Welcome to ART! (casguptit)
lpetrovocc/art 2022/

Leomid Petrov office: Ker 209
office hours: M 2:30-3:30
(link on weob)
w 2:30-3:30
in person
(Ver 209)
by appointwent
(schedule online)

Plam for next 4-6 weeks

1. Basic RT of frivite graugs
2. Induetive limit $S(\infty)$, approximation of characters
3. Coubinatorial forluilation Via Gibas rueasures ow bramolhing graphs
4. Stupler bremcking graphs Pascal, ballot, 4 -Pascal
5. Young graph
6. Symuretric functions
7. Edrei- Thoma's tweoren on irred. ch. of $s(\infty)$

Note: I'm thinning of adding an optionae reading slminar once a week - ay interest? Takk to me after the ulass

1. Basic representation theory (Note: sure facts who proofs)
2. Definitions

G - (finite or fid. compact lie group) e, g^{-1}

Examples. $S(n)$

$$
\left.\begin{array}{c}
1,2 \ldots n \\
\left(b_{1}, \ldots 2 .\right. \\
b_{2}
\end{array}\right)
$$

(Linear)
Representation

$$
T(e)=I_{d}
$$

$$
T\left(q^{-1}\right)=T(q)^{-1}
$$

$$
T(g h)=T(g) T(h)
$$

Note: In tact, $T: G \rightarrow G L(V)$
Extcuels to $T: \mathbb{C}[G] \rightarrow$ End (V)

Examples.

$$
\begin{aligned}
& \begin{array}{l}
\frac{S(n)}{\mathbb{Z} / n \mathbb{Z}} \\
\begin{array}{ll}
S(n) \rightarrow G L_{1} \\
T(b)= & \mathbb{Z} \\
S(n) \rightarrow G L_{1}
\end{array} \\
T(b)=1
\end{array} \\
& S(n) \rightarrow G L_{n} \quad, T(b)=\left[1_{j=b}\binom{0}{c}\right]_{i, j=}^{n} \\
& T\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Equitalence of representations

$$
\begin{aligned}
G \xrightarrow{T_{1}} & V \\
T_{2} \perp & \downarrow \varphi \text {-livedrition } \\
& W \\
& \text { \& diagrum commites }
\end{aligned}
$$

1.2. More definitions

Regular representation.
G-fimite, consider the space

$$
V=\mathbb{T}[G] \quad, \quad \operatorname{dim} V=|G|
$$

G acts on V by

$$
\begin{gathered}
\text { Oreg }(g) v=g v, v \in V \quad \begin{array}{c}
\text { we could } \\
\text { also } \\
\text { multiply } \\
\text { from the } \\
\text { right) }
\end{array}
\end{gathered}
$$

Insaviant subspace

$$
V \text {-rep of } G
$$

$W \subseteq V$ is called ruwariont
E all matr. $T(g)$ look like

Irreducible representation ("irrep"), \widehat{G}
V is irre if it deesn't have montirvial iusar. bubspaces

1.3. Complete reducibility

Schur's Lemur. T_{V}, T_{w} rep of G into $G L(V), G L(W)$ resp.

1) V, W not equiv. \Rightarrow no mon trivial G-equivar. maps between V, W
2) $V=W \Rightarrow$ all G-equivar. maps are scalar, $v \mapsto \lambda v, \quad \lambda \in \mathbb{C}$ fix.
Cor. Arelian finite group \Rightarrow ouby Id reps. (any element $g \in G$ intertwines $V \rightarrow V$)

$$
\begin{aligned}
& G \xrightarrow{T_{v}} V \\
& \left(\tilde{T}_{v}(g)=T_{v}(g h)\right. \\
& =T_{v}(h g) \\
& =T_{v}(h)\left(T_{v}(g)\right) \\
& \text { moline } V=1<
\end{aligned}
$$

$$
\operatorname{ker} \varphi \subset V \text {, }
$$

, invariant under T_{s}

$$
\begin{aligned}
& G \xrightarrow{T_{v}}, V \\
& \| \xrightarrow{I_{w}} \quad d \varphi \\
& G \xrightarrow{T_{w}}
\end{aligned}
$$

vekery

$$
\begin{aligned}
& \varphi\left(T_{v}(g) v\right)= \\
& =T_{w}(g) \varphi(v) \\
& =\sigma
\end{aligned}
$$

so $\operatorname{ker} \varphi=0$ b/c $=\sigma$-irsed.
Gcuitarty, $\operatorname{Frul} \in W$ is invar.

$$
\left.w=\varphi(v) \quad \begin{array}{l}
T_{w}(g)_{w} \\
=\varphi\left(T_{v}(g) v\right)
\end{array}\right)
$$

proses papt 1
Part $2 . V=W$ (Exercise)

Prop. G- finite (or
$\Rightarrow \exists$ unitary sesquilimar form in V sot.

$$
\begin{aligned}
& T: G \longrightarrow U(V) ; \quad T\left(g^{-1}\right)=T(g)^{*} \\
& (\bar{A})^{*}=A^{*}=A^{-1}
\end{aligned}
$$

Proof. Any form $\langle v, w\rangle$
Define $\quad(v, w)=\frac{1}{|G|} \sum_{g}\langle T(g) v, T(g) w\rangle$

$$
\begin{aligned}
& (T(h) v, w)=\left(v, T\left(h^{11}\right)_{w}\right) \quad \forall h \\
& \| \\
& \frac{1}{|G|} \sum_{g} \sum_{\tilde{\sim}}^{\langle T(g h)} \underbrace{}_{\tilde{h}}, T(g) w\rangle \quad g=\tilde{h}^{-1} \\
& g h=\tilde{h}
\end{aligned}
$$

$$
\begin{array}{r}
=\frac{1}{|\sigma|} \sum_{\tilde{h}}\left\langle T(\tilde{h}) v, T\left(\tilde{h} h^{-1}\right) \omega\right\rangle \\
=\left(v_{,} T\left(h^{-1}\right) w\right) .
\end{array}
$$

Cpt Lie: aseg over G by Maar probub.

Theorem (Maschke). $T: G \leftrightarrow U(V)$, fid.
$W \subseteq V$ subbrepresentation

$$
\Rightarrow \exists u \quad \text { s.t. } \quad V=u \oplus W
$$

also invar. Cor thogonal
under action of G direct sum
Cor. \forall f.el. V is $=\bigoplus_{i=1}^{k} V_{i}$.

Proof. Easiest for unitary (but true $\begin{gathered}\text { more generally) }\end{gathered}$

$$
W \subseteq V \text {, let } V=W \oplus W \text { as }
$$ vector spaces/unitany (?.e.tade basis form aligned $\omega \cdot \omega, u$)

$$
T(g) w \subseteq w \Rightarrow T(g)^{*} w \leq w \quad \forall g
$$

\Downarrow

$$
T(g) U \subseteq U \quad \forall g
$$

1.4. Regular rep. \& picture for $S(n)$

(Peter-weyl fum.)
Fact. Lw lo prof
Each Grep. λ appears $\operatorname{dim}_{\lambda}$ times
(Burnside then)
$\hat{\hat{b}}=$ set of all greps
$\widehat{S(n)}=\{$ Partitions λ of $n\}$.

$$
\lambda_{1} \geqslant \lambda_{2} 2 \ldots \geqslant \lambda_{l}>0, \sum \lambda_{i}=n
$$

$S(3):$ -son

1.5. Example with asymptotics.
$\left(\mathbb{Z}_{k}=\mathbb{Z} / k \mathbb{Z}\right.$, wo p-adics here)

$$
\mathbb{Z}_{2} \subset \mathbb{Z}_{4} \subset \mathbb{Z}_{8} \subset \mathbb{Z}_{16} \subset \cdots
$$

let $G=\lim _{\mathbb{Z}_{2}}, \quad \bar{G}=[0,1)$
Also, $\quad S(1) \subset S(2) \subset S(3) \subset \ldots$
Define $S(\infty)=\xrightarrow{\lim S(n)}$
$S(\infty)$ acts on N

Finite Groups

In his work on algebraic number theory, Dedekind noticed a curious thing about finite abelian groups. Let $G=\left\{g_{1}=1, g_{2}, \ldots, g_{h}\right\}$ be a finite group of order h, and let $x_{g_{1}}, \ldots, x_{g_{h}}$ be commuting independent variables parametrized by the elements of G. Dedekind worked with the determinant $\theta\left(x_{g_{1}}, \ldots, x_{g_{h}}\right)$ of the matrix $\left(x_{g_{i} g_{j}^{-1}}\right)$, and in the abelian case he proved that θ admits a factorization

$$
\theta\left(x_{g_{1}}, \ldots, x_{g_{h}}\right)=\prod_{X}\left(\sum_{j=1}^{h} x\left(x_{g_{j}}\right) x_{g_{j}}\right)
$$

the product being taken over all multiplicative characters of G.

Dedekind wondered to Frobenius how this result might generalize to the nonabelian case, and Frobenius ([4], vol. III) began his work in representation theory in 1896 by introducing (irreducible) characters for arbitrary finite groups and solving Dedekind's problem. Today a character is the trace of a representation, but Frobenius did not introduce representations right away. Instead, doing mathematics that looks strange today, he initially worked directly with characters, introducing finite-dimensional representations only in a later paper.

Burnside, starting in 1904, and the young I. Schur, ([13], vol. I), starting in 1905, each redid the theory, the primary objects of each study being matrix representations (homomorphisms into the group of invertible matrices of some size). According to E. Artin ([1], p. 528), "It was Emmy Noether who made the decisive step. It consisted in replacing the notion of a matrix by
the notion for which the matrix stood in the first place, namely, a linear transformation of a vector space." Noether's definition was thus essentially the modern general definition of representation given above. For Burnside and Schur the spaces of representations were spaces $V=\mathbb{C}^{n}$ of column vectors, and the linear transformations were viewed as matrices. Later when representation theory was extended to Lie groups and when quantum mechanics forced infinitedimensional representations into the study, it would have been awkward to proceed without Noether's viewpoint.
\rightarrow Reading Seminar?
\rightarrow Mailing List - let me know if you'd live updates

12 August 25, 2022

1. Basic Representation theory

1,6. Characters
Character of a representation T

$$
\begin{aligned}
& T: G \rightarrow \operatorname{End}(V) \\
& x(g)=\operatorname{Tr} T(g) \\
& \operatorname{det}(1-z A B) \\
& =\operatorname{det}(1-z B A) \\
& \text { Central functions } \\
& C=\text { class functions) } \\
& x(g h)=x(h g) \\
& x\left(y_{1} g_{2} q_{3}\right) \text { vs } x\left(g_{2} g_{1} g_{3}\right) \\
& \mathcal{X}_{\mathrm{V}}(e)=\operatorname{dim} V ; \\
& x_{v}\left(g^{-1}\right)=\overline{x_{v}(g)} \\
& \text { by unitarily } \\
& \text { note vecessartly equal }
\end{aligned}
$$

Recall g_{2}, g_{2} conjugate if A_{h}

$$
g_{1}=h g_{2} h^{-1}
$$

x only dep. on the conjugacy. class.

$$
\begin{aligned}
V & =w \oplus \oplus_{G} U(\text { as reps of } G) \\
& \Rightarrow \chi_{v}=\lambda_{w}+\chi_{u}
\end{aligned}
$$

$$
\left(\begin{array}{rlr}
\operatorname{How}_{G}(v, w) & =i \varphi \text { sit. } \\
G \xrightarrow{I_{V}} V_{\downarrow} \xrightarrow{T_{w}}{ }_{w} & \varphi\left(T_{v}(g) v\right) \\
T_{w}(g) \varphi(w)
\end{array}\right.
$$

Schur
Orthogonality. (as class functions)

$$
\langle\alpha, \beta\rangle=\frac{1}{|G|} \sum_{g} \alpha(g) \overline{\beta(g)}
$$

Thun. x_{λ}, x_{μ}-greed. oh.

$$
\left\langle x_{\lambda}, x_{\mu}\right\rangle=1_{\lambda=\mu}
$$

More generally, $\quad \overline{\left\langle\chi_{w}, \chi_{v}\right\rangle}=\operatorname{dim} \operatorname{Hom}_{G}\left(V_{v}, v\right)$
Prof Let $P=\frac{1}{|G|} \sum_{g} g \in \mathbb{C}[G]$,
ants in every rep. V.
P is a projector auto space

$$
V^{G}=\{v: \quad T(g) s=v \quad \forall g\} .
$$

Ex. $\operatorname{Tr} P=\operatorname{dim} V^{G}$.

Let $M=\operatorname{Hom}_{\mathbb{C}}(V, W)$, space of linear swags $V \rightarrow W$
\rightarrow acts on M by

$$
\varphi \longmapsto T_{w}(g) \varphi T_{v}\left(g^{-1}\right)
$$

$\rightarrow P \in \mathbb{C}[G]$ acts by

$$
\frac{1}{|G|} \sum_{g} T_{w}(g) \varphi T_{v}\left(g^{-1}\right)
$$

\& the image of M under P is $\operatorname{Hom}_{G}(v, w)$, the G-equivaviant maps
\rightarrow Now compute the trace of P_{3} using characters

$$
\operatorname{rrom}(v, w) \quad \text { basis } \quad E_{i j}=\left(\begin{array}{c:c}
i\left(\begin{array}{c}
j \\
0 \\
- \\
0
\end{array}\right. & 0
\end{array}\right)
$$

$$
\operatorname{Tr} P=\sum_{i j}\left(P E_{i j}, E_{i j}\right)
$$

V bassis $e_{i} \quad W$ vasis $f j$

$$
\left.\begin{array}{c}
\text { bassis } e_{i} \\
T_{w}(g) E_{i j} T_{v}\left(g^{-1}\right)=i\left(\frac{0}{0} 100\right. \\
0
\end{array}\right)
$$

Trace: of P,

$$
\begin{array}{r}
\sum_{g, i j j}\left(T_{v}\left(g^{-1}\right) e_{i}, e_{i}\right)\left(T_{w}(g) f_{j}, j_{j}\right) / \mid G 1 \\
\\
=\frac{1}{|G|} \sum_{g} x_{w}(g) \overline{x_{v}(g)}=\left\langle x_{w}, x_{v}\right)
\end{array}
$$

Prop. irreducible characters (Main form a linear basis property in the space of all of char.) class functions.

It is orthonormal wry in $\mathbb{C}[(r)]$ the imper product

$$
\langle\alpha, \beta\rangle=\frac{1}{|G|} \sum_{g} \alpha(g) \overline{\beta(g)}
$$

$(\Rightarrow$ \# of irreclucible reps equals \nRightarrow of conjugacy doses $=\operatorname{dim}$ of tret space)

Proof. Tave Treg. $\chi_{\text {reg. }}\binom{$ rep.spau }{$\mathbb{C}[G]}$

$$
\text { Easy, }\left\{\begin{array}{l}
x_{r e g}(e)=|G|, \\
x_{\operatorname{reg}}(g)=0, \quad y \neq e
\end{array}\right.
$$

By Schur arthog, for ay irrep λ,

$$
\left\langle x_{\lambda}, x_{\text {reg }}\right\rangle=\operatorname{dim\operatorname {Hom}_{G}}\left(V_{\lambda}, \mathbb{C}[G]\right)
$$

But

$$
\begin{aligned}
\left\langle\chi_{\lambda}, \psi_{\text {reg }}\right\rangle & =\frac{1}{|G|} \sum_{g} \psi_{\lambda}(g) \overline{y_{\text {eeg }}(g)} \\
& =\operatorname{dimn} V_{\lambda}
\end{aligned}
$$

$\Rightarrow V_{\lambda}$ ariess dimi V_{λ} times
CProved Peter-weyl theoren for finite groups from last tive, truet

$$
T_{\text {reg }}=\bigoplus_{\lambda \in \hat{G}} V_{\lambda}^{\operatorname{dim} V_{\lambda}}
$$

Note: $X_{\text {reg }}(\mathrm{g})$ is indicator of the cong. class of e, se we're close to showing the rt x_{λ} span all class functions on G.

Next,
censer of $\mathbb{C}[G]$ is (exercise)

$$
\left\{\sum_{g} f(g) g|\underset{\text { on }}{ }| \begin{array}{c}
f \text { din } V_{\lambda} \tag{©}
\end{array}\right\}
$$

We show: $\mathbb{C}[G]=\bigoplus_{\lambda \in \hat{G}}$ Mat $\operatorname{dim}_{\lambda}$ S follows ley taxing End G of:

$$
T_{\text {reg }}=\bigoplus_{\lambda \in \hat{G}} V_{\lambda}^{\operatorname{dim}} V_{\lambda}
$$

Mat dour V_{λ} - comes from massing $\quad \square_{7}$ dim in V_{λ} copies of V_{λ}, but different elements
by Solve's lemma,
ears V_{λ} mags to another V_{λ} with a scalar

$$
\Rightarrow \text { total of Mat dim } V_{\lambda}
$$ elements.

$$
\text { \& End } E_{G} \mathbb{C}[G]=\mathbb{C}[G], \quad \text { right malt. }
$$

$$
\begin{array}{rlr}
G \rightarrow & V & \\
& \downarrow \varphi \\
G \rightarrow w
\end{array} \quad \begin{aligned}
& \varphi\left(T_{v}(g) v\right) \\
& =T_{w}(g) \varphi(v), \\
& \\
& \varphi(v) \\
& =v h, \\
& h \in \mathbb{C}[G] .
\end{aligned}
$$

Taking Centers,

Character table of $S(3)$.

