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KPZ equation and TASEP
KPZ equation [Kardar, Parisi, and Zhang, 1986] — a stochastic PDE model for randomly
growing interface h(t, x), t > 0, x ∈ R:

∂h(t, x)
∂t

= ∂2h(t, x)
∂x2 +

(
∂h(t, x)
∂x

)2

+ η(t, x), Eη(t, x)η(t′, x′) = δ(t− t′)δ(x−x′)

(the time evolution of the interface is governed by the smoothing and the slope-dependent
growth terms, plus random noise)

• Existence and uniqueness of solutions [Hairer, 2014], etc.

• Approximation of solutions of the KPZ equation by discrete-space interacting
particle systems such as weakly ASEP [Bertini and Giacomin, 1997], etc.

• Exact distributions and limits (e.g. t → +∞) of h(t, x) for specific and (con-
jecturally) general initial data h(0, x) [Amir, Corwin, and Quastel, 2011, Matetski,
Quastel, and Remenik, 2017], etc.
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surface growth model
liquid crystal experiment
[Takeuchi and Sano, 2010]

simulation by M. Hairer
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TASEP (totally asymmetric simple exclusion process)
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Each particle has an exponential clock with rate 1: P(wait > s) = e−s, s > 0, clocks
are independent for each particle.
When the clock rings, the particle jumps to the right by one if the destination is not
occupied.

mk

TASEP

11

22

33

44

55

x1x2x3x4x5x6

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5

corner growth

• TASEP on Z

• directed last passage percolation

• corner growth

• longest increasing subsequences

• tandem queues
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Theorem ([Johansson, 2000])
Start TASEP from the step initial configuration xi(0) = −i, i = 1, 2, . . ..
Let h(t, x) be the height of the interface over x at time t. Then

lim
L→+∞

P
(
h(τL, χL)− Lh(τ, χ)

cτ,χL1/3 ≥ −s
)

= FGUE(s),

where FGUE is the GUE (Gaussian Unitary Ensemble) Tracy–Widom distribution
originated in random matrix theory [Tracy and Widom, 1993]

Limit shape [Rost, 1981]
Simulation [Ferrari, 2008]
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KPZ universality principle / conjecture: models in KPZ class (including the KPZ
equation) at large times and scales behave as TASEP at large times and scales

Starting from Johansson’s theorem, there is a very good understanding of TASEP
asymptotics:

• multipoint distributions

• particle-dependent speeds

• other initial conditions, including general

• extensions to other models such as ASEP

[Okounkov, 2001, Its, Tracy, and Widom, 2001, Gravner, Tracy, and Widom, 2002, Prähofer
and Spohn, 2002, Borodin, Ferrari, Prähofer, and Sasamoto, 2007, Matetski, Quastel, and
Remenik, 2017, Borodin, Ferrari, and Sasamoto, 2009, Duits, 2013, Tracy and Widom, 2009]

• Some important aspects are missing:

The focus today is on asymptotics of particle systems in inhomogeneous space
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Inhomogeneous TASEP and slow bond problem

— one of the most complicated aspects of TASEP asymptotics, still not fully understood
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Inhomogeneous TASEP

Particles are identical, but jump rates depend on the location

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

rate= ξ2 rate= ξ11

Slow bond problem. Let all ξi be 1 except that the jump to zero is with lower rate
ξ−1 = 1− ε ∈ [0, 1].

Question: For step IC, does the flux of particles through zero decrease
(from 1

4 for ε = 0) for any ε > 0? Or is there a critical value εc 6= 0?

This question received competing predictions from various groups of physicists
[Janowsky and Lebowitz, 1992, Costin, Lebowitz, Speer, and Troiani, 2013].

This is a hard analytic problem: exact solutions break down
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Warm up: hydrodynamics (why current through 0 is 1
4)

Law of large numbers for regular (locally constant) behavior ξi = ξ(i/t) and t→∞.

Understanding translation invariant stationary distributions in a homogeneous system,
write down a PDE for the limiting density in the inhomogeneous case

Theorem (Liggett)
Bernoulli measures are all non-trivial extremal stationary measures of TASEP.

Let ρ be the density of the Bernoulli measure, then the flux (current) is j(ρ) = ρ(1− ρ).

The continuity equation for the limiting density ρ(t, x) (if it exists) is

∂

∂t
ρ(t, x) + ∂

∂x

(
ξ(x)ρ(t, x)

(
1− ρ(t, x)

))
= 0, ρ(0, x) = ρ0(x).

