}{1+x}
$$

"Toy" example: stationarity for the single-color stochastic six-vertex model
$\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}$

- Fusion [Kulish-Reshetikhin-Sklyanin 1983], [Corwin-P. 2015] - a way to construct new YBE solutions from existing ones.

$$
\frac{1-x q^{g}}{1+x}
$$

$$
\frac{x\left(1-q^{g}\right)}{1+x}
$$

$$
\frac{x}{1+x} \quad \frac{1}{1+x}
$$

Stationarity via Yang-Baxter

- For $g=+\infty$, the right output of the fat vertex is $\operatorname{Bernoulli}\left(\frac{x}{x+1}\right)$, independent of the bottom and the left inputs.
- The Yang-Baxter equation is equivalent to the previous "Burke" computation: $\rho_{v}=\frac{x}{x+1}$,

$$
\rho_{h}=\frac{u x}{u x+1} \Rightarrow \rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}}
$$

"Toy" example: stationarity for the single-color stochastic six-vertex model

$$
\begin{array}{cccccc}
:- & & - & - & \frac{1}{1} & \cdots \\
1 & 1 & \delta_{1} & \delta_{2} & 1-\delta_{1} & 1-\delta_{2} \\
\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} & u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
\end{array}
$$

"Toy" example: stationarity for the single-color stochastic six-vertex model

"Toy" example: stationarity for the single-color stochastic six-vertex model

$$
\rho_{h}=\frac{u \rho_{v}}{1-\rho_{v}+u \rho_{v}} \quad u:=\frac{1-\delta_{1}}{1-\delta_{2}}, \quad q:=\delta_{1} / \delta_{2}
$$

$\frac{1-x q^{g}}{1+x} \quad \frac{x\left(1-q^{q}\right)}{1+x}$

"Toy" example: stationarity for the single-color stochastic six-vertex model

Stationarity from Yang-Baxter equation

Colored stochastic six-vertex model in the quarter plane

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights. Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

- Set the number of arrows of a given color m to $+\infty$. We get $\mathbb{W} \mathbb{S}_{s_{m}}^{(-m)}$ 响 from the beginning (up to simple factors).

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines
Red > Green

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}_{n+1}\right) ; 1 \leq k<\ell \leq n$

- Set the number of arrows of a given color m to $+\infty$. We get $\mathbb{W}_{s_{m}, x_{m}}^{(-m)}$ from the beginning (up to simple factors).

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

- Set the number of arrows of a given color m to $+\infty$. We get $\mathbb{W} \mathbb{S}_{s_{m}}^{(-m)}$ 响 from the beginning (up to simple factors).

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines Red > Green

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

- Set the number of arrows of a given color m to $+\infty$. We get $\mathbb{W} \mathbb{S}_{s_{m}}^{(-m)}$ 响 from the beginning (up to simple factors).

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Set the number of arrows of a given color m to $+\infty$. We get $\mathbb{W}_{s_{m}, x_{m}}^{(-m)}$ from the beginning (up to simple factors).

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

Colored stochastic six-vertex model. Many colors \Rightarrow many fat lines

- Fusion and Yang-Baxter equation.

Higher spin, higher rank stochastic weights.
Related to $U_{q}\left(\widehat{s l}{ }_{n+1}\right) ; 1 \leq k<\ell \leq n$

- Set the number of arrows of a given color m to $+\infty$. We get $\mathbb{W} \mathbb{S}_{s_{m}}^{(-m)}$ 响 from the beginning (up to simple factors).

Stationarity from Yang-Baxter equation

mASEP on the ring

Yang-Baxter equation on the $n \times N$ cylinder

(These weights are not stochastic and have more parameters than on the line; all of this is okay on the ring)

Yang-Baxter equation on the $n \times N$ cylinder

(These weights are not stochastic and have more parameters than on the line; all of this is okay on the ring)

Yang-Baxter equation on the $n \times N$ cylinder

 1			$x q^{\mathbf{A}_{[m+1, n]}}$
 1			

(These weights are not stochastic and have more parameters than on the line; all of this is okay on the ring)

