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Main goals:
By introducing suitable axioms, unify and deform existing nice
Markov dynamics (related to Dyson Brownian motion). Get
new models and examples out of this.

1 “Schur level”
Dyson Brownian motion and its discrete version
Push-block dynamics
RSK dynamics
Unifying axioms
New RSK correspondences

2 “Macdonald level”
From Schur to Macdonald
q-deformed 1d particle systems: new examples
Randomized insertion algorithm for triangular
matrices over a finite field
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Dyson Brownian motion: GUE

GUE random matrix of size N × N has density with respect to
the Lebesgue measures on Hermitian N × N matrices given by

e−Tr(X
2)/2 =

N∏
i=1

e−x
2
ii /2

∏
1≤i<j≤N

e−(<xij )
2

e−(=xij )
2

, X = [xij ]
N
i ,j=1.

Equivalently, the N2 quantities

(xii ;
√

2 · <xij ,
√

2 · =xij : i < j)

are independent identically distributed standard normal
random variables.



Dyson Brownian motion

Let (xii ;
√

2 · <xij ,
√

2 · =xij : i < j) evolve as independent
Brownian motions.

Then the eigenvalues λi ∈ R, i = 1, . . . ,N perform a
Markovian evolution — Dyson Brownian motion [Dyson ‘62]

Dyson BM
= independent BM’s
conditioned to never collide

dλi = dBi +
∑
j 6=i

dτ

λi − λj



Dyson Brownian motion

Apart from the GUE construction, there are two more
multilayer (hierarchical) constructions of Dyson BM:

1 Path transformation of independent Brownian motions
related to Robinson–Schensted–Knuth correspondence,
e.g., [O’Connell ‘03]

2 Warren’s construction ‘07 (see picture)
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Dyson Brownian motion: discrete analogue

State space: {λN ≤ λN−1 ≤ . . . ≤ λ1}, λi ∈ Z.

N independent Poisson growth
processes conditioned to never
collide

(this picture is in shifted
coordinates {λj − j}Nj=1)

jump rate(λ→ ν) =
∏
i<j

νi − i − νj + j

λi − i − λj + j
· 1ν=λ+em for some m

(As the Dyson BM, this is also a “complicated” dynamics)



Discrete Dyson Brownian motion: fixed time
distributions (“discrete GUE spectrum”)

Start the dynamics from λ1(0) = 0, . . . , λN(0) = 0 (shifted
will be (−N + 1, . . . ,−2,−1)). Then ([Fulman], [Johansson],
[Okounkov], late 1990s])

Next: Two multilayer (hierarchical) constructions of discrete
Dyson Brownian motion and Schur measures. And other con-
structions like this.

(want to understand dynamics “simpler” than the discrete Dyson BM)
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Interlacing integer arrays (= Gelfand-Tsetlin schemes)

Main object: continuous-time Markov dynamics on the space
of interlacing integer arrays.



interlacing integer arrays ←→ particles in 2 dimensions
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Interlacing integer arrays ←→ lozenge tilings

−1 0 1 2 3 4 5 6 7 8



Stochastic dynamics on interlacing arrays

I will describe stochastic Markov dynamics on interlacing
arrays in which (in continuous time) particles jump to the right
by one.

During a small time interval,
at most one particle on each
level jumps.

Such dynamics on interlacing arrays will be multilayer
extensions of the discrete Dyson Brownian motion.
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Push-block dynamics [Borodin–Ferrari ’08]
— discrete analogue of Warren’s construction

1. Each particle λ
(k)
j jumps

to the right by one according
to an independent exponential
clock of rate 1. 1
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2. If it is blocked from below,
there is no jump

3. If violates interlacing with
above, it pushes the above
particles



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics

1

2

3

4

-1 0 1 2 3 4 5 6 7 8



Push-block dynamics
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Simulation
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Asymptotic properties of the push-block
dynamics [BF ‘08]: KPZ universality

+ fluctuations ∼ L1/3 with time (L — large parameter)



