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Lozenge Tilings



Polygon on the triangular lattice



Lozenge tilings of a polygon



Lozenge tilings of a polygon



Remark

Lozenge tilings ⇐⇒ Dimer Coverings



3D stepped surfaces with “polygonal” boundary conditions

Unit cube =

(polygon = projection of the boundary of 3D surfaces on the
plane x + y + z = 1)



3D surfaces in a box. “Full” and “Empty” configurations



3D surfaces in a box. “Full” and “Empty” configurations



Two models of random tilings

1 Uniformly random tilings:

Prob{a tiling} =
1

total # of tilings

2 q-deformation (0 < q < 1):

Prob{a tiling} =
qvolume under the 3D surface

Z (q)



How very “large” tilings look like?

Fix a polygon P and let the mesh = N−1 = ε→ 0
(hydrodynamic scaling). For q-measure let also q = qε0 → 1.

[Kenyon-Okounkov ’07] Algorithm of [Borodin-Gorin ’09]



Limit shape and frozen boundary for

general polygonal domains

[Cohn–Larsen–Propp ’98], [Cohn–Kenyon–Propp ’01],
[Kenyon-Okounkov ’07]

• (LLN) As the mesh goes to zero, random 3D stepped
surfaces concentrate around a deterministic limit shape
surface

• The limit shape develops frozen facets

• There is a connected liquid region where all three types of
lozenges are present

• The limit shape surface and the separating frozen
boundary curve are algebraic

• The frozen boundary is tangent to all sides of the polygon





Gelfand-Tsetlin-type
(GT-type) Polygons



Affine transform of lozenges





GT-type polygons in (χ, η) plane

1

a1 a2 a3 a4b1 b2 b3 b4 ak bk
Η

Χ

Polygon P has 3k sides, k = 2, 3, 4, . . .

+ condition
k∑

i=1

(bi − ai) = 1 (ai , bi — fixed parameters)

(k = 2 — hexagon with sides A,B ,C ,A,B ,C )



Tilings of GT-type polygons as interlacing
particle configurations

x

n

Take a tiling of a GT-type polygon P



Tilings of GT-type polygons as interlacing
particle configurations

x

n

0

N

Let N := ε−1 ∈ Z (where ε = mesh of the lattice)

Introduce scaled integer coordinates (= scale the polygon)
x = Nχ, n = Nη (so n = 0, . . . ,N)



Tilings of GT-type polygons as interlacing
particle configurations

x

n

N

Trivially extend the tiling to the strip 0 ≤ n ≤ N
with N small triangles on top



Tilings of GT-type polygons as interlacing
particle configurations

x

n

N

Place a particle in the center of every lozenge of type



Tilings of GT-type polygons as interlacing
particle configurations

x

n

N

Erase the polygon. . .



Tilings of GT-type polygons as interlacing
particle configurations

x

n

0

N

. . . and the lozenges!

(though one can always reconstruct everything back)



Gelfand-Tsetlin schemes

x

n

0

N

We get a random integer (particle) array

{xm
j : m = 1, . . . ,N ; j = 1, . . . ,m} ∈ ZN(N+1)/2

satisfying interlacing constraints

xm
j+1 < xm−1

j ≤ xm
j (for all possible m, j)

and with certain fixed top (N-th) row: xN
N < . . . < xN

1

(determined by N and parameters {ai , bi}ki=1 of the polygon).