Recall coningary clares of $S(n)$: -are cycle structures.

$$
\begin{array}{cc}
1234567 \\
2514623 & \rightarrow 7 \rightarrow 3 \\
\vdots \\
\text { cycle struck. } \\
\text { in } \\
(3,3,1) & 2 \rightarrow 5 \rightarrow 6
\end{array}
$$

For $S(3): e \quad$ (12) (123)

$$
\begin{aligned}
\frac{1}{6}\left(x_{1}(e) x_{2}(e)\right. & +3 x_{1}(12) y_{2}(12) \\
& \left.+2 x_{1}(123) x_{2}(123)\right)
\end{aligned}
$$

1.7. Fourier transform $/ E x \cdot \mathbb{Z} / n \mathbb{Z}$

$$
\begin{aligned}
f(g) & \longmapsto \hat{f}(\lambda) \\
\lambda & \in \operatorname{Irreps}(G)
\end{aligned}
$$

(bet)

$$
\hat{f}(\lambda)=\sum_{g \in G} f(g) x_{\lambda}(g)
$$

Fact. $\widehat{f * g}=\hat{f} \circ \hat{g}$. of functions
(extriel)

$$
\begin{aligned}
& \text { ©couvolution in } G \\
& f \times g(b) \sum_{n \in G} f\left(b h^{-1}\right) g(n)
\end{aligned}
$$

Feurier transform for $\mathbb{Z} / n \mathbb{Z}$

$$
\hat{G}=\left\{1, \omega, \omega^{2}, \ldots, \omega^{u-1}\right\} \quad \omega=e^{2 \pi i / u}
$$

$$
X_{w^{j}}(i)=w^{i j}
$$

(i) taven $\bmod u$)

$$
\begin{align*}
& \hat{f}\left(w^{j}\right)=\sum_{i=0}^{n} \frac{f(i)}{\left.\tau_{\text {coefficients }}^{\left(w^{j}\right)}\right)^{i}, \quad|w|=1 .} \\
& \text { coesficients of a } \\
& \text { Fonvier terocis } \\
& \Leftrightarrow \text { fruction on } \mathbb{Z}_{n} \\
& \text { R } \tag{orZ}\\
& \hat{f}(z)=\sum_{i=0}^{n} f(i) z^{i}
\end{align*}
$$

(looks familior?)

Asymptatics.

$$
\begin{aligned}
& \mathbb{Z}_{2} \subset \mathbb{Z}_{4} \subset \mathbb{Z}_{8} \subset \ldots \\
& G=\lim _{2^{n}} \leq[0,1]
\end{aligned}
$$

dyalic mubers
irred. Ch. of G (all reps still 1d)
later we will prove
that $X(x), x \in G$
is a limiz of
restrictions of $\chi\left(x_{n}\right), n \rightarrow \infty$, in the following sense
(Vershik's ergodic theorem-).
So, characters are:
\& Fonvier transform limits:
1.8. Positive definiteness A pas-def if $(A v, v) \geq 0 \quad \forall v$ $\mathbb{\#}$ all prince. minors $\geqslant 0$

$$
f(x), x \in \mathbb{R} \quad \text { pos-det if }
$$

$$
\begin{aligned}
& x \in \mathbb{R} \text { pos-dlt if } \\
& A_{i j}=\left(f\left(x_{i}-x_{j}^{\prime}\right)\right) \text { pos-def. }
\end{aligned}
$$

f - function on G.
Is pos-det. if $\forall c_{i} \in \mathbb{C}, g_{i} \in G$,

$$
\sum_{i, j=1}^{k} c_{i} \bar{c}_{j} f\left(g_{i} g_{j}^{-1}\right) \geqslant 0
$$

Pron. Cheracters of reps awe pos-def
Proof. Let x be char. of V, not necess irred.
$(-,)^{\prime}$ - unitary furm in V

$$
x(h)=\sum_{\alpha}\left(T(h) e_{\alpha}, e_{\alpha}\right)
$$

$$
\begin{aligned}
& \sum_{i j} c_{i} \overline{c_{j}} \nsim\left(g_{i} g_{j}^{-1}\right)=\sum_{i j, \alpha} c_{i} \bar{c}_{j}\left(T\left(g_{i}\right) T\left(g_{j}^{-1}\right)\right. \\
& \left.e_{\alpha}, e_{\alpha}\right) \\
& =\sum_{i j \alpha} c_{i} \bar{c}_{j}\left(T\left(g_{j}^{-1}\right) e_{\alpha}, T\left(g_{j}^{-1}\right) e_{\alpha}\right) \Theta \\
& \text { Def. } v_{\alpha}=\sum_{i} \bar{c}_{i} T\left(g_{i}^{-1}\right) e_{\alpha} \\
& \Rightarrow \theta \sum_{\alpha}\left(v_{\alpha}, v_{\alpha}\right) \geqslant 0
\end{aligned}
$$

G-finite \leadsto space $\gamma^{\circ}(G)$,
$\gamma(G)=$ space of function G :
\rightarrow central (=class) funct.
\rightarrow positive definite
\rightarrow normalized, $f(e)=1$.
Nate: $f \in \gamma^{\sim}(G)$ does not neseccarily correspond to actual characters
(euby if expands with integer coefficients)

Prop. $\gamma(G)$ is convex.
Proof. $f, g \in \gamma(G) \Rightarrow \alpha f+(1-\alpha) g$ $\in \gamma^{\prime}(\omega)$
$0 \leq \alpha \leq 1$
Convex space \leadsto extreme points f externs it $f=\alpha f_{1}+(1-\alpha) f_{2}$

$$
\begin{aligned}
& \alpha \in(0,1) \\
\Rightarrow & f_{1}=f_{2}=f
\end{aligned}
$$

E*

Prop. $\gamma^{\prime}(G) \subset Z(C[G])$-siuplex

$$
E_{x} \gamma=\hat{G}
$$

Nextreme pornts irr. ch. $\frac{X_{\lambda}}{\operatorname{dim} V_{\lambda}}$
Proof

- Enyk: $\begin{gathered}\frac{X_{\lambda}}{\operatorname{dim} V_{\lambda}}-\text { extremes } \\ V \tilde{x}_{\lambda}\end{gathered}$

$$
\tilde{X}_{\lambda}=\alpha f_{1}+(1-\alpha) f_{2}, \alpha \in(0,1)
$$

$$
f_{1} f_{2}-\operatorname{pos}-d e f
$$

$\left\{\begin{array}{l}f_{1} f_{2}-p o s-d e f . \\ \text { If } f_{1}, f_{2} \text { - actual ch. of }\end{array}\right.$
\Downarrow

$$
V_{\lambda}=V_{1}^{\alpha_{1}} \oplus V_{2}^{\alpha_{2}}
$$

$\mathrm{V}_{2}{ }^{2} \longleftarrow$
irreducibil ily.
(Geveral ease - usct time).
\qquad

Lecture 3. 8/30
Recall last time:
1.8. Positive definiteness $z(\mathbb{C}[G])$
G-finite \sim space $\gamma^{2}(G)$
$\gamma(G)=$ space of funct on G :
\rightarrow central (= class) funct.
\rightarrow positive definite
\rightarrow normalized, $f(e)=1$.

Prop. $\gamma^{\prime}(G) \subset Z(\mathbb{C}[G])-$ sumplex

$$
E x \gamma=\hat{G}
$$

normelized iss. ch. $\tilde{\chi}_{\lambda}:=\frac{\mathcal{X}_{\lambda}}{\operatorname{dim} V_{\lambda}}$

$$
\sum_{g} \gamma_{\lambda}(g) \overline{f_{\mu}(g)}
$$

Lemai. $\left.\quad x_{\lambda} * x_{\mu}=1_{\lambda=\mu} \quad \frac{\mid G)}{\operatorname{dim} V_{\lambda}} x_{\lambda}\right)$
$\left(\right.$ recall $\left.f_{1} * f_{2}(g)=\sum_{h} f_{1}\left(n g^{-1}\right) f_{2}(g)\right)$
Proef (1) T_{λ}, T_{μ} two irreps, different.

$$
\begin{aligned}
& \Rightarrow \sum_{g} T_{\lambda}(g)_{i k} T_{\mu}\left(g^{-1}\right)_{l j}=0 \\
& \quad y=\frac{1}{\left|\sigma_{1}\right|} \sum_{j} T_{\lambda}(g) E_{k l} T_{\mu}(g-1) \\
& \Rightarrow T_{\lambda}(h) Y=y T_{\mu}(h) \quad \forall h \in G
\end{aligned}
$$

because..-

$$
\begin{array}{ccc}
T_{\lambda}(h) y= & \tilde{q} & g=h^{-1} \hat{g} \\
=\frac{1}{\left|G_{0}\right|} \sum_{g}=\tilde{g} T_{\lambda}(h g) E_{k l} \quad T_{\mu}\left(g^{-1}\right) \\
& = \\
& =y T_{\mu}(h)
\end{array}
$$

So y intertwines $T_{\lambda,} T_{\mu} \Rightarrow y=0$
The jj -th element of Y is

$$
\sum_{g} T_{\lambda}(g)_{i k} T_{\mu}\left(g^{-1}\right)_{l j}=0
$$

(many orthogonal poly's come from rep. tu. lune phis)

$$
\Rightarrow \quad x_{\lambda} * x_{\mu}=0 \quad \lambda \neq \mu
$$

because

$$
\begin{array}{r}
\text { because } \sum_{i j k} \sum_{j g} T_{\lambda}(h)_{i j}(h g){x_{\mu}\left(g^{-1}\right)}_{T_{\lambda}(g)_{i j}} 。 \\
0 T_{\mu}\left(g^{-1}\right)_{k k}
\end{array}
$$

$$
\begin{aligned}
& \text { (2) } \begin{array}{l}
x_{\lambda} * x_{\lambda}(h)=\text { ? } \\
\begin{aligned}
& y=\frac{1}{|G|} \sum_{g} T_{\lambda}(g) E_{k l} T_{\lambda}(g-1), \\
& T_{\lambda}(h) Y=y T_{\lambda}(h) \\
& \Rightarrow y=z \cdot I d \\
& \operatorname{tr} y=\operatorname{tr} E_{k l}=
\end{aligned} 1_{k=l}
\end{array}
\end{aligned}
$$

\Rightarrow for $k=l, \quad y=I d / \operatorname{dim} \mathbb{V}_{\lambda}$

$$
\begin{array}{r}
\Rightarrow \quad \frac{1_{a b}}{\operatorname{drav} V_{\lambda}}=\frac{1}{|G|} \sum_{g}\left(T_{\lambda}(g) E_{i i} T_{\lambda}\left(g^{-1}\right)\right)_{a b} \\
=\frac{1}{|G-|} \sum_{g} T_{\lambda}(g)_{a i} T_{\lambda}\left(g^{-1}\right) v b \\
\forall i, a, b
\end{array}
$$

$$
\begin{aligned}
& X_{\lambda} * X_{\lambda}(h) \\
& =\sum_{j, i j k} T_{\lambda}(h)_{i j} \bar{T}_{\lambda}(g)_{i j} T_{\lambda}(g)_{k k} \\
& \| \\
& \frac{|G|}{\operatorname{dim} V_{\lambda}} \sum_{i} T_{\lambda}(h)_{i i} \quad \square
\end{aligned}
$$

Now,

$$
\begin{aligned}
& f \in \gamma^{\nu}(G) \\
& f=\sum_{\lambda} c_{\lambda} \tilde{x}_{\lambda}
\end{aligned}
$$

if we show $c_{\lambda} \geqslant 0, \sum c_{\lambda}=1$
\Rightarrow we get

$$
\gamma^{O}(G) \simeq \underset{\&}{ } \underset{\text { simplex }}{ } \tilde{x}_{\lambda} \text {-extreme }\left\{\begin{array}{c}
c_{\lambda_{1}+\cdots+c_{\lambda_{v}}=1} c_{\lambda_{i} \geqslant 0}
\end{array}\right\}
$$

To conclude, $\gamma^{\sim}(G)$ is a simplex with coordinates

$$
\left\{c_{\lambda} \geqslant 0, \quad \sum_{\lambda \in \hat{G}} c_{\lambda}=1\right\}
$$

Space of probab. measures
on $\hat{G}=$ space $\gamma(G)$
of characters of G
Extreme pts $E_{x}(\gamma(G))$
/
delta measures from (*)
$1.9 S(n)$ representations (w/o proof)
\rightarrow conjugacy classes $=$ cycle structures

$$
\left[\begin{array}{l}
\rho=\left(\rho_{1}, \rho_{2} \ldots, \rho_{k}\right) \\
\rho_{1} \geqslant \rho_{2} \geqslant \ldots \geqslant \rho_{k} \geqslant 0 \\
\sum \rho_{i}=n \quad \quad(k \text { arb. })
\end{array}\right.
$$

$\rightarrow \widehat{s(n)} \quad$ (partitions, $|\lambda|$)

$$
\begin{aligned}
& \lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant 0\right) \\
& \text { vubler }>|\lambda|=\sum \lambda_{i}=n \\
& l(\lambda)=\text { length, } \begin{array}{l}
\text { number of } \\
\text { nonzerer } \\
\text { pats }
\end{array} \\
& \lambda=\begin{array}{|l|l|}
\hline & \\
\hline
\end{array} \\
& l(\lambda)=4 \\
& \lambda_{3} \\
& \lambda=(5,3,3,2)
\end{aligned}
$$

Schpecht modules $\sim \lambda$
\rightarrow dimensions $\quad(S Y T$, hook $)$

$$
\begin{aligned}
& \operatorname{dim} \lambda=\text { hook formula } \\
& =n!/ \prod_{\square \in \lambda} h(\square) \\
& \begin{array}{|l|l|l|}
\hline & \mid & 1 \\
\hline & & \\
\hline & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|}
\hline 8 & \mid & 2 & 1 \\
\hline 5 & 4 & 2 & \\
\hline 4 & 3 & 1 \\
\hline 2 & \\
\hline & 13! \\
\hline
\end{array}
\end{aligned}
$$

\rightarrow characters

$$
p_{\rho}=\sum_{\lambda} \chi_{\lambda}\left(\rho_{\rho}\right) s_{\lambda}
$$

symu.pdy's in

$$
\begin{aligned}
& x_{1}, x_{2} \ldots x_{n} \\
& P_{\rho}=\prod_{i}\left(\sum_{j} x_{j}^{\rho_{i}}\right) \\
& S_{\lambda}=\frac{\operatorname{det}\left[x_{i}^{\lambda_{j}+n-j}\right]_{i, j=1}^{n}}{\prod_{1 \leqslant i<j \leq n}\left(x_{i}-x_{j}\right)} \quad \text { Schur }
\end{aligned}
$$

(1)
e, (12), (123)

$$
\rho=(111),(21),(3)
$$

(1)

$$
\frac{3!}{3 \cdot 1 \cdot 1}=2
$$

2. Character tweory of $S(\infty)$ (reduction to brauching grapons)
2.). The graup $\delta(\infty)$ and its conjingacy clazses

$$
\begin{aligned}
& S(\infty)=\xrightarrow[\longrightarrow]{\lim S(n) \quad \text { permutes } N=\{1,2 \ldots\}} \\
& S(1) \subset S(2) \subset S(3) \subset S(4) \subset \ldots \\
& \forall b \in S(\infty) \text { 子n } \quad b \in S(4)
\end{aligned}
$$

Fact: $\forall f \cdot d$. rep of $s(\infty)$ is a \oplus of id \& sigu rep's.

Coujg classes of $S(\infty)$

$$
\rho=\left(\rho_{1} \geq \rho_{2} \geq \geq \geq 2\right)
$$

fiucte striges 9 .

2,2 Space $\gamma(s(\infty))$ of characters
Def. $\int \rightarrow \begin{array}{lll}\rightarrow & \text { on } s(\infty) \\ \text { class funct }\end{array} \quad \chi($ dh $)=\chi(\mathrm{kg})$
$x^{3\left(5^{(P)}\right)}$

$$
\rightarrow \quad \text { pos-def. } \quad g_{1} c_{i} g_{n} \in S(\infty)
$$

$$
\sum_{i j} c_{i} \bar{c}_{j} \gamma\left(g_{i}^{-1} g_{j}\right) \geqslant 0
$$

1) $\quad X(g)=\frac{\operatorname{tr} T(g)}{\operatorname{dim} V-\infty}{ }^{\prime \prime}$

$$
\frac{\text { Free. ch. of } s(\infty)}{\{b y d e f}
$$

$$
\text { Ex }\left(\gamma^{\prime}(s(\infty))\right.
$$

2.3 Vershik's ergodic theorem and its corollary fer $S(\infty)$

Theoren (V.E.T.) X - Volish (complete, $\begin{gathered}\text { voup } \\ \text { serevable, }\end{gathered}$ segerable,
metric
$G=\lim _{n} G_{n}, G$ arts on X by contimeons nerps $X \rightarrow X$
all G_{n} 's - fruite (or coupact)
Let μ-ergodic G-invar. probab.

$$
\begin{array}{r}
\mu(g A)=\mu(A) \forall g \\
\forall A \text {-Borel } \\
\text { Suboset } X \\
\text { of } X
\end{array}
$$

$$
\left(\begin{array}{ccc}
\text { ergodic means } & (g A=A & \forall g \\
A \subseteq X ; \mu(A)=0 & \text { or } 1
\end{array}\right)
$$

it is an extreme point, exercise

Then $\exists \quad x_{0} \in X \quad$ st.

$$
\mu=\lim _{n \rightarrow \infty} \mu_{x_{0}}^{(n)}
$$

(weak limit of meas.)
where $\int_{x_{0}}^{(n)}$ are normalized
measures on X_{0}-orbits under G_{n}. (these are Gn_invar.)

Ex. $X=[0, \psi] \quad$ (torus)
$G=$ dyadic $s x \cdot f+1 \bmod 1$

$$
G=\xrightarrow{\lim \pi / 2^{n} \mathbb{Z}}
$$

μ - uniform on $[0,1]$

$$
\begin{aligned}
& \mu=\text { lin. of } \\
& \mu=\text { limns: }
\end{aligned}
$$

$\forall f$

$$
\begin{aligned}
\int_{0}^{1} f(x) & d \mu(x) \\
= & \lim _{N=2^{n}} \frac{1}{N} \sum_{i=1}^{N} f\left(\frac{i}{N}\right)
\end{aligned}
$$

Example. de Finetti's setup, action of $S(\infty)$ on $X=\{0,1\}^{N}$.