Remark: Other tiling models
Scaling orders L1/3 – L2/3, GUE Tracy–Widom distribution and
Airy process found in other models of random lozenge tilings:
[Okounkov–Reshetikhin ’07],
[Baik–Kriecherbauer–McLaughlin–Miller ’07],
[P. ’12] (proved Airy edge fluctuations and Gaussian
Free field fluctuations inside the shape)

(uniformly random configuration with fixed top row)
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TASEP and PushTASEP

Markovian projection to the
leftmost particles — TASEP

Markovian projection to the right-
most particles — PushTASEP



Discrete Dyson Brownian motion

Started from the empty initial state λ
(k)
j = 0, the evolution of

the particles in each Nth row is Markovian:

Rate 1 Poisson processes conditioned never to intersect;

Equivalently, Doob’s h-transform of independent Poisson

processes, with h(x1, . . . , xN) =
∏
i<j

(xi − xj).



“Schur level”

1 Dyson Brownian motion and its discrete version

2 Push-block dynamics
3 RSK (Robinson–Schensted–Knuth) dynamics

Dynamics on interlacing arrays
Relation to the classical RSK correspondence

4 Unifying axioms

5 New RSK correspondences



RSK dynamics [Johansson ’99,’02], [O’Connell ’03]

1. Each rightmost particle λ
(k)
1 jumps to the right by one

according to an independent exponential clock of rate 1.

2. When any particle λ
(h)
j

moves, it triggers either the

move λ
(h+1)
j 7→ λ

(h+1)
j + 1, or

λ
(h+1)
j+1 7→ λ

(h+1)
j+1 + 1 (exactly

one of them).

The second one is chosen
generically, while the first one is

chosen only if λ
(h+1)
j = λ

(h)
j ,

i.e., if the move λ
(h)
j 7→ λ

(h)
j + 1

violated the interlacing
constraint (push rule).



RSK dynamics
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Nonnegative interlacing integer arrays ←→
semistandard Young tableaux
(via row-lengths of shapes)



Classical RSK insertion

Semistandard Young
tableau P

Standard Young tableau Q



Classical RSK insertion

Interlacing arrays ←→ semistandard Young tableaux
(“P-tableaux”);
Independent jump at level h ←→ RSK-insert the letter h into
the tableau P .

Example: word = 2114323



Classical RSK insertion (only P tableaux)
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1. “Interaction goes up”

evolution of the lower floors {λ(1), . . . , λ(h)} is independent of
the upper floors {λ(h+1), . . . , λ(N)} for any h = 1, . . . ,N .



2. Preserve the class of Gibbs measures

Definition. Gibbs probability measures on interlacing arrays

A measure M is called Gibbs if for each h = 1, . . . ,N :

Given (fixed) λ
(h)
h ≤ . . . ≤ λ

(h)
1 , the distribution of

all the lower levels λ(1), . . . , λ(h−1) is uniform (among
configurations satisfying the interlacing constraints).

Dynamics on arrays preserves
the class of Gibbs measures if
it maps one Gibbs measure
into another.



3. On Gibbs
measures, each row
marginally evolves as
a discrete Dyson BM
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Nearest neighbor dynamics
We look for other dynamics which satisfy:

1 “Interaction goes up”

2 Preserve Gibbs measures

3 “discrete Dyson BM” on floors

4 Nearest neighbor interactions:

(push/pull with some probabilities, do nothing with the
complementary probability)

[Borodin-P. ’13] — introduce these axioms, and obtain
complete classification of nearest neighbor dynamics.



Nearest neighbor dynamics
independent jump rate
w = w(λ(h−1), λ(h))

pushing probabilities (af-
ter lower particle jumped)
r = r(λ(h−1), λ(h))
and ` = `(λ(h−1), λ(h))

Theorem [Borodin-P. ’13]. Nearest neighbor dynamics
correspond to solutions of the equations

r(λ(h−1), λ(h)) + `(λ(h−1), λ(h)) + w(λ(h−1), λ(h)) = 1

written for all states λ(1), . . . , λ(N) of the array and each
particle in it.