Local Asymptotic Behavior of
Uniformly Random Tilings

of GT-type Polygons:
Edge, Bulk



Local behavior at the edge:

3 directions of nonintersecting paths



Limit shape ⇒ outer paths of every type concentrate around
the corresponding direction of the frozen boundary:

Theorem 1 [P. ’12]. Edge behavior for GT-type polygons

Fluctuations O(ε1/3) in tangent and O(ε2/3) in normal direction
(ε = 1

N
= mesh of the triangular lattice)

Thus scaled fluctuations are governed by the (space-time) Airy
process at not tangent nor turning point (χ, η) ∈ boundary
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Appearance of Airy-type asymptotics

• Edge asymptotics in many spatial models (from the
Kardar–Parisi–Zhang universality class) are governed by
the Airy process

• First appearances — the static case:
random matrices (in part., Tracy-Widom distribution F2),
random partitions (in part., the longest increasing
subsequence)

• Dynamical Airy process:
PNG droplet growth, [Prähofer–Spohn ’02]

• Random tilings of infinite
polygons:
[Okounkov-Reshetikhin ’07]



Finite polygons (our setting)

Hexagon case: [Baik-Kriecherbauer-McLaughlin-Miller ’07],
static case (in cross-sections of ensembles of nonintersecting
paths), using orthogonal polynomials



Theorem 2 [P. ’12]. Bulk asymptotics for GT-type polygons

Zooming around a point (χ, η) ∈ P , we asymptotically see a
unique translation invariant ergodic Gibbs measure on tilings of
the whole plane with given proportions of lozenges of all
types [Sheffield ’05], [Kenyon-Okounkov-Sheffield ’06]



Theorem 2 [P. ’12] (cont.). Proportions of lozenges

There exists a function Ω = Ω(χ, η) : P → C, =Ω ≥ 0 (com-
plex slope) such that asymptotic proportions of lozenges

(p , p , p ), p + p + p = 1

(seen in a large box under the ergodic Gibbs measure) are the
normalized angles of the triangle in the complex plane:

0

W

1



Predicting the limit shape from bulk

local asymptotics

(p , p , p ) — normal vector to the limit shape surface in 3D
coordinates like this:

Theorem 2 [P. ’12] (cont.). Limit shape prediction

The limit shape prediction from local asymptotics coincides with
the true limit shape of [Cohn–Kenyon–Propp ’01],
[Kenyon-Okounkov ’07].



Bulk local asymptotics:

previous results related to Theorem 2

• [Baik-Kriecherbauer-McLaughlin-Miller ’07], [Gorin ’08] —
for uniformly random tilings of the hexagon = boxed plane
partitions (using orth. poly)

• [Borodin-Gorin-Rains ’10] — for more general measures on
boxed plane partitions (using orth. poly)

• [Kenyon ’08] — for rather general boundary conditions
(= regions) not allowing frozen parts of the limit shape

• Many other random 3D stepped surface (lozenge tiling)
models also show this local behavior (universality)



Theorem 3 [P. ’12]. The complex slope Ω(χ, η)

The function Ω: P → C satisfies the differential complex Burg-
ers equation [Kenyon-Okounkov ’07]

Ω(χ, η)
∂Ω(χ, η)

∂χ
= −(1− Ω(χ, η))

∂Ω(χ, η)

∂η
,

and the algebraic equation (it reduces to a degree k equation)

Ω ·
∏k

i=1

(
(ai − χ + 1− η)Ω− (ai − χ)

)
(1)

=
∏k

i=1

(
(bi − χ + 1− η)Ω− (bi − χ)

)
.

For (χ, η) in the liquid region, Ω(χ, η) is the only solution of
(1) in the upper half plane.



Parametrization of frozen boundary

(χ, η) approach the frozen boundary curve ⇐⇒
Ω(χ, η) approaches the real line and
becomes double root of the algebraic
equation (1) thus yielding
two equations on Ω, χ, and η.

0

W

1

We take slightly different real parameter for the frozen
boundary curve:

t := χ +
(1− η)Ω

1− Ω
.



Theorem 4 [P. ’12]. Explicit rational parametrization of the
frozen boundary curve (χ(t), η(t))

χ(t) = t +
Π(t)− 1

Σ(t)
; η(t) =

Π(t)(Σ(t)− Π(t) + 2)− 1

Π(t)Σ(t)
,

where

Π(t) :=
∏k

i=1

t − bi
t − ai

, Σ(t) :=
∑k

i=1

( 1

t − bi
− 1

t − ai

)
,

with parameter −∞ ≤ t < ∞. As t increases, the frozen
boundary is passed in the clockwise direction (so that the liquid
region stays to the right).