For ξ ≡ 1, ρ0(x) = 1x<0, we have ρ(t, x) = 1
2 (1− x/t), |x| < t. So ρ(t, 0) = 1

2 .

[GKS10]: formulas when ξ takes 2 values. Conjecturally, Tracy–Widom fluctuations

[Liggett, 1976, 1999, Andjel, 1982, Andjel and Kipnis, 1984, Rolla and Teixeira, 2008, Geor-
giou, Kumar, and Seppäläinen, 2010, Calder, 2015],
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Slow bond problem and last passage percolation
For slow bond problem, ξi is not locally constant at 0 and Bernoulli measures are
not invariant — so no hydrodynamics. The slow bond problem was solved in [Basu,
Sidoravicius, and Sly, 2014]; invariant measures described in [Basu, Sarkar, and Sly, 2017]:

For every ε > 0, the asymptotic current through zero is strictly less than 1
4 .

The proof uses mapping to last passage percolation with exp(1− ε) random variables
on the diagonal, and multiscale analysis.
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Integrable particle systems in inhomogeneous
space

— let us “repair” the inhomogeneous TASEP by taking a “similar” system which is
exactly solvable
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Relatives of TASEP which are integrable (= exactly
solvable) in inhomogeneous space:

1. PushTASEP
A known old relative of TASEP, also called long-range TASEP, a special case
of the Toom’s model [Derrida, Lebowitz, Speer, and Spohn, 1991], known since
1970s [Spitzer, 1970].

([Petrov, 2018] in preparation)

2. −→ A new continuous space version of TASEP
Brings a whole new class of relative models: queuing systems, a deformation of
last passage percolation, etc.

(a harder model [Knizel, Petrov, and Saenz, 2018], arXiv:1808.09855 [math.PR])

Ultimate triggers of integrability: Schur measures and the Yang-Baxter equation
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Schur measures

— main integrability tool
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Schur measures [Okounkov, 2001] — a powerful tool in integrable probability. We use it
to solve inhomogeneous PushTASEP and continuous space TASEP

Definition (Schur polynomials)

λ = (λ1 ≥ . . . λN ≥ 0), sλ(ξ1, . . . , ξN ) :=
det[ξλj+N−j

i ]Ni,j=1

det[ξN−ji ]Ni,j=1
sλ(ξ1, . . . , ξN ) ≥ 0 if all ξi ≥ 0.

Definition (Schur measure)

P(λ) := 1
Z
sλ(ξ1, . . . , ξN )sλ(η1, . . . , ηN ), Z =

N∏
i,j=1

1
1− ξiηj

.

Many parameters ξi, ηj
Explicit normalization follows from the Cauchy identity.
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Working example

Of particular interest is the Schur measure ∝ sλ(ξ1, . . . , ξN )sλ(Γt)

When ξi ≡ 1, it is sometimes called the Schur-Weyl measure, and appears in dimen-
sion counting in Schur-Weyl duality.

Schur-Weyl measure is closely related to the Plancherel measure on partitions and
longest increasing subsequences
[Baik, Deift, and Johansson, 1999], [Okounkov, 2000], [Borodin, Okounkov, and Olshan-
ski, 2000], [Biane, 2001], [Romik, 2015], etc.

Determinantal structure
The half-infinite random point configuration {λj−j}j≥0 is a determinantal point process
on Z, that is,

P(random configuration {λj − j} contains a1, . . . , ar) =
r

det
i,j=1

[K(ai, aj)] .
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The kernel for ∝ sλ(ξ1, . . . , ξN )sλ(Γt) is

K(x, y) = 1
(2πi)2

∮ ∮
dwdz

z − w
wy

zx+1 e
t(z−w)

N∏
i=1

1− ξi/z
1− ξi/w

(contours are around 0 and {ξi}, and |z| > |w|)

• Asymptotic questions about Schur measures can in principle be answered via
asymptotic analysis of contour integrals (saddle point methods)

• Extension to Schur processes [Okounkov and Reshetikhin, 2003]

• Markov dynamics on Schur processes (changing their specializations) are a rich
source of integrable particle systems in 1 and 2 dimensions.