VoE To implies for $S(n)$:

Then (1)
$x \in E x \gamma(s(\infty)) \Leftrightarrow \chi$ is a limit of $x_{n} \in E x \gamma(s(n))$, where the limit is peintwise on $S(\infty)$
(2)

In ether words, $\gamma \in E_{x} \gamma(s(\infty))$

$$
\begin{aligned}
& \Leftrightarrow \exists \lambda(n), \quad|\lambda(n)|=n, \text { sit. } \\
& \forall \rho-\operatorname{conj}_{\text {in }}^{\text {clan }(\infty)} \quad \chi_{\lambda(n)}(\rho) \rightarrow \gamma(\rho) .
\end{aligned}
$$

(3) In expansion of restriction to some fixed $S(K)$:
x on $S(\infty)$

$$
\begin{aligned}
& S(k): \\
& \left.\chi\right|_{S(k)} \in \gamma^{\prime(s(k))} \\
& \sum_{\lambda=|\lambda|=k} x_{\lambda}^{s(k)} \cdot C_{\lambda}^{k}
\end{aligned}
$$

De the same to X_{n} of $S(n) \quad n>k$

$$
\left.X_{n}\right|_{s(k)}=\sum_{\lambda:|\lambda|=k} X_{\lambda}^{s(k)} \cdot C_{\lambda}^{k}(n)
$$

Want $c_{\lambda}^{k}(n) \longrightarrow c_{\lambda}^{k} \forall k$.
Next: Properties of c_{λ}^{k} ?

LL. $9 / 1$.
Colloguing today (on Rep -Th.)

Notation: $|\lambda|=n \quad \Leftrightarrow \quad \lambda \in X_{n}=\widehat{S(n)}$
(step back from ergodic stuff)
2.9 Restrictions for $S(n)$ (who proof) \& properties of $\left\{M_{k}(\lambda)\right\}$
(finite $S(n)$'s fact)
Fart. Restrict χ_{λ} to $S(n), \lambda \in \varnothing_{n+1}$
$\left(f_{\text {or }}^{\text {cur. }} \tilde{\chi}_{\eta}\left(\rho^{\prime}\right)^{s(u)}=f(\rho) \in \gamma^{\sim}(s(u))\right.$
$y_{x}(e)=1$
(for rem)
$\overline{T_{\lambda}(\rho L)}$ in $\operatorname{End}\left(V_{\lambda}\right)$ as a rep of SPa). no longer irreducible

Fact wlo proof

$$
\left.T_{\lambda}^{S(n+1)}\right|_{S(n)}=\prod_{\mu=\lambda-D} T_{\mu}^{S(n)}
$$

Ex.

Runk.

$$
\begin{aligned}
& \mu=\lambda-0 \\
& \lambda= \\
& \text { or } \text { 目 } \leqslant \text { squ }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\tilde{X}_{\lambda}\right|_{S(n+1)}=\sum_{\mu=\lambda-0} \tilde{\chi}_{\mu} \frac{\operatorname{dim} \mu}{\operatorname{dim} \lambda} \\
& \operatorname{dim} \lambda=\sum_{\mu=\lambda-D} \text { dim } \mu
\end{aligned}
$$

Now: $\quad S(\infty) \sim_{\infty} s(k), S(k-1)$

$$
x \in \gamma^{\mu}(S(\infty)) \longrightarrow\left\{\mu_{k}(\lambda)\right\}_{\lambda \in y_{k}}
$$

coherent measures
(def. \& pigererties)

$$
\frac{M_{k}(\lambda) \quad p^{\mu \sim b} \text { weas. }}{\left(\left.X\right|_{S(k)}=\sum_{\lambda \in y_{k}} M_{k}(\lambda) \tilde{\chi}_{\lambda}\right.}
$$

Prop.
(coment)

$$
M_{m-1}(\mu)=\sum_{\lambda=\mu+\infty} \mu_{k}(\lambda) \frac{\operatorname{dicm} \mu}{\operatorname{dim} \lambda}
$$

$$
\text { Proff: } \begin{aligned}
& \left.\sum_{\lambda \in y_{k}} M_{k}(\lambda) \tilde{\chi}_{\lambda}\right|_{S(k-1)} \\
= & \sum_{\lambda} \sum_{\mu=\lambda-\infty} M_{k}(\lambda) \frac{\operatorname{dim} \mu}{\operatorname{dim} \lambda} \tilde{\chi}_{\mu} \\
= & \sum_{\mu \in \eta_{k-1}} M_{k-1}(\mu) \tilde{\chi}_{\mu}
\end{aligned}
$$

jowarphic
as convex sers
Δ
Extileue
cohimeas.

Space of
coherent prob.meas

$$
\left\{M_{n} \text { on } \mathscr{Y}_{n}\right\}_{n=1,2}
$$

con

$=$ irred. ch.of $S(\infty)$
We are after $E_{x}(\gamma \sim(S(\infty)))$.
$\gamma(S(\infty))=C 0 h$, the space of coherent measures
(\& need ergodicity to approximate Coh
2.3. Vershik's ergodic theorem (a gentler discussion)

1) Usual ergodic theorem (Birkhoff)
$G=\mathbb{Z}$ acts on $(X, \mu)^{\text {meas. }}$
\Leftrightarrow one invertible operator T $\&$ its powers)

Space: X - cut sep. metric μ-prob. Bael measure
T preserves measure: $\forall A$

$$
\mu\left(T^{2} A\right)=\mu(A) \quad \forall A \quad\left[\begin{array}{c}
\text { Note: using } \\
\mu\left(T^{-1} A\right) \\
=\mu(A)
\end{array}\right.
$$

μ-ergodic: If $T A=A$
flem $\mu(A)=0$ or 1
$\Leftrightarrow \mu$ is extreme among all T-ins. measures

Ergodic ${ }_{N-1}$ theorem: μ-a.every $x \in X, f \in L^{2}(\mu)$

$$
\frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n} x\right) \xrightarrow[N \rightarrow \infty]{ } \int_{x} f d \mu
$$

Example.

$$
X=
$$

$$
\begin{aligned}
& X=\{0,1\}^{2}, \quad j \mu=\begin{array}{l}
\text { Product } \\
\text { measure }
\end{array} \\
& (T \vec{x})_{n}=x_{n+1}, \quad p(1)=p, p(0)= \\
& 1-p
\end{aligned}
$$

$T=$ irrational rotation α
,

$$
\mu=\text { Lebesgue }
$$

res er

Bernoulli shift
2)

$$
\begin{aligned}
& G=\lim _{\rightarrow} G_{n}, \quad \begin{array}{l}
\text { Vershik's ergodic than. } \\
\rightarrow \text { similar }
\end{array} \\
& \int_{x} f d \mu=\lim _{n \rightarrow \infty} \frac{1}{\left|G_{n}\right|} \sum_{g \in G_{n}} f\left(g x_{0}\right) \quad(\forall f)
\end{aligned}
$$

(set of such X_{0} is $\mu-a . e$.)
Gats on (X, r) \& ergodic
2.5 Apptication / example
$S(\infty)$ acting on $X=\{0,1\}^{\mathbb{N}}$ by permitations.
de Finetti thm
$\left[\begin{array}{l}\text { - excluangenbitity } \\ \text { - Pascal triansle }\end{array}\right.$ - action on the space of patus

Ergodic meas on X wit $s(\infty)$
Berpoulli prochuct weasures Mp
Ciid coik fluips $\sim p$ $p \in[0,1])$

Exchangeable.
(2) $\xi_{1} \xi_{2} \xi_{3} \ldots$
$\xi_{i} \in\{0,1\}$
distri is the same as for

$$
\begin{aligned}
\left\{_{b_{1}} \xi_{b_{2}} \xi_{b_{3}} \ldots\right. & \forall 6 \in S(0) \\
\text { deF. }= & \begin{array}{ll}
\exists \nu \text { on }[0,1] & \text { s.t. } \\
\vec{\xi} \text { is wbtained as.: }
\end{array}
\end{aligned}
$$

(1) sumple raudon p
from v on $[0,1]$
(2) Gquen py flip ird coins $\sim p$.
(3) If μ-exch. trem $\exists!\nu$

$$
\begin{aligned}
& \underset{\substack{\mu \text { coubv of } \\
\mu_{p}}}{\substack{\text { convex }}} \int_{0}^{1} \mu_{p} \nu(d p) \\
& \gamma^{\nu}=\left\{e_{x c h} \text {, mea sures }\right\} \\
& E_{x}(\gamma)=[0,1] \text {. }
\end{aligned}
$$

V.E.T applied here.

If μ-ergodic for $S(\infty) \otimes\{0,1\}\}^{\mathbb{N}}$
Then $\exists \overrightarrow{x_{0}} \in X$
s.t. $\mu=\lim _{n \rightarrow \infty} \mu_{n}^{\vec{x}^{0}} \leftarrow$?
$\mu_{u}{\overrightarrow{\mathrm{x}^{a}}}^{0}=$ uniform meade on all sequences of length n with \#A 1's

$$
=X_{1}^{0}+\ldots+X_{u}^{0} \text {. }
$$

$$
\vec{x}=\text { path }
$$

$$
\gg_{0}^{1}
$$

$\binom{5}{2}$ paths
n

$$
\mu_{n}^{\stackrel{\rightharpoonup}{x}_{0}} \rightarrow \mu \quad n \rightarrow \infty
$$

means joint convergence of

$$
\left(\xi_{1}^{(n)}, \ldots, \xi_{k}^{(n)}\right) \rightarrow\left(\xi_{1,}, \xi_{k}\right)
$$

$\forall k$, fixed

$$
\begin{gather*}
\mathbb{P}\left(\xi_{1}^{(u)}=\alpha_{1}, \cdots \xi_{k}^{(u)}=\alpha_{k}\right)=? \tag{*}\\
\alpha_{1}+\ldots+\alpha_{k}=b \\
x_{1}^{0}+\cdots+x_{n}^{0}=a
\end{gather*}
$$

a dep on \vec{x}^{0}

$$
u \text {-eogodic } \Leftrightarrow \exists a(n) \text { s.t. }
$$

$$
\begin{aligned}
\binom{n}{a(n)} & =\mu\left(\xi_{1}=\alpha_{1} \ldots \xi_{k}=\alpha_{k}\right) \\
\frac{(n-k)!}{n!} \cdot & \frac{a(n)!}{(a(n)-b)!} \cdot \frac{(n-a(n))!}{(n-k+b-a(n))!}
\end{aligned}
$$

Case 1. $\quad a / n \rightarrow 0$

$$
\mu\left(s_{1}=\cdots-s_{k}=0\right)=1
$$

Case 2. $a / n * 0, \frac{n-a}{n} \ngtr>0$

$$
\begin{aligned}
& =\frac{1}{n^{k}}(a(n))^{b}(n-a(n))^{k-b} \\
& =\left(\frac{a(n)}{n}\right)^{b}\left(1-\frac{a(u)}{n}\right)^{k-b}
\end{aligned}
$$

$$
\Downarrow
$$

$$
\frac{a(n)}{n} \text { vest } \rightarrow p \in(0,1)
$$

$\Rightarrow \quad \mu$-ergodic $\Rightarrow \mu=\mu$ p.
Bernoulli
2.6 Branching graph associated with $S(\infty)$, and $E_{x}(\gamma(S(\infty)))$
(analogy with Pascal triangle E_{x} as space of ergodic measwes. V.E.T. \Rightarrow approximate. as the problem, but approximation is $\quad X_{\lambda(n)} \rightarrow X$ on the group level)...)

Young graph (lattice)

2.7 Prop of Vershik's ergoolic freorku

Sehur - Weyl duality -

$$
\begin{array}{ll}
V=\mathbb{C}^{N} & \text { on } 9 \\
V^{\otimes n}=W & \operatorname{dim} W=N^{n}
\end{array}
$$

$S(n)$ pernutes vectors factors

$$
v_{1} \otimes \cdots v_{n} \longmapsto v_{b(1)}^{\otimes \cdots \nabla_{b(4)}}
$$

$\frac{G L(N, C)}{\psi}$ acts by

$$
v_{1} \otimes \cdots \otimes v_{n} \mapsto A v_{1} \otimes-\otimes A v_{n}
$$

$$
\begin{aligned}
& \mathscr{\{}\left\{T_{b}: b \in S(n)\right\}^{\prime}=\begin{array}{l}
\text { det all sperat. on } W \\
\text { conveting we. } \\
\text { all } T_{b} .
\end{array} \\
& \left.B: B T_{6}=T_{b} B \quad \forall b\right\}
\end{aligned}
$$

SW-duality: this irs gewerrited by GL(N)
Similaryy the the oftwer directism

$$
\left\{G L_{N} \text {-operators }\right\}^{\prime}=\operatorname{span}\left\{T_{6}: b \in S(6)\right\}
$$

$$
\begin{gathered}
W T=V_{\lambda}^{S(u)} \otimes V_{\lambda}^{G L N} \\
\begin{array}{l}
a_{b}^{\text {a paoderel}}{ }^{\prime} \\
\text { all part. } \quad|\lambda|=u \\
\& \leq N \text { rows }
\end{array}
\end{gathered}
$$

$$
N^{n}=\sum_{\lambda} \operatorname{dice} \lambda \cdot \operatorname{dicu} \lambda
$$

Solerr-wayl random partitions.

Summary so far
(Reminder: please interrupt we if unclear!)
\longrightarrow finite $S(n)$ representations (λ, dim λ, branching)
(Yozhad's notes)
\longrightarrow Ergodic method, that ∞-level objects are approximated by finite ones
\longrightarrow Example with $\{0,1\}^{N}$ \& action of $S(\infty)$
$\|$ ergodic infinite exchangeable $\vec{\xi}$ there exists $a(n)$ s.t. $\forall k$,

$$
\mathbb{P}\left(\xi_{1}+\cdots+\xi_{k}=b\right)=
$$

$$
=\lim _{n \rightarrow \infty} \frac{\binom{k}{b}\binom{n-k}{a(n)-b}}{\binom{n}{a(n)}}(*)
$$

Showed: Fer limit (*) to exist, it rust be $\frac{a(n)}{n} \rightarrow p \in[0,1]$.
$\Rightarrow \vec{\xi} \sim$ ind coils flip segueme with $p=P(1)$.

Next:

Vershir evgolic theorm \& application to $S(\infty) \&$ nore general brancling grapits.
a bit of "real analysis"..
(L5) 2.7. Proot of the ergodic theorem
X - cpt separable metric $C(x)$ cout. funct. (example:
patces in Pascal Δ)

Def prob, meas. V_{n} on X
weathly couverge to v if

$$
\forall f \in C(x) \text {, }
$$

$$
\left\langle f, \nu_{n}\right\rangle \longrightarrow\left\langle f_{1} \nu\right\rangle
$$

votation $\langle f, v\rangle=\int_{x} f d v$

Lema (not proving) \exists countable famiby $\psi \in C(X)$ detecurining weak convergence

$$
\begin{aligned}
v_{n} \rightarrow v \text { if } & \forall f \in \psi \\
\left\langle f, v_{n}\right\rangle & \rightarrow\langle f, v\rangle
\end{aligned}
$$

Def. Go finite group, $x_{0} \in X$ $\mu_{n}^{\left(x_{0}\right)}$ is by def.

$$
\left\langle f, \|_{n}^{x_{0}}\right\rangle=\frac{1}{\left|G_{n}\right|} \sum_{g \in G_{n}} f\left(g x_{0}\right)
$$

$$
\mu(g A)=\mu \mid A)
$$

Then. $G=\underline{\lim } G_{n}, G_{n}$ finite x μ - ergodic G-inv. Botel meas on $\Rightarrow \exists x_{\lambda}$ sit. $\mu=\lim _{n} \mu_{n}^{x_{0}} \quad\binom{$ weak }{ limit }
\& the set of such x_{0} is of full μ-measure

Prof. Let $f \in C(x)$

$$
\begin{gathered}
C(x)>f_{n}(x):=\left\langle f, \mu_{n}^{x}\right\rangle=\frac{1}{\left|G_{n}\right|} \sum_{g \in G_{n}} f(g x) \\
\bar{f}=\langle f, \mu\rangle \cdot 1
\end{gathered} \quad \text { (constant) }
$$

Exercise: enough to show $f_{n}(x) \rightarrow \bar{f}(x)$ for v-abe. x (wees lemme about ψ)

Step 1. $f_{n} \longrightarrow f$ in $L^{2}(\mu)$
Step 2. $\exists \mu$-a.e. limit $f_{n} \rightarrow f_{\infty}$.

$$
\Leftrightarrow f_{\infty}=\bar{f}
$$

and were done)

$$
\langle f, \mu\rangle=\int_{X} f(x) \mu(d x)=\int_{x} f(g x)_{\mu}(d x)
$$

Proof of $\operatorname{step} 1 \quad g f(x)=f(g x)$
G, G_{n} act in $L^{2}(X, \mu)$
Let $V_{n}, V \subset L^{2}(X, \mu)$ be spaces of G_{n} or G suras. funct.

$$
V_{n}=\left\{f: \quad f(g x)=f(x) \quad \forall g \in G_{n}\right\} .
$$

$$
\operatorname{dim} V=1
$$

by def of egradicity of μ.