Tangent direction to the frozen boundary is given by

χ̇(t)

η̇(t)
=

Π(t)

1− Π(t)
.



Frozen boundary examples



Frozen boundary examples



Frozen boundary examples



Frozen boundary examples







Global Fluctuations of the
Height Function of Uniformly
Random Tilings of GT-type

Polygons:

Gaussian Free Field



Height function of a tiling

h(x , n) :=
∑

m : m≤n

1{there is a lozenge of type or at (x ,m)}.



Level lines of the height function — one of the three
families of nonintersecting paths:

Limit shape [Cohn–Kenyon–Propp ’01], [Kenyon–Okounkov ’07]

Almost surely, as N →∞, we have
hN([χN], [ηN])

N
→ h(χ, η)

Fluctuations of the height function around its mean
√
π
{
hN([χN], [ηN])−E

(
hN([χN], [ηN])

)}
— random field in-

dexed by points of the liquid region



Theorem 5 [P. ’12]. CLT for fluctuations of the height func-
tion of uniformly random tilings

Random field of fluctuations

√
π
{
hN([χN], [ηN])− E

(
hN([χN], [ηN])

)}
converges to a certain Gaussian Free Field on D:

√
π

∫
D
φ(χ, η)

(
hN([χN], [ηN])− E

(
hN([χN], [ηN])

))
dχdη →∫

D
φ(χ, η)GFFD(χ, η)

)
dχdη

(weak convergence) for any smooth test function φ with zero
boundary conditions.



Complex structure on D

There is a bijective parametrization of the frozen boundary
with parameter −∞ ≤ t <∞

Continue t to the upper half plane H := {z ∈ C : =z > 0}:

t(χ, η) = χ + (1− η)
Ω(χ, η)

1− Ω(χ, η)
, (χ, η) ∈ liquid region D

t : D → H — diffeomorphism

Green function on D

GD
(
(χ1, η1), (χ2, η2)

)
:= − 1

2π
ln

∣∣∣∣∣t(χ1, η1)− t(χ2, η2)

t(χ1, η1)− t(χ2, η2)

∣∣∣∣∣
(pullback of the Green function for the Laplace operator on H
with Dirichlet boundary conditions)



Covariances of the Gaussian Free Field GFFD on D

E
(
〈GFFD, φ1〉〈GFFD, φ2〉

)
=

∫
D×D

φ1(χ1, η1)φ2(χ2, η2) · GD
(
(χ1, η1), (χ2, η2)

)
dχ1dη1dχ2dη2

Covariances for distinct (χj , ηj):

E(GFFD(χ1, η1) . . .GFFD(χs , ηs))

=

{∑
σ

∏s/2
i=1 GD

(
(χσ(2i−1), ησ(2i−1)), (χσ(2i), ησ(2i))

)
s even;

0, s odd,

sum is taken over all pairings σ on {1, . . . , s}.
“Wick”



How to get CLT:

For distinct (χ1, η1), . . . , (χs , ηs) in the liquid region we show

lim
N→∞

πs/2 E
(∏s

j=1

(
hN([χjN], [ηjN])− E hN([χjN], [ηjN])

))
=

{∑
σ

∏s/2
i=1 GD

(
(χσ(2i−1), ησ(2i−1)), (χσ(2i), ησ(2i))

)
s even;

0, s odd,

(sum over all pairings)

+ an estimate on multipoint covariances when some of the
points coincide



GFF-type fluctuations in random tilings: previous
results

• [Kenyon “Height Fluctuations...” ’08] — Fluctuations are
governed by the GFF for uniformly random tilings of rather
general regions not allowing frozen parts of the limit shape

• [Borodin–Ferrari ’08] and [Duits ’11] — other random tiling
models (with dynamics and of infinite regions)

• [Kuan ’11] — certain ensembles of tilings of the whole upper
half plane related to representations of orthogonal groups

All these papers use Kasteleyn/determinantal structure.