Remark. Markov dynamics on Schur processes are related / extend to

(1) shuffling for lozenge or domino tilings;

(2) Robinson-Schensted-Knuth insertion;

(3) integrable models of random polymers in random media; etc.
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(A sample of) models solvable by Schur measures
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• Homogeneous or particle-inhomogeneous TASEP on Z

• directed last passage percolation

• corner growth

• longest increasing subsequences

• tandem queues

Plane partitions and other
random tilings (noncolliding
walks; dimer models; etc.)

Tiles or particles along certain
cross-sections are distributed as
Schur measures

Also: random matrix
type models, z-measures,
polynuclear growth, . . .

lozenge tilings pictures: [Okounkov and Reshetikhin, 2003,
Borodin and Ferrari, 2014]
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Continuous space TASEP
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A continuous time particle system X(t) on ordered particles x1 ≥ x2 ≥ . . . in R≥0.
Step IC: initially infinitely many particles at 0, the rest of the space is empty.

• one particle can leave a stack at location x at rate ζ(x), where ζ is an arbitrary
positive piecewise continuous speed function;
• the jumping particle wants to jump an exponential distance with mean 1/L;
• particles preserve order — an overflying particle joins the first stack to the right

Height function hcont(t, x) := # {number of particles ≥ x at time t}.
Limit regime: L→ +∞, t = Lτ — more particles, long time, short jumps; the speed
function ζ(·) and location x are not scaled

0 x

Rate = ζ(0) Rate = ζ(x)
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• This is a “natural” definition of TASEP in continuous space

• Also a continuous space limit of the discrete space generalized TASEP of [Derby-
shev, Povolotsky, and Priezzhev, 2015]

• Resembles queuing systems, with Poisson service

• Can incorporate roadblocks (= slow bonds) in the space catching particles with
fixed probability; for simplicity let’s leave this for now

• A q-deformation was first studied in [Borodin and Petrov, 2018]. Continuous space
TASEP is the q = 0 limit, and methods of [BP17] break for q = 0

Theorem ([Orr and Petrov, 2017], via stochastic vertex models)
Take λM under∝ sλ

(
ζ( x
M

), ζ( 2x
M

), . . . , ζ(x)
)
sλ

(
e−L/M

ζ(x/M) ,
e−L/M

ζ(2x/M) , . . . ,
e−L/M

ζ(x) ; Γt
)
.

Then hcont(t, x) d= limM→∞ λM .
(recall: L−1 is the mean jump distance in the continuous TASEP)
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Simulations of the random height function

0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Leonid Petrov • Nonequilibrium particle systems in inhomogeneous space



Simulations of the random height function
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Remark. Invariance under permutations / exchangeability
The height function’s distribution in both PushTASEP and continuous space TASEP is
invariant under permutations of space inhomogeneity:

hpush(t, x) ∼ sλ(ξ1, . . . , ξx)sλ(Γt),

hcont(t, x) ∼ sλ
(
”ζ
(
[0, x)

)
”
)
sλ(” 1

ζ
(
[0, x)

)”; Γt)

(Schur polynomials are symmetric)

These posterior facts can be traced to the Yang-Baxter equation for the sl2 higher spin
six vertex model

This invariance under permutations of the environment can be viewed as a good indicator
towards solvability of space-inhomogeneous models
(does not naively work for TASEP with a slow bond)
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Hydrodynamics in continuous space TASEP

Examples of translation invariant stationary distributions are Poisson processes on R
with random geometric number of particles at points of Poisson process.

The flux (current) is j(ρ) = 2ρ+ 1−
√

4ρ+ 1
2ρ (why generating function for Catalan

numbers?), and the PDEs for the limiting density and the limiting height function
h(τ, x) are

∂

∂τ
ρ(τ, x) + ∂

∂x

(
ζ(x)j(ρ(τ, x))

)
= 0 ⇒ hx(τ, x) = − ζ(x)hτ (τ, x)

(ζ(x)− hτ (τ, x))2
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Fix piecewise continuous ζ(·), scale time t = τL, send L→ +∞

Theorem ([Knizel, Petrov, and Saenz, 2018])
There exists almost sure limit shape h(τ, x) = limL→∞

1
L
hcont(τ, x).

Edge: h(τ, x) ≡ 0, x ≥ xe(τ), where τ =
∫ xe(τ)

0

dy

ζ(y) . For x ∈ (0, xe(τ)):

• Let wx be the unique solution of τw =
∫ x

0

wζ(y)(w + ζ(y))
(ζ(y)− w)3 dy on the interval

0 < wx < min0≤y<x ζ(y). If ζ jumps down, the interval shrinks and wx is
discontinuous in x.