Let $P_{n} V$ be ortlog projector auto X_{n} $\left(\begin{array}{l}\rho^{2}=\rho \\ \text { case } \\ \text { cot is } p\end{array}\right) \quad P f=\left\langle f_{1}, \mu\right\rangle \cdot \mathbb{1}$

Since $G=\xrightarrow{\lim } G_{n}$,
$P_{n} f \rightarrow \underbrace{P f}_{\uparrow}$ in $L^{2} \quad(\forall f)$
$i t$ is constant, equal to \bar{f}
this is $f_{n}(x)=\frac{1}{\left|G_{n}\right|} \sum_{g \in G_{n}} f(g x)$
(Roves step 1)
f_{n} wave abe. li mitt
Proof of step 2 .
Let $E_{N}=\left\{x=\sup _{1 \leqslant n \leqslant N} f_{n}(x)>0\right\}$

$$
\begin{aligned}
E_{\infty} & =\bigcup_{N=1}^{\infty} E_{N}=\left\{x: \sup _{w} f_{u}(x)>0\right\} \\
E_{m N} & =\left\{x^{2} \quad f_{M}(x)>0,\right. \\
E_{N} & f_{i}(x) \leq 0 \\
\text { Gin variant } & =E_{I N} \cup \ldots \cup E_{N N}
\end{aligned}
$$

So

$$
\begin{aligned}
& \int_{E_{m N}} f d \mu=\int_{E_{m N}} f(g x) \underset{\forall g \in G_{m}}{ } \\
&=\int_{E_{m N}} f_{m}(x) \mu(d x) \\
&\binom{\text { by averaging }}{\text { over }}
\end{aligned}
$$

we have $f_{m}>0$ on $E_{m N}$

$$
\begin{aligned}
& \Rightarrow \int_{E_{\mu N}} f d_{\mu} \geqslant 0 \Rightarrow \int_{E_{N}} f d \mu \geqslant 0 \\
& \Rightarrow \int_{E_{\infty}} f d_{\mu} \geqslant 0 \quad(*)
\end{aligned}
$$

Fivally let $\quad X_{a b}=\left\{x: \lim _{n} f_{n}<a<b\right.$

$$
\left.(a<b)<\overline{\lim } f_{n}\right\}
$$

$\rightarrow X a b$ is G-invaviant
\rightarrow by ergodicity, $\mu\left(X_{a b}\right)=0$ or 1 we want 0
$(*) \Rightarrow$ (exeruise)

$$
a_{\mu}\left(X_{a b}\right) \geqslant \int_{X_{a b}} f d \mu \geqslant b \mu\left(X_{a b}\right)
$$

we know $a<b \Rightarrow \mu\left(X_{a, b}\right)=0$ $\forall a<b$
$\Rightarrow \quad \lim f_{n}=\lim f_{n} \& \operatorname{sep} 2$ clone
3. Brauching graphs (with finite floors)
3.1. Geveral definitions

- graph
- colbolut measures
- harmonie functions

Gn - fivite vets, $k \geq 0$

$$
\mathbb{C}_{70}=\{\varnothing\}, \quad \mathbb{G}_{0}=\bigcup_{n=0}^{\infty} \sigma_{n}
$$

edees comeet G_{n}, $G_{n+1} \forall w$ directerd $u \rightarrow u+1$

$G_{n} \sim X\left(\sigma_{s}\right)$ of ∞ pathes ín G.

x, y cloxe if x, y are evnutuably equal

Want raudom patus, compacitibte
prob ari with graph srmeture.
je on $X(\mathbb{G})$ is cerlled eentral \forall fixcel

$$
p^{e}\left(x^{\prime}=\lambda^{\prime}, \quad x^{2}=\lambda^{2}, \cdots, \quad x^{n}=\lambda^{n}\right)
$$

$$
=\frac{1}{\operatorname{dim}_{G} \lambda^{n}} \cdot f\left(\lambda^{n}\right)
$$

indep.
of how you reach λ

$$
\{\mu-\text { central }\} \stackrel{1-1}{\longleftrightarrow}
$$

Def. \{loherent measures on $\left.\mathbb{G}_{n}\right\}$

$$
\begin{gathered}
\operatorname{L}_{n}(\lambda)=\mu\left(\begin{array}{c}
\text { path pastes } \\
\text { thorough } \\
\lambda \in G_{n}
\end{array}\right)
\end{gathered}
$$

$\mu_{p}=$ iid coin flip seguence

$$
\begin{aligned}
\mathcal{M}_{n} & ((a, n-a)) \\
& =\binom{n}{a} p^{a}(1-p)^{n-a}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{M_{u}(a, n-a)}{\operatorname{dim}(a, n-s)} \\
& \frac{M_{n}(\lambda)}{\operatorname{dim} \lambda}=\rho^{\mu}\left(\begin{array}{cc}
a u y & \text { proticular } \\
\text { path } & \text { foran } \varnothing \\
\text { to } & \lambda
\end{array}\right)
\end{aligned}
$$

Lever μ-eential $\Rightarrow M_{n}$ defived by

$$
L_{n}(\lambda)=\mu u\left(\begin{array}{c}
\text { path pastes } \\
\text { through }
\end{array}\right.
$$

satisfy

Proof

$$
\begin{gathered}
\mu_{e}\left(x^{1}=\lambda^{\prime}, \rightarrow x^{n-2}=\lambda^{n-2}, x^{n-1} v\right) \\
11 \\
\sum_{\lambda} \mu \mu\left(x^{1}=\lambda^{\prime}, \rightarrow x^{n-2}=\lambda^{n-2}, x^{n-1} v, x^{n}=\lambda\right)
\end{gathered}
$$

Boundary of G $G=E_{x}(G)$
11 def
space of all evgodic central veaseres

$$
\begin{aligned}
& \forall \mu^{\prime} \in E x(G) \text {, } \\
& \left.\mu=\lim _{n \rightarrow \infty} \begin{array}{l}
\text { of } \\
\text { frinte } \\
\text { ceastre } \\
\text { weas wes }
\end{array}\right)
\end{aligned}
$$

LG. $9 / 8$.
3.2. Example of a branching graph - Pascal triangle
$\left|\begin{array}{l}\text { all def's in this example } \\ \text { + why it is called "boundary" }\end{array}\right|$

$$
\begin{aligned}
& b_{n}=\left\{(a, n-a)^{\prime}\right. \\
& a=0 \ldots n\} \\
& b_{0}=\{(0,0)=\varnothing
\end{aligned}
$$

Ceutral meas. u on patus

$$
\begin{aligned}
& \text { path }=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right) \in\{0, \ldots\}^{N \prime} \\
&=\left\{\left(\phi-\lambda^{(1)} \rightarrow \lambda^{(2)}>\lambda^{(3)} \Rightarrow \ldots\right)\right\} \\
& \lambda^{(n)}=\left(a_{n}, n-a_{n}\right) \\
& s_{n}=a_{n}-a_{n-1}
\end{aligned}
$$

μ cuntral it μ anvar.vuder

$$
S(\infty) \quad o n \quad\{0,1\}^{N}
$$

pef. (function)

$$
\varphi_{\text {(function }} Q_{n}=\bigcup_{n=0}^{\infty} \sigma_{n}
$$

is cabled barmonic if

$$
\varphi(\lambda)=\sum_{\mu: \mu \nu \lambda} \varphi(\mu)
$$

Lheres

$$
\begin{aligned}
\left.\begin{array}{c}
\text { canfral } \\
\text { probab. }
\end{array}\right\}
\end{aligned} \longleftrightarrow \begin{array}{r}
\left\{\begin{array}{r}
\text { karmonit }\} \\
\varphi \geqslant 0
\end{array}\right. \\
\\
\& \varphi(\phi)=1
\end{array}
$$

Proef. $\varphi(\lambda)=j^{u}($ path starts as $\left.\phi \rightarrow \lambda^{(1)}>\ldots \lambda^{(n-1)}>\lambda\right)$

$$
\lambda \in \mathbb{E}_{n}
$$

Pascel, iid coiv flips $\sim \rho$

$$
\begin{aligned}
\varphi((a, n-a)) & =p^{a}(1-p)^{n-a} \\
p^{a}(1-p)^{n-a}= & p^{a+1}(1-p)^{n-a} \\
& +p^{a}(1-p)^{n+1-a}
\end{aligned}
$$

Cowrent $\stackrel{\text { probs }}{\text { rearuses }}\left\{M_{n}(\lambda)\right\}$
prob. was.
on \mathbb{E}_{n} norm. barm. f.

$$
\varphi(\lambda)=\frac{1}{\operatorname{dim} \lambda} \underbrace{M_{n}(\lambda)}_{\not /!}, \lambda \in \mathbb{G}_{h}
$$

Doy cal, iid $(p)<$ dien λ

$$
M_{n}((a, n-a))=\left(\binom{n}{a} p^{a}(1-p)^{n-a}\right.
$$

$\gamma^{\prime}(G)=\{$ contral prós $\mu\}$

$$
\begin{aligned}
& \left.=\left\{\begin{array}{c}
\text { noswalized } \\
\& \varphi \geqslant 0 \\
=\{\text { coh-suyst. }
\end{array} \mu_{n}\right\}\right\}
\end{aligned}
$$

Bourdary of G def $E x(\gamma(G))$

$$
E x \gamma(\epsilon) \leftrightarrow[0,1]
$$

$$
\begin{gathered}
\{(a, n-a)\}=\mathbb{G}_{x} \\
\begin{array}{c}
3 \\
\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots \frac{n-1}{4}, 1\right\}
\end{array}
\end{gathered}
$$

3.3
3. Application of ergodic theorem to bramuhing graphs

Want: $\forall \mu \in E x(\gamma \mathcal{G}(\mathbb{G})), \quad \exists \lambda^{(u)} \in \mathbb{G}_{n}$
sot. $\int^{u}=\lim _{x \rightarrow \infty}$ of finite extrpue needs. coming from $\lambda^{(n)}$?

Linuit is in restrietious to any fiyed level K.
$\mu \longleftrightarrow\left\{\Omega \mu_{n}^{(\mu)}\right\} \quad$ o then $\forall K, \forall v \in G_{k}$

$$
\frac{M_{k}^{\left(\mu^{\prime}\right.}(\nu)=\lim _{n \rightarrow \infty} \frac{\operatorname{dim} \nu \cdot \operatorname{dim}\left(\nu, \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(n)}}}{\operatorname{diver}\left(\nu, \lambda^{(n)}\right)=\text { \#\# of patwy in }}
$$

"adic skift"

- paths in a graph $=$ apt space X
$-x \stackrel{n}{\sim} y$

$$
\begin{equation*}
x_{1}=y \quad \quad i>n \tag{n}
\end{equation*}
$$

$x \sim y$
if eventually
$x \stackrel{H}{\sim} y$

- j, tail equiv. relation
- Linear order en É
- $\quad x>y$ if $x \sim \sim \sim y$ \& $x_{n}>y_{n}$, partial order on X

$T: x \leadsto$ next mivicual pat th

Example

$$
S=(0,0,0,0 \ldots 0)
$$

minizued

$$
\xi=(0,0,0,0,1,0,0, \ldots)
$$

$-\bar{x}$, \underline{X} set of min/max pts (assume these are single - pt. sets)
$-T: X-\bar{x} \rightarrow X \vee \underline{X}$
$x \quad \longrightarrow \quad y$
$y>x$ sit. y is minimal among such $y>x$

- any μ invariant under $T\binom{$ anther }{$\delta}$ corresponds to a coherent syst. on ts
- \mathcal{F} is a levit of δ_{n}, \& T is a sort of "ineluetive limit" so vershik's theorem applies.
$\Rightarrow \forall$ Coherent system on Go is a limit of "finite coherent syst." (define)
T is approx. by $T_{n}^{\prime} s$
Tr are just mixing all pates $\phi \rightarrow \lambda^{(n)}$
$T_{\text {in -iwerviant }}$ meas- on paths $\xrightarrow{\longrightarrow}$
meas which are central up to level in

Prop (who proof)
μ-certriel $\Longleftrightarrow \mu$ is T rimavar.
3.4. Ex $\gamma^{\prime}(S(\infty))$ and the Young graph ap. th.

$$
(+S . y, T .)
$$

normalized
Remennser $x-e x$. cu. of $s(\infty)$

$$
\begin{aligned}
& \left.\chi\right|_{s(n)}=\sum_{\lambda \in D_{n}} M_{n}^{(x)}(\lambda) \cdot \tilde{\chi}_{\lambda}^{\sim}(u) \\
& \nu_{n}=\left\{\square \tilde{x}^{\prime}(e)=\right. \\
& \text { wite } u \text { boxes }\}
\end{aligned}
$$

$\left\{M_{n}^{(x)}\right\}$-prob. measures $\forall n$
Also, we can restrict $S(u+1)$ to $S(n)$

$$
\begin{aligned}
& \lambda \in \nu_{n+1}
\end{aligned}
$$

$S(n+1) \downarrow S(n)$ implies trent
$\left\{M_{n}^{(x)}(\lambda)\right\}$ is coherent on the Young

$$
y=\bigcup_{n=0}^{\infty} y_{n} \quad \text { graph. }
$$

$$
\begin{aligned}
& x=\text { sgu } \\
& \Rightarrow M_{n}(\lambda)=\delta \text { at } \int_{n_{L}} \theta
\end{aligned}
$$

Paths in Y.

$$
\phi \longrightarrow \lambda \in \quad y_{n}
$$

stricoly inct. in both deirections

Standard Young tablean

$$
\begin{aligned}
& \operatorname{dim} \lambda=H \text { of pathes } \\
& \text { = \# of } \operatorname{syT}(\lambda) \\
& =\frac{n!}{\prod_{\square \in \lambda} h(\square)} \quad\binom{\text { noor }}{\text { formila }} \\
& \operatorname{dim} \frac{0.3}{\frac{3}{2}-2}=\frac{65438}{4 \cdot x+5 \cdot 4}=5
\end{aligned}
$$

3.5 The problem of relative dim asymptotic
(determine all finite ergodic mas. \& their limits)
$\operatorname{dim} \lambda \quad \& \quad \operatorname{dim}(\mu, \lambda)$

$$
=A(\mu \sim \sim
$$

\forall ex.coh. measure, $\exists \lambda^{(u)}$
sit. \forall fixed v,
the limit

$$
(d i v \Delta) \cdot \frac{\operatorname{dim}\left(v, \lambda^{(u)}\right)}{\operatorname{dim} \lambda^{(u)}}
$$

exists.

So, the goal is to describe all possible limits of

$$
\left[\frac{\operatorname{dim}\left(v, \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(u)}} \quad \begin{array}{l}
\quad \lambda^{(u)} \in U_{n} \\
n \rightarrow \infty
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Boundary loops Lives". } \\
& \underset{\sim}{\substack{\text { Thomw } \\
\text { simplex }}}\left\{\begin{array}{l}
\vec{\alpha}=\left(\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant 0\right) \\
\vec{\beta}=\left(\beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant 0\right) \\
\text { set. } \sum_{i=1}^{\infty}\left(\alpha_{i}+\beta_{0}\right) \leq 1
\end{array}\right\} \\
& \delta=1-\sum_{i=1}^{\infty} \alpha_{i}+\beta_{i} \geqslant 0 \\
& \Omega=\operatorname{comphect} \text { inf. sin } p^{l d x}
\end{aligned}
$$

Example.

Note: Pascal sits inside y

$\Omega_{\text {pascal }} \subset \Omega$

$$
\begin{array}{r}
\text { Pascal } \\
\left\{\left(\alpha_{1}, \beta_{1}\right): \begin{array}{c}
\alpha_{1}+\beta_{1}=1
\end{array}\right\} \\
\alpha_{2}=\cdots=0=\beta_{2}=\cdots \\
\delta=0
\end{array}
$$

\Rightarrow From \rfloor pascal, we get q of $S(\infty)$ corseapto ind coin flips.
4. Paycal triangle \& polynomier alsebro
4.1 Coherent meas ures / Marmonic functions \& $\operatorname{R}[x, y]$
4.2. Relative dimension \& a "shifted beasis" in $\mathbb{R}[x, y]$

Recall. $\mathbb{G}=\bigcup_{n=0}^{\infty} G_{n}$ browning graph
(1) $\operatorname{dim} \lambda=\operatorname{dim}(\phi, \lambda) \quad \operatorname{dim}(\nu, \lambda)$
(numbters of firtles)
$\gamma(\mathbb{G})=\{$ clutral probab. μ on patus of $G\}$ $\mu\left(\phi>\lambda^{(1)} \rightarrow \ldots \lambda^{(n)}\right)$ depends ouly on $\lambda^{(n)}$ $\simeq\{$ nonneg. normatised harm. $\varphi\}$

$$
\begin{aligned}
& \varphi(\phi)=1 \quad, \quad \varphi \geqslant 0 \\
& \varphi(\lambda)=\sum_{\nu=\nu x \lambda} \varphi(\nu) \\
& \varphi\left(\lambda^{(n)}\right)=\mu\left(\phi>\lambda^{(1)}>\ldots \lambda^{(n)}\right)
\end{aligned}
$$

$\simeq\{$ conereus syst. of probab. meas.
$M_{n}(\lambda)$ ou $\left.\mathbb{C}_{n}\right\}$

$$
\begin{aligned}
& M_{n}(\lambda)=\operatorname{dim} \lambda \cdot \varphi(\lambda) \\
& m_{n}(\lambda)=\sum_{\nu=V_{x} \lambda} M_{n+1}(v) \frac{d(m \lambda}{\operatorname{dom} v}
\end{aligned}
$$

(2) $y>=\phi-\square<\square<\sum_{\square}^{\infty} \ldots \ldots$

$$
\left.\gamma^{\prime}(y)\right) \cong \gamma^{\prime}(s(\infty))
$$

normelized cheracters

$$
\begin{aligned}
& \rightarrow x-\text { centsal } \\
& \rightarrow x(e)=1 \\
& \rightarrow x \text { pos-def. }
\end{aligned}
$$

$$
\left.\chi\right|_{s(n)}=\sum_{\lambda \in \mathbb{Z}_{n}} \mid u_{n}(\lambda) \tilde{\chi}_{\lambda}^{s(n)}
$$

(3) Ex $\gamma^{v}(\mathbb{G}) \Longleftrightarrow$ all possible limaits of $\begin{aligned} & \frac{\operatorname{dim}\left(v, \lambda^{(n)}\right)}{\operatorname{djjm} \lambda^{(n)}}, \lambda^{(n)} \in \mathbb{G}_{n} \\ & (v \text { firel) }), n \rightarrow \infty\end{aligned}$

Lemus.

$$
\varphi(v)=\frac{\operatorname{dim}\left(v, \lambda^{(n)}\right)}{\varphi_{\lambda^{(n)}}\left(j \ln \lambda^{(n)}\right.}
$$ whwef wealiz

is harmonic in ν,

$$
|v|<n
$$

Proof $\varphi_{\lambda^{(n)}}^{(\phi)}=\frac{\operatorname{dim}^{(i n} \lambda^{(n)}}{\operatorname{din}^{(n)}}=1, \quad \varphi \geqslant 0$

$$
\varphi_{\lambda^{(u)}}(\nu)=\sum_{\mu: \mu \nu \nu} \varphi_{\lambda^{(u)}}(\mu)
$$

(v) $k+1$

$$
\begin{aligned}
& \varphi(v)=\frac{\operatorname{dim}\left(v, \lambda^{(n)}\right)}{\operatorname{djjm} \lambda^{(n)}} \\
& \varphi_{\lambda_{(n)}}(\mu)=\left\{\begin{array}{l}
\left|\lambda^{(n)}\right|=n \\
\frac{1}{\operatorname{dim} \lambda^{(n)}, \mu=\lambda^{(n)}} \begin{array}{l}
\mu \mid=u \\
0, \text { else }
\end{array}
\end{array} \begin{array}{l}
\end{array}\right.
\end{aligned}
$$

(4) Adic shift on paths of G.
$X=$ space of n. feature, compact
"Adic" order: patters are comparable ft cofinal

$$
x<y
$$

if

$$
\begin{aligned}
& x_{i}=y_{i}, \quad i>j \\
& x_{j}<y_{j}
\end{aligned}
$$

(Need total order
on all out going down edges from each vertex)
$T x=y$ if y is the innuedoate successor
1
(Pascal)
o

go from ϕ ip the path \& find first
 place you eon switarn

$$
\begin{aligned}
& T\left(0^{p} 1^{q} 10 *\right) \\
& =1^{q} 0 p_{01} * \quad(p, q \geqslant 0)
\end{aligned}
$$

Faces: central on paths \Leftrightarrow invariant writ the adic shift.