Also: [Borodin-Gorin ‘13], [Borodin-Bufetov ‘13] — GFF
fluctuations for random matrices and related models, using
Macdonald processes technique [Borodin–Corwin ‘11].



Remark: Glauber dynamics
— a way to sample uniformly random and qvol tilings.

Rule (for uniform): Add/delete a box independently at random
according to exponential clocks of rate 1. Uniform measure is
the unique invariant measure for the Glauber dynamics.

[Toninelli–Laslier ‘13] use results of [P. ‘12] (determinantal
structure and exact asymptotics) to prove the rate N2+o(1) of
convergence when there are no frozen facets (see also
references in [Toninelli–Laslier ‘13])



Patricle configurations and
determinantal structure



Tilings of GT-type polygons as interlacing
particle configurations

x

n

Take a tiling of a GT-type polygon P



Tilings of GT-type polygons as interlacing
particle configurations
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Tilings of GT-type polygons as interlacing
particle configurations
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Tilings of GT-type polygons as interlacing
particle configurations

x

n

N

Place a particle in the center of every lozenge of type



Tilings of GT-type polygons as interlacing
particle configurations

x

n

N

Erase the polygon. . .



Tilings of GT-type polygons as interlacing
particle configurations

x

n

0

N

. . . and the lozenges!

(though one can always reconstruct everything back)



Gelfand-Tsetlin schemes

x

n

0

N

We get a random integer (particle) array

{xm
j : m = 1, . . . ,N ; j = 1, . . . ,m} ∈ ZN(N+1)/2

satisfying interlacing constraints

xm
j+1 < xm−1
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j (for all possible m, j)

and with certain fixed top (N-th) row: xN
N < . . . < xN

1

(determined by N and parameters {ai , bi}ki=1 of the polygon).



Determinantal structure



Determinantal structure
Correlation functions

Fix some (pairwise distinct) positions (x1, n1), . . . , (xs , ns),

ρs(x1, n1; . . . ; xs , ns) := Prob{there is a particle of random

configuration {xm
j } at position (x`, n`), ` = 1, . . . , s}

Determinantal correlation kernel (q = 1 and 0 < q < 1)

There is a function Kq(x1, n1; x2, n2) (correlation kernel) s.t.

ρs(x1, n1; . . . ; xs , ns) = det[Kq(xi , ni ; xj , nj)]si ,j=1



Determinantal structure: Existence

Uniformly random tilings of general polygons have
determinantal structure: this follows from Kasteleyn theory, cf.
[Kenyon ”Lectures on dimers” ’09]

Determinantal kernel is the inverse of the Kasteleyn
(= honeycomb graph incidence) matrix

Problem:
in general there is no explicit formula for the kernel

Hexagon: orthogonal polynomials [Johansson ’05, ...]

GT-type polygons: double contour integral [P. ’12]
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Determinantal structure for GT-type

polygons

Correlation kernel Kq(x1, n1; x2, n2) is expressed as double
contour integral:

1 q = 1: of elementary functions

2 0 < q < 1: there is a q-hypergeometric function 2φ1

under the integral

Formula for the kernel for q = 1 is obtained in the q ↗ 1 limit.

We are able to use the kernel only in the q = 1 case to study
asymptotics of uniformly random tilings



Theorem 6 [P. ’12]. Kernel for q = 1

Kq=1(x1, n1; x2, n2) = −1n2<n11x2≤x1
(x1 − x2 + 1)n1−n2−1

(n1 − n2 − 1)!

+
(N − n1)!

(N − n2 − 1)!