“Basis” dynamics are encoded by pictures such as:

Push-block: RSK:

plus local flips

⇐⇒ ⇐⇒

All other dynamics are linear combinations of “basis”
ones



“Basis” nearest neighbor dynamics examples

Column (= dual) RSK [O’C ’03]

Some “basis” dynamics

RSK-type dynamics (⇒ we obtain
N! bijections between words and
pairs of tableaux)
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New RSK correspondences
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1 From Schur to Macdonald
Schur and Macdonald processes
Nearest neighbor dynamics

2 q-deformed 1d particle systems: new examples

3 Randomized insertion algorithm for triangular
matrices over a finite field



Schur polynomials in dynamics on interlacing arrays

Distribution of the dynamics

is the Schur process [Okounkov–Reshetikhin ’03].
The Schur process is the Gibbs extention of the Schur measure

Probτ (λ(N)) =
1

Z
· sλ(N)(1, . . . , 1) · sλ(N)(ρτ )

to the whole interlacing array.

The Schur process is a determinantal point process, which is
the source of integrability of the model.



Schur polynomials in dynamics on interlacing arrays

Schur polynomials:

sµ(x1, . . . , xk) =
det
[
x
µj+N−j
i

]k
i ,j=1

det
[
xN−ji

]k
i ,j=1

, where µ1 ≥ . . . ≥ µk .

Remark. Relation to RSK through Young tableaux:

#SSYT (λ(N)) = sλ(N)(1, . . . , 1︸ ︷︷ ︸
N

), and

τ |λ
(N)|

|λ(N)|!
·#SYT (λ(N)) = sλ(N)(ρτ ) = lim

L→∞
sλ(N)(

τ

L
, . . . ,

τ

L︸ ︷︷ ︸
L

).

ρτ — “Plancherel specialization”.



Macdonald polynomials
Pλ(x1, . . . , xN) ∈ Q(q, t)[x1, . . . , xN ]S(N) labeled by partitions
λ = (λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0) form a basis in symmetric
polynomials in N variables over Q(q, t). They diagonalize

D1 =
N∑
i=1

∏
j 6=i

txi − xj
xi − xj

Tq,xi , (Tqf )(z) := f (zq),

with (generically) pairwise different eigenvalues

D1Pλ = (qλ1tN−1 + qλ2tN−2 + . . . + qλN )Pλ.

Macdonald polynomials have many remarkable properties (similar

to those of Schur polynomials corresponding to q = t) including

orthogonality, simple reproducing kernel (Cauchy identity), Pieri

and branching rules, index/variable duality, etc. There are also

simple higher order Macdonald difference operators commuting

with D1.



From Schur to Macdonald

In short, replace all Schur polynomials by Macdonald
polynomials. All previous constructions of dynamics work.

Get Markov dynamics on interlacing arrays whose distributions
are Macdonald processes

[Borodin–Corwin ‘11], [O’Connell–Pei ‘12], [Borodin–P. ‘13]
(complete classification of these dynamics).
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Macdonald processes [BC ‘11],
[BC–Gorin–Shakirov ‘13]

Macdonald process is the (q, t)–analogue of the Schur process.
Macdonald process is obtained by a “(q, t)–Gibbs”
continuation of the “(q, t)–Schur measure”

to the whole interlacing array.

Macdonald processes turn out to be tractable as well [BC ‘11],
[BCGS ‘13] (thanks to the q-difference operators D1,D2, . . .)



Symmetric polynomials and related objects

([BC ‘11])



1 From Schur to Macdonald
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Nearest neighbor dynamics
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matrices over a finite field



Nearest neighbor dynamics on Macdonald
processes

1 “Interaction goes up”

2 Preserve “(q, t)-Gibbs” measures

3 (q, t)-“discrete Dyson BM” on floors

4 Nearest neighbor interactions:

(push/pull with some probabilities, do nothing with the
complementary probability)



Nearest neighbor dynamics on Macdonald
processes

independent jump rate
w = w(λ(h−1), λ(h))

pushing probabilities (af-
ter lower particle jumped)
r = r(λ(h−1), λ(h))
and ` = `(λ(h−1), λ(h))

Theorem [Borodin-P. ’13]. Nearest neighbor dynamics on
Macdonald processes correspond to solutions of the equations

T · r(λ(h−1), λ(h)) + T̃ · `(λ(h−1), λ(h)) + w(λ(h−1), λ(h)) = S .