Wry a?
vilu
apply T, cycle froouyh all patus.

4. Pascal graph via algebre
4.1. Identification with algebres morphisus

Let $A=\mathbb{R}[x, y]$.

$$
\begin{aligned}
& p_{1}=x+y \text {; } \\
& \lambda=(a, n-a) \\
& f_{x}=x^{a} y^{n-a} \longleftarrow \text { liwar bosis } \\
& \Rightarrow p_{p 1} f_{\lambda}=\sum_{\nu: v y \lambda} f_{\nu} \\
& \varphi(\lambda)=\sum_{v \Delta \lambda} \varphi(\nu) \\
& (x+y) x^{a} y^{n-a}
\end{aligned}
$$

So, $\varphi(\lambda)=f_{\lambda}$ loors live harmonic f. an the Pascal triaugle if $x+y=1$

Theorenn (Ring tworem) \leftarrow works $\forall(G)$

$$
\begin{array}{r}
E_{x}[g(\text { pascal })]=\begin{array}{c}
\text { abgebra } \\
\text { hanowo phisum } \\
F: A \rightarrow \mathbb{R}
\end{array}
\end{array}
$$

1) F varishes on $\left(p_{1}-1\right) A$
2) $f\left(f_{\lambda}\right) \geqslant 0 \quad \forall \lambda$.

$$
A=R[x, y]
$$

$$
F(f g)=F(f) f(g)
$$

Proof. $\left\{f_{\lambda}\right\}$ is a basis for A

$$
\begin{aligned}
& p_{1} f_{\lambda}=\sum_{v=v y \lambda} f_{v} \\
& x^{a} y^{n-a}
\end{aligned}
$$

0)

First,

$$
\begin{aligned}
& \varphi(\lambda)=F\left(f_{\lambda}\right) \\
& \varphi(\phi)=F(1)=1
\end{aligned}
$$

$$
F(p, f)=F(f)
$$

Remoris to match extreme horm.f to algebra homomorphisme
(Thun. 4.3 in $[B-0]$ hook)

1) (A+ $\subset A$ nomneg. live comb. of f_{λ}
$F\left(A_{+}\right) \subseteq \mathbb{R}_{10}$

$$
f_{\lambda} f_{\mu}=\sum_{v} c_{\lambda \mu} f_{v}, c_{\lambda \mu}^{v} \geqslant 0
$$

2) $p_{1}^{n}-\operatorname{dim} \lambda \cdot f_{\lambda} \in A+\forall \lambda$

$$
p_{1}^{n}=\sum_{\lambda} \operatorname{diva} \lambda \cdot f_{\lambda}
$$

3) If F-lieear s.t. $F(f)>0$.
def. $\quad F_{f}(q)=\frac{F(f g)}{F(f)}-\begin{gathered}\text { also wounieg } \\ \text { wormarized } \\ \text { \& livers } \\ \text { in } g\end{gathered}$
4) Let f extreme.

4a) if $F\left(f_{\lambda}\right)=0$ then $F\left(f_{\lambda} f_{\mu}\right)=0 \quad \forall_{\mu}$, indeed

$$
\left(\mu \in p_{00 c}^{\left.\alpha l_{n}\right)} 0 \leqslant F\left(f_{\lambda} f_{\mu}\right) \leqslant F\left(p_{1}^{n} f_{\lambda}\right)=F\left(f_{\lambda}\right)=0\right.
$$

4b) $F\left(f_{\lambda}\right)>0$, office
Let $f_{1}=\frac{1}{2} \operatorname{dim} \lambda \cdot f_{\lambda}$

$$
f_{2}=p_{1}^{n}-f_{1}
$$

$$
\lambda=(a, m-a)
$$

$\Rightarrow F_{f_{1}}, F_{f_{2}}$ exist, $\forall g$
we have

$$
\begin{aligned}
F(g)=F\left(p_{1}^{n} g\right) & =F\left(f_{1} g\right)+F\left(f_{2} g\right) \\
& =F\left(f_{1}\right) F_{f_{1}}+F\left(f_{2}\right) F_{f_{2}}
\end{aligned}
$$

F extreme $\Rightarrow F_{f_{1}}=F$ so

$$
\begin{aligned}
& F(f, g) \\
& \left.F\left(f_{1}\right)=F_{f}(g)=F(g) \Rightarrow \forall g, F\left(f_{i} g\right)=F\left(f_{x}\right) F(g)\right)
\end{aligned}
$$

5) F-mult, show it is extere

$$
F(f)=\int_{\substack{G \in \begin{array}{c}
\text { Extrecue } \\
\text { nongejative } \\
\text { comaliced } \\
\text { lineor } \\
\text { magis }
\end{array}}} G(f) P(d G)^{\text {A-prosol. }}
$$

Abstract Cnoquet's Theoren

$$
F\left(f^{2}\right)=(F(f))^{2} \Rightarrow
$$

$$
\int_{G \in t x} \underbrace{G\left(f^{2}\right)}_{1} d P=\left(\int_{G \in E x} G(f) d P\right)^{2}
$$

G is extience $G\left(f^{2}\right)=(G(f))^{2}$
\Rightarrow sariance of P is O :

$$
\begin{gathered}
\int(G(f))^{2} \in P\left((b)=\left(\int G(f) d P(b)\right)^{2}\right. \\
\forall f \\
\operatorname{Var} X=E\left((X-E X)^{2}\right)=0 \\
\Rightarrow X=E X \quad a \cdot e .
\end{gathered}
$$

So,

Thum. Boundary of the Pascal Δ

$$
\begin{aligned}
\text { is } \quad F ; \quad A=\mathbb{R}[x, y] \rightarrow \mathbb{R} \\
F(x)=P, \quad F(y)=1-p, \quad p \in[0,1]
\end{aligned}
$$

(awther proof of de Finetti:
clarosf. of ergodic
exchangeable randon seg.)

$$
\frac{\operatorname{dim}\left(v, \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(n)}} \longrightarrow ?
$$

4.2. Relative dimenaion in Pacal via algebra $A=\operatorname{na}[x, y]$

$$
\begin{aligned}
& \left(b, x^{-b}\right)(a, n-a) \\
& \frac{\operatorname{dim}(\nu, \lambda)}{\operatorname{dim} \lambda}=\frac{\binom{n-k}{a-b}}{\binom{n}{a}}= \\
& \text { let } \begin{array}{l}
a_{1}=a \\
a_{2}=n-a_{1}
\end{array} \\
& b_{1}=b \\
& b_{2}=k-b_{2} \\
& =\frac{(h-k)!}{n!} \cdot \frac{a_{1}!a_{2}!}{\left(a_{1}-b_{1}\right)!\left(a_{2}-b_{2}\right)!} \\
& n, a_{1}, a_{2} \text { lage } \\
& b \text {, 似 fived }
\end{aligned}
$$

Define $z^{\downarrow m}=z(z-1)-(z-m+1)$
$\Leftrightarrow \frac{a_{1}^{b_{1}} a_{2}^{\downarrow b_{2}}}{n^{\downarrow k}}$ podeponial in a a a_{1}, a_{2}

$$
n^{d k} \simeq n^{k} \text { as } n \rightarrow+\infty
$$

$$
A=\operatorname{Rl}[x, y]
$$

Define $f_{\lambda}^{*}(x, y)=x^{\downarrow b_{1}} y^{\downarrow b_{2}} \quad \lambda=\left(b_{1}, b_{2}\right)$
$f_{\lambda}^{*} \in A$ - invomo geneors
Pbements
of dagrea $b_{1}+b_{2}$
Gdill a basis, because

$$
f_{\lambda}^{k}=f_{\lambda}+\text { lower ard. berves }
$$

$$
\begin{aligned}
\Rightarrow \frac{\operatorname{dim}(v, \lambda)}{\operatorname{dim} \lambda} & =\frac{1}{n^{* k}} f_{v}^{*}(\lambda) \\
v^{\nu}\left(b, k^{-b}\right) & \frac{1}{n^{k k}}\left[f_{v}(\lambda)+g\left(\lambda f_{v}^{*}=k\right.\right. \\
& g \in A, \\
& \operatorname{deg} g \leqslant k-1
\end{aligned}
$$

Clearly $\frac{g(\lambda)}{n^{k}} \rightarrow 0$ if $\quad \lambda=(n, x-a)$
be anse $g(\lambda) \leq$ Const.n $^{k-1}$

$$
\frac{\operatorname{dim}(\nu, \lambda)}{\operatorname{dim} \lambda}=\frac{1}{n^{* k}} \cdot f_{v}^{*}(\lambda)
$$

$$
f_{v}\left(\frac{\lambda}{n}\right)
$$

$$
\lambda^{(u)} \text { is sif-} \frac{\operatorname{dim}\left(v, \lambda^{(u)}\right)}{\operatorname{dim} \lambda^{(u)}}
$$

nas a likit ($\forall v$)
$1 /$
$f_{v}\left(\frac{\lambda}{u}\right)$ has a limit $\forall v$

$$
v=(1,0) \quad \Rightarrow \quad \frac{x_{1}}{n}=\frac{a}{n}
$$

was a limit
\& also $\frac{u=a}{n}$ was a levert.
\downarrow
second proof (Today) of de Finetti
(the some as the orishal one n Lect 3 (?), bret wow with algebra on top?
4.2. Pascul via

$$
\begin{aligned}
& A=\underbrace{A[x, y]} \\
& f_{x}^{*}=x^{\downarrow(x-1) y^{\downarrow(n-a)} \mid(x-a+1)} b y \text { deg }
\end{aligned}
$$

$$
\lambda=(a, x-a)
$$

$$
\begin{aligned}
& \begin{array}{l}
f_{\lambda}=x^{a} y^{n-a} \\
P_{1}=x+y
\end{array} \\
& f_{\lambda}^{f_{x}^{*}=x^{\downarrow a} y^{\downarrow(x-a)} \text { graded } b y \text { deg }} \\
& \begin{array}{l}
f_{\lambda}=x^{a} y^{n} \\
P_{1}=x+y
\end{array} \\
& p_{1} f_{\lambda}=\sum_{\mu \downarrow \lambda} f_{\mu} \\
& \left.\frac{\operatorname{dim}(V, \lambda)}{\operatorname{dim} \lambda}\right)^{(\text {celativ }}=\frac{1}{n^{\nu} \omega} f_{\nu}^{*}(\lambda) \\
& V=(a, n-a) \in \mathbb{P}_{n} \\
& \nu=(b, k-b) \in \mathbb{P}_{k} \\
& \mathbb{P}_{n}=\{(0, n),(1, n-1), \ldots,(n, 0)\}
\end{aligned}
$$

Let $\Omega=[0,1]$ (the boundary)

$$
\begin{aligned}
& \mathbb{P}_{n} \hookrightarrow \Omega \\
& d \longmapsto \quad \nmid \frac{a}{n} \in[0,1]
\end{aligned}
$$

Then $\frac{\operatorname{dim}(\nu, \lambda)}{\operatorname{dim} \lambda}$

$$
\begin{aligned}
& n \rightarrow \infty, \\
& \simeq p \text { to } O\left(\frac{1}{n}\right) \\
& \simeq \quad f_{v}^{0}\left(\frac{\lambda}{n}\right) \\
& f_{v}{ }^{0} \in C[0,1]
\end{aligned}
$$

$$
=\frac{1}{h^{\downarrow k}} f_{v}^{*}(\lambda) \simeq f_{v}^{0}\left(\frac{\lambda}{n}\right)
$$

$$
f_{\left(b_{1}, b_{2}\right)}^{0}(x)=x^{b_{1}}(1-x)^{b_{2}}
$$

f_{v}^{0} is a function on $\Omega=[0,1]$

$$
v=\left(b_{1}, b_{2}\right) \quad v=\left(b_{1}, b_{2}\right)
$$

(1) $x^{b_{1}} y^{b_{2}}=f_{V}(x, y) \in A$
(2) f_{v}^{*}
(3) $f_{v}^{0}=x^{b_{1}}(1-x)^{b_{2}}$

Which is at the same time
the rivage of $f_{v} \in A$

$$
\begin{aligned}
& A^{0}=A /\left(p_{1}-1\right) A \\
& A \longrightarrow A^{0} \\
& f(x, y) \longrightarrow f(x, 1-x) \\
& p_{1}=x+y \longmapsto 1 \\
&\left(p_{1}-1\right) A \longrightarrow \mathbb{R}[x]
\end{aligned}
$$

$$
\frac{\operatorname{dim}\left(\nu, \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(n)}} \simeq f_{v}^{0}\left(\frac{\lambda^{(n)}}{n}\right)
$$

(aim to replicate for
(5) Combrustorics of

$$
Z_{n}=\{\lambda \text { with u boxes }\}
$$

51 1 Recursion for timed

$$
\begin{aligned}
& \operatorname{dim} x=\operatorname{dim}(\phi, \lambda)=\# \text { of } s+d . y, t \text {. } \\
& \text { of shape } \lambda \\
& \wedge \begin{array}{|l|l|l|}
\hline 1 & 2 & 6 \\
\hline 3 & 5 & 8 \\
\hline 4 & &
\end{array}
\end{aligned}
$$

$\{$ patles $\phi-\lambda$ in $\theta\}=\operatorname{Sy} T(\lambda)$
Remorras
$\lambda \rightarrow$ irrep. of $S(u)$ corresp to λ

$$
\begin{aligned}
& V \quad s(n) \supset s(u-1)>s(u-2)>\cdots \\
& V=\bigoplus_{\mu \rightarrow \lambda} V_{\mu}^{s(u-1)}=\bigoplus_{\mu \not \lambda \lambda} \nu_{>\mu \mu} V_{\nu}^{s(u-2)} \\
& \\
& =\oplus \cdots \\
& \\
& =\bigoplus_{\text {pataes } \phi-\lambda}\left(V_{1}^{s(1)}=\mathbb{C}\right.
\end{aligned}
$$

$\Rightarrow \exists$ basis in V restrice. ealled the Gelfand-Tsetliu
basis
\& action of $S(u)$ is very. eyplicit there,

$$
\operatorname{dim} \lambda=\sum_{\mu: \mu \rightarrow \lambda} \operatorname{dim} \mu \quad \text { (recusion) }
$$

follows fron def.

1	2	3
4	5	

5.2 Formalas for dim λ

(2)

(3) Hoor formula

$$
\operatorname{dim} x=\frac{w_{0}}{\prod_{\square \in \lambda} h(\square)}
$$

9	6	3	1
7	4	1	
5	2		
4	1		
2			
1			

5.3. Probabilistic prof of hook formula

$$
\operatorname{diver} \lambda!=\frac{w_{0}}{\prod_{\square \in \lambda} h(\square)}=F(\lambda)
$$

Wars.

$$
\begin{aligned}
& F(\lambda)=\sum_{\mu>\lambda} F(\mu) \\
& 1=\sum_{\mu \pi \lambda} \underbrace{F(\mu) / F(\lambda)}_{\text {is a probability }} \\
& \text { of event } A_{\mu} \\
& \text { If } A_{\mu} \text { are dèjorit } \\
& \text { \& } \quad \bigcup_{\mu} A_{\mu}=\Omega
\end{aligned}
$$ then dove.

Hook walk angeriture
λ

1) pick a box \square_{1} at random n
2) Recursively, pice a box ∇_{j+1} unify. from the hook of $\square_{j}, \square_{j+1} \neq \square_{j}$

Stop when get to the boundary
$\frac{P_{\text {rap, }}}{(H / 3)} \frac{F(\mu)}{F(\lambda)}=\operatorname{Pr}_{\operatorname{rob}(\lambda}\left(\lambda-D_{\text {final }}=\mu\right)$
\Rightarrow Woat formula.