1

(2πi)2
×

×
∮
{w}

∮
{z}

dzdw

w − z
· (z − x2 + 1)N−n2−1

(w − x1)N−n1+1
·

N∏
r=1

w − xN
r

z − xN
r

where 1 ≤ n1 ≤ N , 1 ≤ n2 ≤ N − 1, x1, x2 ∈ Z, and
(a)m := a(a + 1) . . . (a + m − 1)



Theorem 6 [P. ’12] (cont.). Contours of integration for K

• Both contours are counter-clockwise.

• Int{z} 3 x2, x2 + 1, . . . , xN
1 , Int{z} 63 x2−1, x2−2, . . . , xN

N

• {w} contains {z}, Int{w} 3 x1, x1− 1, . . . , x1− (N − n1)

w
z

x2 x1
NxN

N

reminder: integrand contains
(z − x2 + 1)N−n2−1

(w − x1)N−n1+1

N∏
r=1

w − xN
r

z − xN
r



Connection to other known kernels

The kernel Kq=1(x1, n1; x2, n2) generalizes some known kernels
arising in the following models:

1 Certain cases of the general Schur process
[Okounkov-Reshetikhin ’03]

2 Extremal characters of the infinite-dimensional unitary
group ⇒ certain ensembles of random tilings of the entire
upper half plane [Borodin-Kuan ’08], [Borodin ’10]

3 Eigenvalue minor process of random Hermitian N × N
matrices with fixed level N eigenvalues ⇒ random
continuous interlacing arrays of depth N [Metcalfe ’11]

All these models can be obtained from uniformly random
tilings of GT-type polygons via suitable degenerations



Theorem 7 [P. ’12] Kernel for 0 < q < 1

Kq(x1, n1; x2, n2) = −1n2<n11x2≤x1q
n2(x1−x2) (qx1−x2+1; q)n1−n2−1

(q; q)n1−n2−1

+
(qN−1; q−1)N−n1

(2πi)2

∮
dz

∮
dw

w
×

× qn2(x1−x2)zn2

w − z

(zq1−x2+x1 ; q)N−n2−1
(q; q)N−n2−1

×

× 2φ1(q−1, qn1−1; qN−1 | q−1;w−1)
N∏
r=1

w − qxNr −x1

z − qxNr −x1
,

where (a; q)m := (1− a)(1− qa) . . . (1− qm−1a).



Asymptotic analysis of the kernel gives local
asymptotics and fluctuations (q = 1)
Write the kernel as:

Kq=1(x1, n1; x2, n2) ∼ additional summand

+
1

(2πi)2

∮ ∮
f (w , z)

eN[S(w ;
x1
N
,
n1
N
)−S(z; x2

N
,
n2
N
)]

w − z
dwdz

(f (w , z) — some “regular” part having a limit), where

S(w ;χ, η) = (w − χ) ln(w − χ)

− (w − χ + 1− η) ln(w − χ + 1− η) + (1− η) ln(1− η)

+
∑k

i=1

[
(bi − w) ln(bi − w)− (ai − w) ln(ai − w)

]
.

Then investigate critical points of the action S(w ;χ, η) and
transform the contours of integration [Okounkov ”Symmetric
functions and random partitions” ’02]



Projections of measures on
interlacing arrays
onto a fixed row



Projections of uniform and qvol

measures onto the fixed K -th row

Joint distribution of particles xK
1 , . . . , x

K
K of the K th row

(K < N) is described in a much simpler form, both for
q = 1 and 0 < q < 1



Projections, q = 1 (uniform measure)
Partition function:

Z (q = 1) =: ZN(xN
1 , . . . , x

N
N) =

∏
1≤i<j≤N

xN
i − xN

j

j − i

Theorem 8 [P. ’12]. Joint distribution on level K for q = 1

PK (xK
1 , . . . , x

K
K ) = ZK (xK

1 , . . . , x
K
K ) · det[Ai(xK

j )]Ki ,j=1,

where Ai(x) =
N − K

2πi

∮
{z}

(z − x + 1)N−K−1
(z + i)N−K+1

N∏
r=1

z + r

z − xN
r

dz .