Yang-Baxter equation on the $n \times N$ cylinder

 1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
	$x\left(1-q^{A_{\ell}}\right) q^{\mathbf{A}_{[\ell+1, n]}}$	$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

(These weights are not stochastic and have more parameters than on the line; all of this is okay on the ring)

Yang-Baxter equation on the $n \times N$ cylinder

 1	$\left(x-s q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$		$x q^{\mathbf{A}_{[m+1, n]}}$
	$x\left(1-q^{A_{\ell}}\right) q^{\mathbf{A}_{[\ell+1, n]}}$	$s\left(1-q^{A_{k}}\right) q^{\mathbf{A}_{[k+1, n]}}$	$s q^{\mathbf{A}_{[m+1, n]}}$

(These weights are not stochastic and have more parameters than on the line; all of this is okay on the ring)

Commutation relation on the cylinder
$\sum \mathfrak{Q}(\emptyset, \eta) T_{y / x}\left(\eta, \eta^{\prime}\right)=T_{y / x}(\emptyset, \emptyset) \mathfrak{Q}\left(\emptyset, \eta^{\prime}\right)=\mathfrak{Q}\left(\emptyset, \eta^{\prime}\right)$

Yang-Baxter equation on the $n \times N$ cylinder

(These weights are not stochastic and have more parameters than on the line; all of this is okay on the ring)

Commutation relation on the cylinder

$\sum \mathfrak{Q}(\emptyset, \eta) T_{y / x}\left(\eta, \eta^{\prime}\right)=T_{y / x}(\emptyset, \emptyset) \mathfrak{Q}\left(\emptyset, \eta^{\prime}\right)=\mathfrak{Q}\left(\emptyset, \eta^{\prime}\right)$ η
(Bethe Ansatz: construct eigenvalue of T as a partition function)

Limit to the mASEP, $y / x=1-\epsilon$, continuous time
mASEP limit $\delta_{1}, \delta_{2} \rightarrow 0, q=\delta_{1} / \delta_{2}$

Time $\sim \tau / \epsilon$

Limit to the mASEP, $y / x=1-\epsilon$, continuous time
mASEP limit $\delta_{1}, \delta_{2} \rightarrow 0, q=\delta_{1} / \delta_{2}$

Time $\sim \tau / \epsilon$

$$
\langle 1,4| \check{\mathfrak{R}}_{1-\epsilon}|4,1\rangle=R_{1-\epsilon}(1,4 ; 1,4)=\frac{\epsilon}{1-q}+O\left(\epsilon^{2}\right)
$$

Limit to the mASEP, $y / x=1-\epsilon$, continuous time
mASEP limit $\delta_{1}, \delta_{2} \rightarrow 0, q=\delta_{1} / \delta_{2}$

Time $\sim \tau / \epsilon$

$$
\langle 1,4| \check{\mathfrak{R}}_{1-\epsilon}|4,1\rangle=R_{1-\epsilon}(1,4 ; 1,4)=\frac{\epsilon}{1-q}+O\left(\epsilon^{2}\right)
$$

Conclusions

- A lot of recent activity around stationary measures for colored (also called multi-species or multi-type) and monochrome interacting particle systems in different geometries (line, ring, half-space, segment).
- Motivated by asymptotic phenomena (microscopic characteristics, stationary measures for KPZ equation)
- Rich algebraic and combinatorial structure (e.g. nonsymmetric Macdonald polynomials)
- We show that the ring, line, and quadrant stationarity follow directly from the Yang-Baxter equation.
- Other geomeries?
- Box ball systems?
- Stationary horizons / speed processes?

Bonus: Matrix Product Ansatz from Yang-Baxter equation
Matrix Product Ansatz expression for the mASEP stationary measure

$$
\operatorname{Prob}_{N_{1}, \ldots, N_{n}}^{\mathrm{mASEP}}(\eta)=\frac{\operatorname{Trace}\left(X_{\eta_{1}}^{\mathrm{MPA}} \ldots X_{\eta_{N}}^{\mathrm{MPA}}\right)}{Z_{N_{1}, \ldots, N_{n}}^{\mathrm{MPA}}}
$$