\& vuiformily random
\Leftrightarrow ulnif.randan SYT (X)
(Dan Roarik 2008
(Mac Tableanx)

1.-n
$\frac{n}{4} \frac{n}{2} \frac{3 n}{4}$
5.4 Operatars D and U \& the second recursion for dimh

$$
\begin{aligned}
& \text { Thur. } \\
& \operatorname{dim} \lambda=\frac{1}{n+1} \sum_{\nu=v \lambda \lambda} \operatorname{dim\nu }
\end{aligned}
$$

$$
\begin{aligned}
& u \underline{\lambda}=\sum_{v: \vee \Delta \lambda} \underline{v} \\
& D \underline{\lambda}=\sum_{\mu i \mu>\lambda} \mu \underline{\mu} \\
& \text { (1) }(D, \mu)=(\lambda, \text { nowzero it } \\
& \mu=\lambda-\square
\end{aligned}
$$

$$
D=u^{*}, u=D^{*}
$$

(2) $[D, u]=\nu u-u D$.
$D U \underline{\lambda}-U D \underline{\lambda}=$ lin comb of $\underline{\lambda}$

$$
\& \underline{\imath}, \begin{aligned}
& v \neq \lambda \\
& (v)=(\lambda)
\end{aligned}
$$

1) $\nu \neq \lambda$ does wort participate (have 0 colt)
2) λ

(3)

$$
\begin{aligned}
\lambda \in y_{n} & , \\
\operatorname{dim} \lambda & =\left(u^{n} \Phi, \underline{\lambda}\right) \\
& =\left(D^{n} \underline{\lambda}, \underline{\varnothing}\right)
\end{aligned}
$$

(4) Proeg of second recursinn

$$
\begin{aligned}
& \sum_{\nu: v \lambda \lambda} \operatorname{dim} v \quad|\lambda|=n \\
= & \sum_{\nu}\left(u^{n+1} \underline{\phi}, \underline{\nu}\right) \\
= & (u^{u t)} \underline{\phi}, \underbrace{\sum_{v i v \lambda} \underline{v}}_{u \underline{\nu}})
\end{aligned}
$$

$$
\left.\begin{array}{l}
=\left(D u^{n+1} \phi, \lambda\right) \\
D u^{n+1}
\end{array}=D u u^{n}\right)
$$

\star

$$
\begin{aligned}
\sum_{\nu: V \geq \lambda} \operatorname{dim} \nu & =(n+1)\left(u^{n} \underline{b}, \underline{\lambda}\right) \\
& =(n+1) \operatorname{dim} \lambda
\end{aligned}
$$

Nost: Hoom wadk

1) $\lambda \rightarrow \mu$

$$
\begin{gathered}
\mu=\lambda-D \\
P(\lambda \rightarrow \mu)=\frac{\operatorname{dim} \mu}{\operatorname{dim} \lambda}
\end{gathered}
$$

2) $\lambda \rightarrow v, \quad v=\lambda+\square$

Planchel grouth process

$$
P(\lambda+v)=\frac{\operatorname{dim} v}{(n+1) \operatorname{dim} \lambda}
$$

(/)
$S(\infty)$

$$
\begin{aligned}
& x^{a} y^{x-a}(x+y)=\cdots \\
& f_{\lambda}=\sum_{\nu>\lambda} f_{v}
\end{aligned}
$$

Last hime $\operatorname{dim} \lambda, \ldots$

$$
\varphi=0
$$

6. Symmetric functions

$$
\begin{array}{ll}
f_{n}(x) & \int f_{n} f_{m} d u=1_{m=u} \\
1, x, x^{2}, x^{3}, \ldots & \text { Gram - Semuidt }
\end{array}
$$

Symuetric
6.1. Alzebra A functions
homereeveons
Excmuples,

Det.
$\Lambda_{n+1} \rightarrow \Lambda_{n}$

$$
f\left(x_{1} \ldots x_{n,} x_{n t}\right) \longmapsto f\left(x_{1} \ldots x_{n}, 0\right)
$$

Inverse limit

$$
\begin{gathered}
\Lambda^{k}=\frac{\lim }{e_{n}} \Lambda_{n}^{k} \\
\left(f_{1}, f_{2}, f_{3}, \ldots\right)
\end{gathered}
$$ Syur)

$$
\begin{aligned}
& \operatorname{deg} f_{i}=k \quad \forall i, \quad f_{i} \text {-bowogeveors } \\
& \left.f_{n+1}\right|_{x_{n+1}=0}=f_{n} \forall n
\end{aligned}
$$

Examphes.

$$
\begin{gathered}
\left.\begin{array}{l}
p_{1}=e_{1}=h_{1}=x_{1}+x_{2}+x_{3}+\ldots \\
d e g=1 \\
\left(f_{n}=x_{1}+\cdots+x_{n}\right.
\end{array}\right)
\end{gathered}
$$

Neu-exmonple $\prod_{i=1}^{\infty} \frac{\left(1+x_{i}\right) \notin 1}{\text { weed bounded }} \begin{gathered}\text { defree. }\end{gathered}$
$6.2 e_{k}, h_{k} \&$ Geverting functiony

$$
e_{k}=\sum_{1 \leqslant i_{1}<\ldots<i_{k}} x_{i_{1}} \ldots, x_{i_{k}}
$$

$$
e_{0}=h_{0}=1
$$

$$
\operatorname{deg} e_{k}=k
$$

elementraxy sym. poby

$$
=\operatorname{deg} h_{k}
$$

$$
\begin{aligned}
& e_{k}\left(x_{1} \ldots x_{n}\right)=0 \text { if } k>w \\
& h_{k}=\sum_{1 \leqslant i_{1} \leqslant \leqslant i_{k}} x_{i_{1} \ldots \ldots}, x_{i_{k}}
\end{aligned}
$$

complete no mogere ony
(lwery possible wommid of aley k)

$$
\begin{aligned}
& \int e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\ldots \\
& h_{2}=e_{2}+x_{1}{ }^{2}+x_{2}^{2}+\cdots- \\
& =E(t) \\
& 1+\left(x_{1}+x_{2}\right) t+x_{1} x_{2} t^{2}=\left(1+x_{1} t\right)\left(1+x_{2} t\right) \\
& u=2 \text { var's } \\
& e_{k}\binom{\sim n-1}{1, \ldots, 1}=\binom{n}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} h_{k} t^{k}=\prod_{i=1}^{\infty}\left(1+t x_{i}+\left(t x_{i}^{*}\right)^{2}+\left(1+x_{i}\right)^{3}+=y\right. \\
& =\prod_{i=1}^{\infty} \frac{1}{1-t x_{i}}=\mu(t) \\
& \left.h_{k}\left(\begin{array}{r}
-n-1
\end{array}\right)=\binom{n+k-1}{n} \quad \text { (exerize }\right) \\
& E(t) M(-t)=1 \text {. } \\
& \sum e_{k} t^{k} \quad \sum h_{w}(t)^{n} \\
& 1+e_{1} b+e_{2} t^{2}+\cdots \\
& e_{0} h_{0}=1 \\
& \left(e_{0}=h_{0}=1\right) \\
& e_{1}-h_{1}=0 \\
& e_{2}-e_{1} h_{1}+h_{2}=0
\end{aligned}
$$

etc.

$$
\begin{aligned}
\Rightarrow & e_{k} \in \mathbb{R}\left[h_{1}, \ldots, h_{k}\right] \\
& h_{k} \in \mathbb{R}\left[e_{1}, \ldots, e_{k}\right]
\end{aligned}
$$

6-3 $P_{k,} m_{\lambda}$, more relations

$$
\underline{\underline{P_{k}} \&} \& \begin{aligned}
& e_{n}=x_{1}^{k}+x_{2}^{k}+x_{3}^{k} t \ldots \\
& \text { power suans }
\end{aligned}
$$

$$
P(t)=\sum_{k=1}^{\infty} \frac{p_{k}}{k} t^{k}=\log \left(\prod_{i=1}^{\infty} \frac{t}{1-x_{i} t}\right)^{k}
$$

$\left|x_{i} t\right|<1$
jower suans

$$
\mid x_{i} t
$$

$$
h(t)=e^{p(t)}=\frac{1}{E(-t)}
$$

relation for coefts $\quad h \leftrightarrow p$

$$
\begin{aligned}
& \text { relation for colfts } \\
& \begin{aligned}
& 1+h_{1} t+h_{2} t^{2}+\ldots= \exp \left(p_{1} t+p_{2} t^{2} / 2+\rho_{3} t^{3} / 3 t \ldots\right) \\
&= 1+p_{1} t+p_{2} t^{2} / 2 t \cdots \\
&+\frac{1}{2}\left(p_{1} t+p_{2} t^{2} / 2+\ldots\right)^{2} \\
& w_{4} x_{1} x^{2} t^{-}-\ldots \\
& 1
\end{aligned} \\
& h_{2}=\frac{p_{2}}{2}+p_{1}^{2} / 2
\end{aligned}
$$

Def. μ_{λ}

$$
\begin{aligned}
& m_{\square}=x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{3}^{2}+\ldots \\
& m_{\square}=p_{1}=e_{1}=h_{1} \\
& m_{L_{k}}^{\square D}=\rho_{k} \quad m_{Z_{j}}=e_{k}
\end{aligned}
$$

Drop. $\left(\mu_{\lambda}\right)_{\lambda \in \theta}$ is liver bass in A

Orthogonality. $\quad\left(\begin{array}{ll}\text { in } & n_{n}\end{array}\right)$

$$
\begin{aligned}
& \langle f, g\rangle=\frac{1}{n!} \oint_{\left|z_{i}\right|=\ldots=\left|z_{n}\right|=1} f(z) \bar{g}(z) \frac{d z_{1-} d z_{n}}{\sum_{j}\left(2 \pi i z_{j}\right)} \\
& \bar{z}=\frac{1}{z} \text { if }|z|=1 \\
& \left\langle m_{\lambda}, m_{\mu}\right\rangle= \\
& \oint_{k \in \mathbb{R}} z^{\mu} \frac{d z}{\pi i z}=\left\{\begin{array}{l}
1, k=0 \\
0, \text { eve }
\end{array}\right. \\
& \quad k \in \mathbb{R} \\
& =\frac{1}{w!} \oint . . \oint \sum_{i_{1},-i_{n}} z_{i_{i_{1}}}^{\lambda_{1}}-z_{i_{n}}^{\lambda_{n}} z_{i_{1}}^{-\mu_{1}} \ldots z_{i_{h}}^{-\mu_{n}} \frac{d \vec{z}}{\left(z_{i} i_{i}\right) \vec{z}} \\
& =0 \text { if } \lambda \neq \mu \text {. } \\
& \text { if } \lambda=\mu \\
& =\frac{1}{n!} \cdot \frac{n!}{\text { (combinatorial factor) }} \text {. } \\
& \text { orthogonal } \\
& \text { basis } \\
& \text { is each } \Delta_{n} \text {. } \\
& \frac{2!}{2}=1 \\
& x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{2}^{2}
\end{aligned}
$$

6.4. Fundamental theorem

$$
\begin{aligned}
& \Lambda_{n}=\mathbb{R}\left[e_{1}, \ldots, e_{n}\right] \\
& \Lambda=\mathbb{R}\left[e_{1}, e_{2}, \ldots\right]
\end{aligned} \quad\left(\begin{array}{l}
\text { every sprom f } \\
\text { is a } \\
\text { polywiol } \\
\text { in } e_{i} ' s
\end{array}\right)
$$

finte wear courb.'s of momamials in ej's

Idea: $\lambda \leadsto \lambda^{\prime}=$ traspose

$$
\lambda=\lambda^{\prime}=
$$

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{k}}
$$

triayular change of rar's.

$$
\begin{gathered}
e_{\lambda^{\prime}}=\mu_{\lambda}+\sum_{\mu<\lambda} c_{\lambda_{\mu}} m_{\mu} \quad(*) \\
\downarrow_{\text {partial order }} \\
\mu_{1}+\ldots+\mu_{k} \leqslant \lambda_{1}+\cdots+\lambda_{k} \forall_{k} \\
4 \mu_{\mu} \neq \lambda
\end{gathered}
$$

λ is obtained from μ by moving some

Proof of (*).
$e_{\lambda^{\prime}}=$ Monomial expansion

Southing else?

$$
\begin{aligned}
& x_{1} x_{2} x_{3} \quad k \quad x_{1} x_{4} \\
& \mu<x_{1}^{2} x_{2} x_{3} x_{4} \\
& \mu<\lambda \quad \text { (reove bod dowh) }
\end{aligned}
$$

So: e_{λ}^{\prime} also a liveor basis
$e_{\lambda}^{\prime} \longleftrightarrow m_{\lambda}$ velated by unitoingular change of vanazables.

vely $=$ livear comb. of e_{μ}^{\prime}, so
a pabyronial in (e_{j} 's)
\Rightarrow Souclam theorin is dove.

$$
\eta_{1} h_{\lambda}=\sum_{\mu=\lambda+\infty} x_{\lambda \mu} m_{\mu}
$$

$$
x_{1} x_{2}\left(x_{1}+x_{2}+x_{3}+\ldots\right.
$$

So, $\left\{m l_{\lambda}\right\}_{\lambda \in Y}$ is wot the "right" basis for the young graph
6.5 Autisyan. functions \& Schuss pod Σ Next lecture
6.6. Dieri rule

$$
p_{1} s_{\lambda}=\sum_{\nu=\lambda+a} s_{\nu}
$$

Proof In Λ_{n}

$$
\begin{array}{r}
a_{\lambda+\delta} \rho_{1}=\sum_{k=1}^{n} a_{\lambda+\delta}+\underbrace{e_{k}}_{\text {dasis vector }} \\
\lambda+\delta+e_{k}=\left(\lambda_{1}+n-1, \lambda_{2}+n-2,\right. \\
\cdots, \lambda_{k}+n-k+1, \\
\\
\left.\cdots, \lambda_{n-1}+1, \lambda_{n}\right)
\end{array}
$$

$a_{\lambda+s+e_{k}}$ vamiskes if...

Recall symuetoic functions

$$
\int \rho_{k}=x_{1}^{k}+x_{2}^{k}+\ldots
$$

(k) $e_{k}=$ elem. poly $x_{1} x_{2} \ldots x_{k}+\ldots$

$$
m_{\lambda} \Longrightarrow \sum_{\text {all distinct }} x_{i_{1}}^{\lambda_{1}} \ldots x_{i_{n}}^{\lambda_{n}}
$$

(Vienernoris) all distinct
6.5 Antisymun. polynomials \& Schuss poly.

$$
\begin{gathered}
A_{n} \leq \mathbb{R}\left[x_{1} \ldots x_{n}\right]-\text { def. \& basis }\left\{a_{\alpha}\right\} \\
f\left(x_{b_{1}, \ldots,}, x_{b_{n}}\right)=(-1)^{\operatorname{sgn} b} f\left(x_{1} \ldots x_{n}\right) \\
\forall b \in S(4) \\
a_{\alpha}\left(x_{1} \ldots x_{n}\right)=\sum_{b \in S(n)}(-1)^{b} x_{3}^{\alpha_{2}} \ldots x_{b_{n}}^{\alpha_{n}} \\
\alpha_{i}=\alpha_{j} \Rightarrow a_{\alpha}=0 . \\
\Rightarrow \alpha_{1}>\alpha_{2}>\ldots>\alpha_{n} \geq 0
\end{gathered}
$$

$\left\{a_{\alpha}\right\}$ is a basis in A_{n}

$$
a_{\alpha}=\operatorname{bet}\left[x_{i}^{\alpha j}\right]_{i, j=1}^{u}
$$

$$
\begin{aligned}
& \rho=(n-1, n-2, \ldots, 1,0) \\
& a_{\rho}=\operatorname{det}\left[x_{i}^{j-1}\right]=V(\vec{x})=\prod_{1 \leq i \leq j \leq n}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

Ex. $f \in A_{n} \Rightarrow f / V \in A_{n}$
where $V(x)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$
$f \longmapsto f / v$ is liver isomorphism

Def. $S_{\lambda}\left(x_{1}-x_{n}\right)$ \& basis $=n \cap_{n}$

$$
\begin{aligned}
& \text { Scleur pay's. } \\
& \frac{a_{\alpha}}{a_{\rho}}=s_{\lambda} \text {, } \\
& \begin{array}{l}
\text { form a } \\
\text { basis }
\end{array} \\
& A_{n} \simeq n_{n} \\
& a_{\alpha} \leftrightarrow a_{\alpha} a_{\rho} \\
& S_{d}\left(x_{1}-x_{u}\right)=\operatorname{det}\left[x_{i}^{\lambda_{j}+u-j}\right]_{1}^{n} / V(\vec{x})
\end{aligned}
$$

Ex. $S_{\lambda}-$ nomog. \&

$$
\begin{aligned}
& \quad \operatorname{deg} s_{\lambda} \\
& =(\lambda) \\
& =\lambda_{1}+\ldots+\lambda_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \rho \longleftrightarrow \lambda=\varnothing \\
& S_{\phi}=\frac{a_{\rho}}{a_{\rho}}=1 \\
& S_{(k, 0)}(x, y)=\frac{\operatorname{det}\left[\begin{array}{cc}
x^{k+1} & y^{k+1} \\
x-y & 1
\end{array}\right]}{1} \\
& =\frac{x^{k+1}-y^{k+1}}{x-y}=x^{k}+x^{k-1}+ \\
& \ldots+x y^{k-1} \\
& +y< \\
& S_{\square}=x_{1}+\ldots+x_{u} \\
& S_{(1,0,0,0,0, \ldots)}\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& =\operatorname{bet}\left[\begin{array}{ccc}
x_{1}^{n} & x_{2}^{n} \ldots & x_{n}^{n} \\
x_{1}^{n-2} & x_{2}^{n-2} & x_{n}^{n-2} \\
1 & \vdots & 1
\end{array}\right] V(\vec{x})
\end{aligned}
$$

Prep, $S_{\lambda}\left(x_{1}, \ldots, x_{n}, 0\right)$

$$
=\left\{\begin{array}{l}
S_{\lambda}\left(x_{1}, \ldots x_{n}\right), i f \quad n \geqslant l(\lambda) \\
0(x), n<l(\lambda)
\end{array}\right.
$$

Proof (x) 0 part: if $n<l(\lambda)$,

$$
\begin{aligned}
& \operatorname{det}\left[x_{i}^{\lambda_{j}+n+1-j}\right]_{1}^{n+1} \\
& u+1 \leqslant l(\lambda) \Rightarrow \lambda_{n+1}>0
\end{aligned}
$$

set $x_{n+1}=0 \Rightarrow$ eden al o's in deft.
Let $\quad x \geqslant l(\lambda)$

$$
\Rightarrow \quad \lambda_{n t 1}=0
$$

$$
X_{i}^{\lambda j^{+u+1-j}}
$$

$\operatorname{det}\left[x_{i}^{\left.\lambda_{j}+n+1-j\right]_{1}^{n+1}} \int_{x_{p e t}=0}=\operatorname{det}\left[\begin{array}{ll}{[1} & 0 \\ 0 \\ 0 \\ 1 \ldots-1 & 1\end{array}\right] u+1\right.$

$$
\begin{aligned}
&=\operatorname{det}\left[x_{i} \lambda_{j}+n-j\right]_{1}^{n} \cdot\left(x_{1} x_{2} \ldots x_{n}\right) \\
&\left.V_{n+1}(\vec{x})\right|_{x_{n+1}=0}=V_{n}(\vec{x}) \cdot\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