Contour contains x , x + 1, x + 2, . . ..

An equivalent statement was obtained earlier by a more
complicated technique in [Borodin-Olshanski, 12].



Projections, 0 < q < 1 (measure qvol)
Partition function:

Z (q) = qZN(xN
1 , . . . , x

N
N) =

∏
1≤i<j≤N

qxNi − qxNj

q−i − q−j

Theorem 9 [P. ’12]. Joint distribution on level K , 0 < q < 1

qPK (xK
1 , . . . , x

K
K ) = qZK (xK

1 , . . . , x
K
K ) · q??? · det[qAi(xK

j )]Ki ,j=1,

where qAi(x) is given by

(−1)N−K
1− qN−K

2πi

∮
{z}

dz
(zq1−x ; q)N−K−1∏N−K+i
r=i (z − q−r )

N∏
r=1

z − q−r

z − qxNr
.

Contour contains qx , qx+1, qx+2, . . ..



Applications

‘Representation-theoretic’ (‘projective’) limit transition in
random tilings, as opposed to hydrodynamic scaling,

equivalent to:

1 (q = 1) Description of characters of the
infinite-dimensional unitary group (celebrated
Edrei-Voiculescu Theorem)

[Edrei, Voiculescu, Vershik-Kerov, Boyer,
Okounkov-Olshanski, Borodin-Olshanski, P.]

2 (0 < q < 1) A q-analogue, related to the
q-Gelfand-Tsetlin graph and q-Toeplitz matrices
[Gorin ’10].

3 ‘Random matrix type’ limits [Gorin-Panova ‘13],
[Bufetov-Gorin ‘13]



‘Representation-theoretic’ limit

Let N →∞ together with top row particles
xN
1 (N), . . . , xN

N(N),
but let us look at a fixed finite level K < N .

Question

Describe all the ways in which the particles xN
1 (N), . . . , xN

N(N)
can behave so that on level K we see a nontrivial (weak) limit
of projected measures as N →∞.

It can be addressed using the contour integral formulas above.



‘Representation-theoretic’ limit, q = 1

Necessary conditions: each quantity xN
i (N) + i , as well as their

sum
∑N

i=1(xN
i (N) + i), to grow at most linearly in N .

All possible sequences xN(N) depend on infinitely many
continuous parameters.

Ν1
+

Ν2
+

Ν1
-

Ν2
-

Ν3
-

N Α1
+

N Α2
+

N Β1
+

N Β2
+

N Α1
-

N Β1
-

Here νi = xN
i + i ,

i = 1, . . . ,N .

All rows and
columns of both
Young diagrams,
as well as the
numbers of boxes
must grow at
most linearly in N .
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‘Representation-theoretic’ limit, 0 < q < 1

Allowed behavior of the top row particles is radically different:
stabilization of particles (in suitable coordinates)

lim
N→∞

(
xN
N+1−j(N) + (N + 1− j)

)
= nj , j = 1, 2, . . . .

(nj — infinitely many discrete parameters)

Limiting (ν1, ν2, . . . , νN) looks like a one-sided infinite
staircase



Prospectives related to projection formulas

Other regimes of top-row particles, other (scaling?) limits
on K th level

Behavior of correlation kernels (both q = 1 and
0 < q < 1) under ‘representation-theoretic’ limit
transition: new ensembles for 0 < q < 1

More general measures than qvol : same technique gives a
K × K determinantal formula for

sν/κ(qt1 , . . . , qtN−K )

sν(1, q, . . . , qN−1)
, ti — any

ν = (ν1 ≥ . . . ≥ νN), κ = (κ1 ≥ . . . ≥ κK ), and sν and
sν/κ are Schur and skew Schur polynomials.

(ti = i − 1 corresponds to qvol)

(two-sided infinite staircase in other example)