• The limit shape is h(τ, x) = τwx −
∫ x

0

ζ(y)wx
ζ(y)− wx

dy. One can check that it

satisfies the continuity equation.

Example: If ζ(x) = 1x≤x0 + b1x>x0 , the limit shape is piecewise of degrees 3 and 6
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Fluctuations for continuous TASEP
Let ζ(·) be piecewise continuous, and continuous at 0.

Theorem ([Knizel, Petrov, and Saenz, 2018])

When x ∈ (0, xe(τ)), define σx := 2−
1
3

[∫ x

0

2(wx)2 ζ(y) (wx + 2ζ(y))
(ζ(y)− wx)4 dy

] 1
3

> 0.

Then

lim
L→∞

P
(
hcont(τL, x)− Lh(τ, x)

L1/3σx
≥ −r

)
= FGUE(r), r ∈ R.

+ multitime fluctuations are described by the Airy2 kernel

Note: FGUE fluctuations hold even at the points of infinite traffic jams
• There is a phase transition and a critical value ζc(τ) of the slowdown speed ζc: for
speed ζ > ζc the height function is continuous, and for ζ < ζc the height function
becomes discontinuous.
• The density is discontinuous at such phase transitions. In infinite traffic jam the
density is infinite.
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Fluctuations at a traffic jam [Knizel, Petrov, and Saenz, 2018]
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Let ξ(y) = 1y≤1 + 1
2 ·1y>1. The traffic jam appears after t = 12L. Let x = 1 + 10ε(L).

• If ε(L)� L−4/3, then hcont(12L, x)− 4L
2−2/3cL1/3 → FGUE ;

• If ε(L)� L−4/3, then hcont(12L, x)− h(12, x)L
cL1/3 → FGUE ;

• If ε(L) = 10−4/3δL−4/3, then hcont(12L, x)− 4L
2−2/3cL1/3 → F

(δ)
GUE (next slide).

+ multitime fluctuations are described by the Airy2 kernel or its δ-deformation
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The deformation F (δ)
GUE is a Fredholm determinant

F
(δ)
GUE(r) = det

(
1−K(δ))

(r,+∞)

of a deformation of the Airy kernel:

K(δ)(r, r′) = 1
(2πi)2

∫ e2πi/3∞

e−2πi/3∞
dw

∫ eπi/3∞

e−πi/3∞
dz

1
z − w

× exp
{
z3

3 −
w3

3 − zr + wr′ − δ

z
+ δ

w

}

Kernel like this appears in [Borodin and Peche, 2008] in fluctuations for a certain last-
passage percolation model and a certain random matrix model.

Why on both sides we recover the usual Tracy–Widom fluctuations:

• If δ = 0, we have F (δ)
GUE = FGUE ;

• As δ → +∞, F (δ)
GUE(r + 2δ 1

2 )→ FGUE(2− 2
3 r).
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Remark. A discrete extension
The continuous space TASEP is in a whole new class of Schur-solvable models, as
rich as the original family of models related to the usual TASEP.

Example: one-parameter extension of the last-passage percolation with geometric
weights, where we add more than one box, but only in one direction.
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Limit shapes: a one-parameter extension of geometric corner growth (blue curve)
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Remark. Last passage percolation view of phase transitions
• There is another type of phase transition first observed in [Baik, Ben Arous, and

Péché, 2005] in random matrices;

• In directed last passage percolation setting this corresponds to having weights
with slightly higher mean in a small region of the space. One can also organize a
BBP transition in our continuous space TASEP

• Our phase transition can informally be related to a layered directed last passage
percolation, when paths having energy E > E0 (with E0 fixed) move to a new
layer with higher mean.
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Conclusions
• The original slow bond problem for TASEP so far resists integrable tools

• There are two similarly looking models in inhomogeneous space, exactly solvable
through Schur measures; both allow to model slow bond type behavior

• Common feature — invariance under permutations of the environment, can be
traced to Yang–Baxter equation and Schur measures

• Explicit limit shape formulas and fluctuation results

• Continuous space TASEP allows for phase transitions of higher order (infinite
density); this also nicely deforms fluctuation behavior

• On exactly solvable side, through the continuous space TASEP we discovered a
new class of particle systems related to Schur measures.
Many of the constructions lift to Macdonald processes and stochastic vertex
models
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Thank you!
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