$\Rightarrow S_{\lambda}$ are $\in L$
(compatible with projections

$$
\left.\begin{array}{rl}
n_{n+1} & \rightarrow \Lambda_{n} \\
x_{n+1}=0
\end{array}\right)
$$

$\left\{S_{\lambda}\right\}_{\lambda \in \mathscr{X}}-$ basis of

Note $S(n)$ characters
(w/o prof)

$p_{\mu_{1}} p_{p_{2}} \ldots$
6.6. Dieri rule

$$
\begin{aligned}
p_{1} & =s_{0}=e_{1}=h_{1} \\
& =x_{1}+x_{2}+\cdots
\end{aligned}
$$

Thu, $p_{1} S_{\lambda}=\sum_{\nu=\lambda+a} S_{\nu}$
(Pascal: $(x+y) \underbrace{f_{(a, u-a)}}_{x^{a} y^{u-a}}=\cdots$)
Ploof In $\Lambda_{n}(u$-farge $)$

$$
a_{\lambda+\delta} \rho_{1}=\left(x_{1}+\cdots+x_{n}\right) \sum_{b}(-1)^{\delta} x_{b_{1} \cdots}^{\lambda_{1}+n-1} x_{b_{n}}^{\lambda_{n}}
$$

exprad., get $\sum_{i=1}^{n}$ of:

$$
\begin{gathered}
\sum_{b}(-1)^{6} \times x_{i}^{\lambda_{1}+n-1} \ldots x_{d_{i-1}}^{\lambda_{i-n}+(i-1)} \circ x_{i_{i}}^{\left.\lambda_{i}^{f}+n-i+1\right)} \ldots x_{b_{n}}^{\lambda_{n}} \\
\\
\text { if }
\end{gathered} \quad x_{i-1}>\lambda_{i} .
$$

\Rightarrow ally if $\lambda_{i}-1>\lambda_{i}$, we ean odd a box to row j

6,7 Ring theorem agair
\& characters of $S(\infty)$
If a b,amming graph \leftrightarrow pobyusinial algobras
Then extreme narnonie funct. \longleftrightarrow muilt. Sunset. on the ulse brea

Juppies

$$
\left\{\begin{array}{l}
\varphi \text {-harm ou } \varphi \\
\varphi(\lambda)=\sum_{\nu=\lambda+0} \varphi(\nu) \\
\varphi(\phi)=2 \\
\varphi(\lambda) \geqslant 0 \\
\& \text { extr.eme }
\end{array}\right\}=\left\{\begin{array}{c}
\text { mueltiolicetiva } \\
\text { furct. } F \\
\Lambda \longrightarrow \mathbb{R} \\
F\left(\left(p_{1}-1\right) \Lambda\right)=0 \\
F\left(S_{\lambda}\right) \geqslant 0 \\
\forall \lambda
\end{array}\right\}
$$

$$
\varphi(\lambda)=F\left(s_{\lambda}\right)
$$

We know: LMS = extreme characters of $S(\infty)$

$$
-\chi(e)=1
$$

- ψ nomeg. def
- χ cless funch.

$$
\mathcal{X}(\mu) \longleftrightarrow F(?)
$$

Computation. F - ruillt. on Δ
abstractly
x - enaracter of $s(\infty)$.

$$
\begin{aligned}
& \varphi(\lambda)=F\left(s_{\lambda}\right)
\end{aligned}
$$

$$
F\left(p_{\mu}\right)=\sum_{\lambda} \chi^{\lambda}(\mu) F\left(S_{\lambda}\right)
$$

$$
\begin{aligned}
\left.\Rightarrow \quad \chi\right|_{S(u)}(\mu)= & F\left(p_{\mu}\right) \\
& \mid \mu(=n \\
& =F\left(p_{\mu}\right) F\left(p_{\mu_{2}}\right) \ldots F\left(p_{\mu_{n}}\right)
\end{aligned}
$$

$$
f\left(p_{1}\right)=1 \quad \text { (uormalization) }
$$

Couclusion. $j^{u-c o n y}$ clar of $S(\infty)$

$$
\mu=\left(\mu_{z} \geqslant \mu_{k} \geqslant \ldots \geqslant \mu_{k} \geqslant 2\right)
$$

then $\not x(\mu)=\chi\left(\mu_{1}\right) \chi\left(\mu_{2}\right) \ldots \not X\left(\mu_{k}\right)$

$$
=F\left(\rho_{\mu_{1}}\right) \ldots F\left(\rho_{\mu_{k}}\right)
$$

Nice!

A priori: characters of $S(\infty)$ should be multiplicative:
$\left(v^{\left.\prime)^{\prime}\right)}\right.$

$$
\frac{1}{n!} \sum_{h} \tilde{\chi}\left(g_{1} h g_{2} h^{-1}\right)=\tilde{\chi}^{\sim}\left(g_{2}\right) \tilde{\chi}\left(g_{2}\right)
$$

$\Leftrightarrow \tilde{\chi}$-nomentized irr. cher. of $S(n)$

If x-irr ct of $S(\infty)$,

$$
\begin{aligned}
& \chi=\lim _{n \rightarrow \infty} \tilde{\chi}^{\lambda(n)} \text { of irs. nom.ch. } \\
& \text { of } S(u) \\
& \lim _{n \rightarrow \infty} \frac{1}{h_{1}} \sum_{h \in S(n) \subset S(\infty)} \nsim\left(g_{1} h g_{2} h^{-1}\right)=\chi(g) \not x\left(g_{2}\right) \\
& \Downarrow
\end{aligned}
$$

Let $g_{1} \sim$ cong clers μ

$$
g_{2} \sim \nu
$$

wts $x\left(g_{1}\right) x\left(g_{2}\right)=x(\mu \cup \nu)$
viritan os cucles

$$
\begin{aligned}
& g_{1} \sim \mu \\
& g_{2} \sim v
\end{aligned} \quad \Rightarrow \quad \frac{g_{1} h q_{2} h^{-1}}{\uparrow}
$$

$h \sim \underset{i n}{\text { randous }}(u)$ n-large

\Rightarrow cyoler strecture of $g_{1} k g_{2} h^{-1}$ is
w.h.p. $\mu \cup v$

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{n!} \sum_{h} \not x\left(g, h g 2 h^{-1}\right) \\
& =x(\mu \cup v)
\end{aligned}
$$

7. Relative dimension in D.

Recall what we want:

7,1. $\operatorname{dim}(\mu, \lambda) \quad \& \quad p_{1} n^{-m} s_{\mu}$ ρ
Aitren's formak

Recall

1) Sym. functions Λ

Nate: s_{λ} is $s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)$
2)
3) Characters of $S(\infty) \quad\binom{$ extrames }{ vormailizes }

$$
\{x\} \leftrightarrow\left\{\begin{array}{cc}
\text { halsebra } \\
\text { ousurarbisus } & \Delta \rightarrow \mathbb{R} \\
F\left(\left(p_{1}-1\right) \wedge\right) & =0 \\
F\left(s_{\lambda}\right) \geqslant 0 & \forall \lambda
\end{array}\right\}
$$

Then xlcycle strutture

$$
\begin{aligned}
& \left.\rho_{1} \geqslant \rho_{2} \geqslant \ldots \geqslant \rho_{l} \geqslant 2\right) \\
& =F\left(\rho_{\rho_{1}}\right) F\left(\rho_{\rho_{2}}\right) \ldots F\left(\rho_{\rho_{l}}\right) .
\end{aligned}
$$

Followed fram genneral Ring Thoorlan \& indle. Jrom the tunctional egration for characters

$$
F\left(P_{k}\right)=\left\{\begin{array}{cl}
2, & k=1 \\
\cdots, & k \neq 2
\end{array}\right.
$$

Our goal: to closoify $\{x\}$. Via ergadic metuod, need to bok at

$$
\begin{aligned}
& \lambda^{(u)} \in V V_{n}, n \rightarrow \infty \\
& \text { s.t. } \forall v-\text { fixed, } \\
& \frac{\operatorname{dim}\left(v, \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(n)}} \quad \text { has a limit }
\end{aligned}
$$

Thame (1964), Edrei (1953)

- cleossification of jired. x of $3(\infty)$
Vershiv - verov (198))
- asgmptotic (eogodic) abproach

Going along sec. 6 of [BO] book.
7. Delative dimension \& proofs
7.1. Let formula for $\operatorname{dim}(\mu, \lambda)$

$$
\begin{aligned}
& \frac{p_{1} s_{\lambda}}{\left.x_{2}+x_{3} t\right)} \sum_{\nu=\lambda+\square} S_{\nu} \\
& p_{1}=x_{1}+x_{2}+x_{3}+\square_{\lambda}^{\prime} \vee_{\theta}^{\prime} \\
& p_{1}^{k} S_{\lambda}=\sum_{v,|v|=n+k} \operatorname{dim}(\lambda, v) S_{\nu} \\
& |\lambda|=u \\
& \lambda=\square
\end{aligned}
$$

Note $\operatorname{dim}(\mu, \lambda)=f^{\lambda_{1} \mu}$ in comr.

$$
\begin{aligned}
& \text { (recent progress, } \\
& \text { - Naruse hook length formula, } \\
& \text { - special cases \& } \\
& \text { as ymostotics) }
\end{aligned}
$$

HOOK FORMULAS FOR SKEW SHAPES III. MULTIVARIATE AND PRODUCT FORMULAS

ALEJANDRO H. MORALES^, IGOR DAK*, AND GRETA PANOVA ${ }^{\dagger}$

(i)

(ii)

Figure 1. Skew shapes with product formulas for the number of SYT.

$$
\sum_{\lambda} \frac{(\operatorname{div} \lambda \lambda)^{2}}{n!}=1
$$

Prop. $N \geqslant l(\lambda), \quad|\lambda|=n, \mid \mu)=m$

$$
\begin{aligned}
& \left.\frac{\operatorname{dim}(\mu, \lambda)}{(n-m)!}=\operatorname{det}\left[\frac{1}{\left(\lambda_{i}-\mu \rho+j-1\right.}\right)_{0}^{j}\right]_{1}^{N} \\
& \Gamma(n+1) 2 u^{n}, \quad r(-k)=\infty \\
& p_{1}^{n-m} s_{\mu}=\sum_{\lambda} \operatorname{dim}(\mu, \lambda) s_{\lambda}
\end{aligned}
$$

Preet 1) Vamishing $\mu \notin \lambda$

2) $\lambda=\mu$

$$
\begin{aligned}
& \lambda_{i}-\mu_{j}+j-\hat{j}=0 \\
& \operatorname{det}\binom{1,-\left(x_{1}^{*}\right.}{0}=1
\end{aligned}
$$

3)

$$
\mu(\lambda, \quad \mu \neq \lambda, \quad l(\mu) \leq l(\lambda),
$$

coeff in $a_{\mu+\sigma}\left(x_{1}+\cdots+x_{N}\right)^{n-n}$
by $x^{\lambda+\delta}$

$$
\begin{aligned}
& \delta=(N-1, N-2, \ldots, 2,0) \\
& a_{\alpha}=\operatorname{det}\left[x_{i}^{\alpha j}\right]_{1}^{N}
\end{aligned}
$$

$$
\left.a_{\mu+\delta}\left(x_{1}+\cdots+x_{\nu}\right)^{n-m}=\sum_{\lambda} \operatorname{dim} \mid \mu, \lambda{ }_{0}\right]_{0}
$$

\Rightarrow Follows from binvomial tueoren.
Let $l_{i}=\lambda_{i}+N-i$

$$
\mu_{i}=\mu_{i}+N-i
$$

$$
\sum_{b \in S_{N}}(-1)^{b} \cdot \pi x_{i}^{m_{i}} b_{i}\left(x_{1}+\cdots+x_{N}\right)^{u-\mu}
$$

coeff. by $x_{1}^{l_{1}} \cdots x_{N}^{l_{N}}$

$$
\begin{aligned}
& \text { Fixled } b \Rightarrow \text { coelt. } \\
&\binom{N}{k_{1}-k l} \\
&=\frac{N!}{x_{1}!\ldots l!}
\end{aligned}\left(\begin{array}{cc}
n-m \\
l_{1}-m_{b_{1}} \ldots & l_{N}-m_{b_{N}}
\end{array}\right)
$$

$$
\begin{array}{r}
\sum_{b}(n-m)!(-1)^{b} \prod_{i} \frac{1}{\left(l_{i}-m_{g_{i}}\right)!} \\
\lambda_{i}+N-i-\left(\mu_{z_{i}}+N-b_{i}\right)
\end{array}
$$

\Rightarrow deferminant \square.
7.2. Shifted Selur poby nowials

$$
\begin{gathered}
\operatorname{dim}_{2} \mid v, \lambda^{(n)} / \operatorname{dim} \lambda^{(n)}=\frac{f_{v}^{*}\left(\lambda^{(n)}\right)}{n^{\downarrow n}} \\
|\lambda|=n, \mid \nu)=m \\
\lambda=(a, n-a) \quad \nu=(b, m-b) \\
f_{v}^{*}(x, y)=x^{\downarrow b} y^{\downarrow(m-b)} \\
x^{\downarrow k}= \\
x(x-1)(x-2) \ldots(x-k+1)
\end{gathered}
$$

Heceill Pascal : relative dim.
belongs to the 3 ave algebra (not tue case for θ).

$$
\begin{aligned}
& S_{\lambda} \leftrightarrow \frac{\operatorname{det}\left[x_{i}^{x_{j}+N-j}\right]}{\operatorname{det}\left[x_{i}^{N-j}\right]}=v(\vec{x}) \\
& \text { Sh. Sch- Poly }
\end{aligned}
$$

$$
S_{\mu}^{*}\left(x_{1} \ldots x_{N}\right)=\left\{\begin{array}{l}
\left.\left.\frac{\operatorname{det}\left[\left(x_{i}+N-i\right.\right.}{}\right)^{\downarrow \mu_{j}+N-j}\right]_{1}^{N} \\
\operatorname{det}\left[\left(x_{i}+N-i\right)^{\downarrow N-j}\right]_{1}^{v} \\
0, N<l(\mu)
\end{array}\right.
$$

$0 S_{\mu}^{*}\left(x_{1} \ldots x_{N}\right)$ wot symun. in $x_{1} \ldots x_{N}$ is syyme in $x_{1}-1, \cdots, x_{N}-N$

- Denomineter

$$
\begin{aligned}
& \operatorname{det}\left[x_{i}{ }^{0-1}\right]=\text { Van dermonde } \\
& \operatorname{det}\left[\rho_{j-1}\left(x_{i}\right)\right] \\
& p_{j} \leftarrow p d \text { of def. } j \\
& p_{j}(x)=x^{3}+\cdots \\
& p_{1}\left(x_{1}\right) \cdots p_{1}\left(x_{0}\right) \leftarrow x+\notin \\
& p_{2}\left(x_{1}\right) \cdots-p_{2}\left(x_{0}\right)<x^{2}+y(x+y \\
& \operatorname{det}\left[\frac{\left(X_{i+N-i}\right)}{\text { var's }} \frac{N-j}{v-j^{i}}, v=\underset{i<j}{\pi}\left(x_{i}-i-x_{j}+j\right)\right.
\end{aligned}
$$

- Top defoe term in $x_{1}, \ldots x_{v}$:

$$
S_{\mu}^{*}\left(x_{1}-x_{\nu}\right)=\left(S_{\mu}\left(x_{1} \ldots x_{\nu}\right)\right)+\underbrace{\text { L.o.t. }}_{\substack{\text { lower } \\ \text { degree }}}
$$

- Stability: $x_{N+1}=0$ (exceruse)

$$
S_{\mu}^{*}\left(x_{1}-x_{N}, 0\right)=s_{\mu}^{*}\left(x_{1}, \ldots, x_{N}\right)
$$

(just as $s_{\lambda}{ }^{\prime} s$)

- $S_{\mu}^{*}(\lambda)$ is wd el def $\forall \lambda$

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{0}, 0.0 .-\right)
$$

Theorem. $\forall \mu, \lambda$

$$
|d|=n, \quad(\mu)=m
$$

$$
\frac{\operatorname{dim}(\mu, \lambda)}{\operatorname{dim}^{2} \lambda}=\frac{s_{\mu}^{*}(\lambda)}{n^{\downarrow \mu}}
$$

(Recall Dascal)

$$
x^{k b} y^{d(m-b)}=x^{b} y^{-m-b}+\cdots
$$

Proof.

$$
\begin{aligned}
& \frac{\operatorname{dim}\left(\mu_{1} \lambda\right)}{(n-\mu)!}=\operatorname{det}\left(\frac{1}{\left.\left(\lambda_{i}-\mu_{j}+j-i\right)\right)}\right) \\
& \frac{\operatorname{dim} \lambda}{n!}=(H \omega)=\frac{\bigotimes_{i<j}\left(\lambda_{i}-\lambda_{j}+j-i\right)}{\prod_{i}\left(\lambda_{i}+\omega+i\right)!}
\end{aligned}
$$

(1) (*) - snifzed Vander acouile
(2) $n!/(n-m) b=n^{+m}$

$$
\left.\begin{array}{rl}
\operatorname{det} & \left(\frac{1}{\left.\left(\lambda_{i}-\mu_{j}+j-i\right)\right)}\right) \eta_{i}\left(\lambda_{i+N+i}\right)! \\
= & \operatorname{det}\left(\frac{\left(\lambda_{i}+N-j\right)!}{\left(\lambda_{j}-\mu_{j}+j i^{i}\right)!}\right) \\
\left(\frac{\|}{\left(\lambda_{i}+\mu^{-i}\right)} \downarrow \mu_{j}+N-j\right.
\end{array}\right)
$$