Here T , T̃ , S are certain coefficients depending on q, t, and
also on λ(h−1), λ(h).



Nearest neighbor dynamics on Macdonald
processes

The “basis” nearest neighbor dynamics are encoded by the
same pictures as before.

Not all of the “Schur level” pictures lead to dynamics with
nonnegative jump rates. We have to speak about formal
Markov processes.
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Push-block dynamics [Borodin–Corwin ‘11]
Let the second Macdonald parameter t = 0. The push-block
dynamics gives:

Markovian projection — q-TASEP [BC ‘11], [BC–Sasamoto ‘12],
[O’Connell–Pei ‘12], [BC–P.–Sasamoto ‘13], [Povolotsky ‘13]



RSK-type dynamics [Borodin–P. ‘13]

Let the second Macdonald parameter t = 0.
Then the q-deformation of the classical RSK is:

1. Only the rightmost particles
make independent jumps with
rate 1

2. If a particle moves, it pushes
its immediate upper neighbors
with probabilities r and 1 − r ,
where

r = qa
1− qb

1− qc



q-PushTASEP [Borodin–P. ‘13],
[Corwin–P. ‘13]

Another Markovian projection:



q-PushASEP [Corwin–P. ‘13]

xi+2 xi+1

xi xi−1

rate = R(1− qgapi )rate = L

Prob = qgapi+1

Prob = qgapi+2 gapi := xi−1 − xi

R ∗ (q-TASEP, to the right) + L ∗ (q-PushTASEP, to the left)

Traffic model (relative to a time frame moving to the right)

Right jump = a car accelerates. Chance 1− qgap is lower
if another car is in front.

Left jump = a car slows down. The car behind sees the
brake lights, and may also quickly slow down, with
probability qgap (chance is higher if the car behind is
closer).



q-PushASEP integrability

Theorem [Corwin–P. ‘13]. q-moment formulas for the
q-PushASEP with the step initial condition
xi(0) = −i , i = 1, . . . ,N .

(obtained via a quantum many body systems approach dating
back to H. Bethe ‘31)
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Random triangular matrices over a finite field

Consider the group U of infinite unipotent upper-triangular
matrices over the finite field Ft−1 , where t ∈ (0, 1), and t−1 is
a prime power.

[Vershik–Kerov ’80s], [Kerov ‘03]: Problem of classification of
probability measures µ on U which are

Conjugation-invariant: µ(X ) = µ(gXg−1) for X ⊂ U and
g a matrix over Ft−1 which differ from the identity at
finitely many positions.

Ergodic (= extreme as elements of the convex set of all
conjugation-invariant measures).



Random triangular matrices over a finite field

Through Jordan normal form of truncations of matrices from
U, the problem reduces to measures µn on Young diagrams
λ1 ≥ λ2 ≥ . . . ≥ λ` with fixed number n of boxes. The
measures µn are related to Hall–Littlewood polynomials (these
are Macdonald polynomials with q = 0; and t as in Ft−1).

Conjectural classification of measures µ on U [Kerov ‘03]:
measures depend on parameters

α1 ≥ α2 ≥ . . . ≥ 0;

β1 ≥ β2 ≥ . . . ≥ 0;

∞∑
i=1

(
αi +

βi
1− t

)
≤ 1.

These measures µα;β exist and are ergodic.
The problem is to show the completeness of classification.
See [Gorin–Kerov–Vershik ‘12].



Random triangular matrices over a finite field
We construct a randomized RSK to sample these ergodic
measures. Input of the RSK is a random Bernoulli word.

Using this RSK, we prove another conjecture of Vershik–Kerov
— a law of large numbers for the measures µα;βn

(t = 0 — infinite symmetric group)

Theorem
[Bufetov–P., in progress].
For random Young diagrams
distributed according to µα;βn ,
as n→∞:

row(i)

n
→ αi

column(j)

n
→ βj

1− t



Conclusion