Bonus: Matrix Product Ansatz from Yang-Baxter equation

Matrix Product Ansatz expression for the mASEP stationary measure

$$
\operatorname{Prob}_{N_{1}, \ldots, N_{n}}^{\mathrm{mASEP}}(\eta)=\frac{\operatorname{Trace}\left(X_{\eta_{1}}^{\mathrm{MPA}} \ldots X_{\eta_{N}}^{\mathrm{MPA}}\right)}{Z_{N_{1}, \ldots, N_{n}}^{\mathrm{MPA}}}
$$

Key identity in the stationarity proof: existence of auxiliary matrices in [Prolhac-Evans-Mallick 2009]

$$
\sum_{i, i^{\prime}=0}^{n} X_{i}^{\mathrm{MPA}} X_{i^{\prime}}^{\mathrm{MPA}}\left(\mathcal{M}_{l o c}\right)_{i i^{\prime}, j j^{\prime}}=X_{j}^{\mathrm{MPA}} \widehat{X}_{j^{\prime}}^{\mathrm{MPA}}-\widehat{X}_{j}^{\mathrm{MPA}} X_{j^{\prime}}^{\mathrm{MPA}}
$$

Bonus: Matrix Product Ansatz from Yang-Baxter equation

Matrix Product Ansatz expression for the mASEP stationary measure

$$
\operatorname{Prob}_{N_{1}, \ldots, N_{n}}^{\mathrm{mASEP}}(\eta)=\frac{\operatorname{Trace}\left(X_{\eta_{1}}^{\mathrm{MPA}} \cdots X_{\eta_{N}}^{\mathrm{MPA}}\right)}{Z_{N_{1}, \ldots, N_{n}}^{\mathrm{MPA}}}
$$

Key identity in the stationarity proof: existence of auxiliary matrices in
[Prolhac-Evans-Mallick 2009]

$$
\sum_{i, i^{\prime}=0}^{n} X_{i}^{\mathrm{MPA}} X_{i^{\prime}}^{\mathrm{MPA}}\left(\mathcal{M}_{l o c}\right)_{i i^{\prime}, j j^{\prime}}=X_{j}^{\mathrm{MPA}} \widehat{X}_{j^{\prime}}^{\mathrm{MPA}}-\widehat{X}_{j}^{\mathrm{MPA}} X_{j^{\prime}}^{\mathrm{MPA}}
$$

Yang-Baxter equation

$$
\begin{gathered}
\sum_{i, i^{\prime}=0}^{n} X_{i}^{\mathrm{MPA}}(u) X_{i^{\prime}}^{\mathrm{MPA}}(u(1-\epsilon)) \cdot R_{1-\epsilon}\left(i, i^{\prime} ; j^{\prime}, j\right)=X_{j}^{\mathrm{MPA}}(u(1-\epsilon)) X_{j^{\prime}}^{\mathrm{MPA}}(u) \\
\widehat{X}_{j}^{\mathrm{MPA}}(u):=(1-q) u \frac{\partial}{\partial u} X_{j}^{\mathrm{MPA}}(u)
\end{gathered}
$$

Bonus: Matrix Product Ansatz from Yang-Baxter equation

$$
A D-q D A=E A-q A E=(1-q) A, \quad E D-q D E=(1-q)(E+D) .
$$

$A:=\left(\begin{array}{cccc}1 & s & 0 & \ldots \\ 0 & q & q s & \ldots \\ 0 & 0 & q^{2} & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right), \quad D:=u^{-1}\left(\begin{array}{cccc}u-s & 0 & 0 & \ldots \\ 1-q & u-s q & 0 & \cdots \\ 0 & 1-q^{2} & u-s q^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$,
$E:=\left(\begin{array}{cccc}1 & u & 0 & \ldots \\ 0 & 1 & u & \ldots \\ 0 & 0 & 1 & \ldots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right)$.
$s=0$: [Prolhac-Evans-Mallick 2009]
$s=q$: conjectured alternative queues [Martin 2018]
General s : interpolation

 1			
 1		$s \cdot\left(1-q^{A_{k}}\right) q^{A_{[k+1, n]}}$	$s \cdot q^{A_{[m+1, n]}}$

Thank you for attention!

Special thanks to the organizers of the conference