7.3. Shifted symu- functions. (Not the sene algebra)

$$
S_{e}^{*}\left(x_{1}-x(N) \in \Lambda_{N}^{*}\right.
$$

$\Lambda_{N}^{*}: \quad \begin{aligned} & \text { polynomials } \\ & \text { syne. in }\end{aligned} x_{1}-1, \cdots, x_{N} \sim N$
Ex. $\begin{array}{r}p_{k, c}^{*}\left(x_{1}, x_{N}\right)=\sum_{i=1}^{N}\left(\left(x_{i}-i+c\right)^{k}-(-i+c)^{k}\right) \\ \left.\wedge_{i}\right)\end{array}$

$$
\left[\rho_{k, c}^{*}\right]=p_{k}, t^{t o p}
$$

degree term

$$
\left(s o, \Lambda_{N}^{*} \rightarrow \Lambda_{N}, \quad f \rightarrow[f]\right)
$$

filtered dy degree
graded dy degree

$$
\Lambda_{N}^{*,,^{k}}=\{\text { all sh.symu. of } d y \leq k\}
$$

$$
\Lambda_{N+1}^{*} \longrightarrow \Lambda_{N}^{*}, \quad x_{N+l}=0
$$

\& $A^{* k}=\lim _{N} \Lambda_{N}^{* k}$

$$
\Lambda^{*}=\bigcup_{k>0} \Lambda^{*, k} \quad \Lambda=\oplus_{k} \Lambda^{k}
$$

\& Shifted Selew functious $S_{\mu}^{*} \in \Lambda^{*}$ - basis in Λ^{*}

$$
\circ\left[s_{\mu}^{*}\right]=s_{\mu}
$$

$$
P_{k, c}^{*} \underbrace{\left(x_{1}, x_{2,-}\right.}_{\rho})=\sum_{i=1}^{\infty}\left(\left(x_{i}-i+c\right)^{k}-(-i+c)^{k}\right) \in \Lambda^{*}
$$

fintely way wouzero

$$
S_{\mu^{*}\left(\lambda^{(n)}\right)}^{n^{\operatorname{lm}}}
$$

$p_{k, i}^{*}$ - algebraically indep in n^{*}

$$
\left[p_{k, c}^{*}\right]=p_{k}
$$

7.4. Modified Frobenius Coord.

$$
p_{k}, \frac{1}{2}\left(\lambda_{1}, \lambda_{3-}\right)=\sum_{i=1}^{\infty}\left(\left(\lambda_{i}-i+\frac{1}{2}\right)^{k}-\left(-i+\frac{1}{2}\right)^{k}\right)
$$

propesition.

$$
=\sum_{i=1}^{d}\left(a_{i}^{k}-\left(-b_{i}\right)^{k}\right)
$$

Lemen.

$$
\prod_{i=1}^{\infty} \frac{u+i-y / 2}{u+i-1 / 2-\lambda_{i}}=\prod_{i=1}^{d} \frac{u+b_{i}}{u-a_{j}}
$$

Prood

$$
\begin{aligned}
& \left(\frac{u+1-1 / 2}{u+i-3 / 2} \cdot \frac{u+i-3 / 2}{u+i-5 / 2} \cdots \frac{u+i-\lambda_{i}+1 / 2}{u+i-\lambda_{i}-1 / 2}\right. \\
& c(\square)=j-i
\end{aligned}
$$

$$
L H S=\prod_{\square \in \lambda} \frac{u-c(\square)+\frac{1}{2}}{u-c(\square)-\frac{1}{2}}
$$

Next, $P_{k}^{*} \&$ Frobeuius coord.

No class on 20/6 (then)

- have a goed break \& see you on 10/11
- HW5 just posed, others are being sicced

Recall.

n^{*}

$$
\underbrace{s_{\mu}^{*} \in \Lambda^{*}}_{\text {syman_in }}
$$

$$
p_{k}^{*}=\sum_{i=1}^{\infty}\left(\left(\lambda_{i}-i+\frac{1}{2}\right)^{k}-\left(-i+\frac{1}{2}\right)^{k}\right)
$$

7.4. Modifieal Frobeñus coordivetes

$$
\lambda=\left(4+\frac{1}{2}, 1+\frac{1}{2}, \frac{1}{2} \left\lvert\, 3+\frac{1}{2}\right., 2+\frac{1}{2}, 1+\frac{1}{2}\right)
$$

$f \in \Lambda^{*}, \quad f(\lambda)$ is wice in a_{i}, b_{i}

$$
\begin{aligned}
& \text { Proved } \prod_{j=1}^{\infty} \frac{w+i-1 / 2}{w+i-i / 2-\lambda_{i}}=\prod_{j>1}^{d} \frac{n+b_{j}}{n+a_{j}} \quad(k) \\
& P_{k}^{*}\left(x_{1}, x_{3} \ldots\right)=\sum_{i=1}^{\infty}\left[\left(x_{i}-j+\frac{1}{2}\right)^{k}-\left(-i+\frac{1}{2}\right)^{k}\right)
\end{aligned}
$$

Prop.

$$
P_{k}^{*}(\lambda)=\sum_{i=1}^{d}\left(a_{i}^{k}-\left(-b_{i}\right)^{k}\right)
$$

Proof. Expand log of (x)
into powers of $1 / n$ at $u=\infty$.

$$
\begin{align*}
& \log \left(\frac{u+i-\frac{1}{2}}{u+i-\frac{i}{2}-\lambda_{i}}\right)=\operatorname{leg}\left(\frac{1+u^{-1}(i-1 / 2)}{1+u^{-1}\left(i-\frac{1}{2}-\lambda_{i}\right)}\right) \\
& \begin{array}{l}
=\sum_{k=1}^{\infty} \frac{\left(\lambda_{i}+\frac{1}{2}-i\right)^{k}-\left(-i+\frac{1}{2}\right)^{k}}{k} \\
\sum_{i} \sum_{k=1}^{\infty} \ldots \Rightarrow \sum_{k}^{\infty} \frac{p_{k}^{*}(\lambda)}{k}
\end{array} \\
& \log (\operatorname{LKS}(*)) \\
& \prod_{i=1}^{\infty} \frac{w+i-1 / 2}{u+i-1 / 2-\lambda_{i}}=\prod_{j>1}^{d} \frac{n+b_{j}}{n+a_{j}} \tag{*}\\
& p_{k}^{*}=\sum a_{i}^{k}-\left(-b_{i}\right)^{k} e^{e_{x} p a n d ~ t w i s ~ \& ~}
\end{align*}
$$

7.5. Thana Simplex ω

$$
\Omega \subset[0,1]^{\infty} \times[0,1]^{\infty}
$$

closed, compact

$$
\left.\begin{array}{l}
\Omega=\left\{\alpha_{i}, \beta_{i}, \begin{array}{l}
\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geq 0 \\
\beta_{1} \geqslant \beta_{2} \geqslant \cdots z 0
\end{array}\right. \\
\sum_{i=1}^{\infty} \alpha_{i}+\beta_{i} \leq 1
\end{array}\right\}
$$

$$
C(\Omega)=\text { cont. funct. }
$$

Pas cal

$$
\begin{gathered}
\Omega=[0,1] \\
x^{a} y^{b} \in \mathbb{R}[x, y] \longmapsto p^{a}(1-p)^{b}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Morbhism } \Lambda \rightarrow \Lambda^{0} \subset C(\Omega) \\
& \text { Def. } \Lambda^{0}=\Lambda /_{(p,-1) \Lambda} \\
& f \longmapsto f^{\circ} \\
& \omega=(\alpha ; \beta) \\
& p_{1}^{0}(\omega)=1 \\
& (k \geqslant 2) \quad \rho_{k}^{0}(\omega)=\sum_{i=1}^{\infty}\left(\alpha_{i}^{k}-\left(-\beta_{i}\right)^{k}\right)
\end{aligned}
$$

Pascal
Analogy: $\quad\left(\mathbb{R}[x, y]^{0} \subset \subset[0,1], \quad\left(x^{a} y^{b}\right)^{0}=x^{a}(1-x)^{b}\right.$

Note. $\sum \alpha_{i}+\beta_{i}$ is Not continuous., $p_{k}^{0}(\omega) \quad v=2$ are cont.

$$
\begin{aligned}
& \omega(u)=\left(\frac{1}{h}, \ldots \frac{1}{n}, 0,-\infty\right) \\
& \sum \alpha_{i}(u)+\beta_{i}(u)=2 \\
& \omega(n) \longrightarrow \sigma \text {. } \\
& \sum \alpha_{i}+\beta_{q} \leq 1 \\
& \Rightarrow \quad \alpha_{i}, \beta_{i} \leq \frac{1}{i} \\
& \Rightarrow \quad \sum \alpha_{i}^{2} \leq \sum 1 / i^{2}
\end{aligned}
$$

$$
\Delta^{0} \subset C(\Omega)
$$

Prop, $-1^{0}=1$

$$
-\left(\left(p_{1}-1\right) \Lambda\right)^{0}=0
$$

- $n^{0} \subset C(\Omega)$ is dluse

Proof.

$$
\begin{aligned}
& \binom{\Lambda^{0} \text { algehras, } \quad 1 \in \Lambda^{0}}{+} \\
& \Rightarrow \text { (separates ptone weierstran) , deuse }
\end{aligned}
$$

separates points, as

$$
\rho_{\mu}^{0}=\sum \alpha_{i}^{k}+\left(-\beta_{i}\right)^{k}
$$

$\left(\alpha_{1}-\beta\right)$: poles

$$
\begin{aligned}
& \sum_{x=1}^{\infty} \frac{p_{k}^{0}(\alpha, \beta)}{u^{x}}=\sum_{i} \frac{\alpha_{i}^{?}}{u-\alpha_{i}}+\sum_{i} \frac{\beta_{i}}{u+\beta_{i}} \\
&+\frac{1}{u}\left(1-\sum\left(\alpha_{i}+F_{i}\right)\right)
\end{aligned}
$$

$$
k=1: \quad \frac{1}{u}=\frac{1-\sum\left(\alpha_{i}+\beta_{i}\right)}{u}+\frac{\sum \alpha++\beta_{i i}}{u}
$$

Awother way? $\quad\left(\beta_{i}=0\right)$

$$
\begin{aligned}
& \alpha_{1}=\operatorname{limem}_{k \rightarrow \infty} \sqrt[k]{\sum_{i=1}^{\infty} \alpha_{i}^{k}} \\
& k \sqrt{\alpha_{1}^{k}\left[\left(C+\sqrt{\left.\left.\sum_{j}^{j}\left(\frac{\alpha_{j}}{\alpha_{1}}\right)^{k}\right)\right]}\right.\right.}
\end{aligned}
$$

fovite

$$
\begin{array}{ll}
p_{k}^{0}(w)=\cdots & \text { Recall } \begin{array}{l}
H(t)=E(-t)^{-1} \\
=\sum_{k=1}^{\sum_{k}^{0}(w)}, e_{k}^{0}(w)=? \\
\sum_{k=0}^{\infty} p_{k}^{0}(w) t^{k}
\end{array}=\exp \left[\sum_{k} \frac{t^{k}}{k} \sum_{i} \alpha_{i}^{k}-\left(-\beta_{i}\right)^{k}\right] \\
=\exp \left(\sum_{i}\left(-\log \left(1-\alpha_{i} t\right)+\log \left(1+\beta_{i} t\right)\right)\right. \\
=\sum_{i} \frac{1+\beta_{i} t}{1-\alpha_{i} t}
\end{array}
$$

If $\gamma=\underline{t} \sum\left(\alpha_{i}+\beta i\right)>0$
then you add e ert
7.6 Proof of Troma's theorkm \& Vershite - Kerov's theorem for $S(\infty)$

Thowes: Extremes are param. by w $\in \Omega$ (1964)

- havm. f on $D, \varphi_{w}(\lambda)=s_{\lambda}^{0}(\omega)$
- cokerent systems

$$
M_{n}^{(\omega)}(\lambda)=\operatorname{dim} \lambda \cdot \rho_{\lambda}^{0}(\omega)
$$

- Charr of $S(\infty)$,

$$
\begin{gathered}
x_{w}(\rho)=p_{\rho_{1}}^{0}(\omega) \rho_{\rho_{2}}^{0}(\omega) \rho_{\rho_{3}}^{0}(\omega) \ldots \\
\rho_{k}^{0}(\omega)=\sum\left(\alpha_{i}^{k}-\left(-\beta_{i}\right)^{k}\right) \\
k \geq 2
\end{gathered}
$$

Vershik-kerov (1981)

Proof of both by algebraic approximation
Need $\lambda^{(n)}$ sit. $\frac{\operatorname{dim}\left(\mu_{\cdot} \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(n)}}$
has a limit, $\quad \forall \mu$. $\quad \begin{aligned} & \text { fixed }\end{aligned}$
(1)

$$
\begin{aligned}
& y_{n}=\{\lambda:|\lambda|=n\} \longleftrightarrow \Omega \\
& \lambda \longmapsto\left[\hat{L}_{n} w_{\lambda}\right] j \quad \alpha_{i}^{6}=a_{i}^{\sigma} / n \\
& \beta_{i}=b_{i} / n
\end{aligned}
$$

(2)

$$
\begin{aligned}
& f^{*} \in \Lambda^{*} \leadsto f=\left[f^{*}\right] \in \Lambda \\
& \vdots \\
& f^{0} \in C(\Omega)
\end{aligned}
$$

If $\operatorname{deg} f^{\not x}=m, \quad|\lambda|=n$

$$
\Rightarrow \quad \frac{f^{*}(\lambda)}{n^{m}}=f^{0}\left(\frac{1}{n} \omega_{\lambda}\right)+\underbrace{O\left(\frac{1}{n}\right)}_{\substack{\text { Miform } \\ \text { in } \lambda}}
$$

fudeed,

$$
\begin{aligned}
\frac{1}{n^{k}} p_{k}^{*}(\lambda) & =\frac{1}{n^{k}} \sum_{i=1}^{d}\left(a_{i}^{k}-\left(-b_{i}\right)^{k}\right) \\
& =p_{k}^{0}\left({ }_{n}^{1} \omega_{\lambda}\right)
\end{aligned}
$$

(exact identity) Coutimues to
all functions by lirearity in p_{μ}^{*} 's.

$$
f^{*} \in \Lambda^{*}, \quad f^{*}=\sum_{v}\left(\overline{p_{\nu}^{*} \ldots p_{v}^{*}}\right)
$$

(3)

$$
\begin{aligned}
& \frac{\operatorname{dim}(\mu, \lambda)}{\operatorname{dim} \lambda}=s_{\mu}^{0}\left(\frac{1}{n} \omega_{\lambda}\right)+O\left(\frac{1}{n}\right) \\
& (\lambda)=n \\
& \frac{S_{\mu}^{*}(\lambda)}{n^{\operatorname{lm}}}
\end{aligned}
$$

(4)

$$
\frac{\operatorname{dim}\left(\mu_{0} \lambda^{(n)}\right)}{\operatorname{dim} \lambda^{(n)} \quad(\text { informal })}
$$

has a limít as $n \rightarrow \infty$ itf $S_{\mu}^{0}\left(\frac{1}{n} w_{0}(n)\right)$ has a lim. iff $\frac{1}{h} w_{\lambda}^{0} \in \Omega$ has a lim. iff $\quad\left(\frac{a_{i}}{u}, \frac{b_{i}}{u}\right) \rightarrow\left(\alpha_{i}, \beta_{i}\right)$

$$
\frac{e^{\gamma t} \pi^{\frac{1+\beta_{i} t}{1-\alpha_{i} t}}=f(t)}{\alpha_{i}=\beta_{i}=0}
$$

$$
\begin{array}{r}
H(t)=e^{t}=\sum \frac{t^{k} / k!}{h_{k}=\frac{1}{k!}}
\end{array}
$$

(rwes: Jacobe - Jrude

$$
\text { (w5): } \begin{aligned}
& \text { Jacobr }-\operatorname{Trudr} \\
& S_{\lambda}=\operatorname{det}\left[h_{\lambda_{i}-i+j}\right]_{1}^{N} \\
& S_{\lambda}^{0}(\alpha=\beta=0, \gamma=1)=\operatorname{det}\left[\frac{1}{\left(\lambda_{i}-i+j\right)!}\right] \\
&=\frac{\left.d_{i v i}\right)}{n!} \\
&(\text { was a formila) }
\end{aligned}
$$

$\gamma=1$, colerent sybstem is

$$
M_{n}(\lambda)=\operatorname{dim} \lambda \circ s_{\lambda}^{0}=\frac{(\operatorname{dit} n \lambda)^{2}}{n!}
$$

\longrightarrow We classified extreme objects for $S(\infty)$

Whot next? (amy feed bacn $\begin{gathered}\text { appreciated? } \\ \text { app }\end{gathered}$ Several optionss
\rightarrow represcmitatious of $S(\infty)$
\rightarrow Mon-extreme
nueaslues
frer $s(\infty)$
$\rightarrow q$-deformations
\longrightarrow Young - Fibonecci
\rightarrow more prodability
(stil delidiug...)

Coffice hours

$$
\begin{array}{cc}
\mu & 2: 30-3: 30 \\
\Rightarrow W & 2: 00-3: 00
\end{array}
$$

Cheringed
2-3L: construation of irreps of $S(\infty)$
Nert: q-avalogues
Fibonaci / cout fractions
Recall Thome's theorem
$s(\infty)$ cherracters $\quad \chi \in \gamma$,

$$
\not x: S(\infty) \rightarrow \mathbb{C}
$$

$$
\begin{array}{ll}
\rightarrow \text { cantral } & x(a b)=x(b a) \\
\rightarrow \text { mornelized } & \chi(e)=1 \\
\rightarrow \text { pos-def. } & \sum_{i j} c_{i} \overline{g_{j}} x\left(g_{i} g_{j}^{-1}\right) \geqslant 0 \\
& \forall g_{i}, c_{i}
\end{array}
$$

Extreme points \& classification

$$
E_{x}(\gamma)=\left\{\begin{array}{ll}
\varphi s_{1} t . & \varphi=\alpha \varphi_{1}+(1-\alpha) \varphi_{2} \\
\rho_{\gamma} & \\
& 0<\alpha<1 \\
& \varphi=\varphi_{1}=\varphi_{2} .
\end{array}\right\}
$$

Then. $E\left(\gamma^{\prime}\right)=\Omega=\left\{\begin{array}{l}\alpha_{1} \geqslant \alpha_{2} \geqslant \ldots \geqslant 0 \\ \beta_{1} \geqslant \beta_{2} \geqslant \ldots \geqslant 0\end{array}\right.$

$$
\left.\sum_{i}\left(\alpha_{i}+\beta_{i}\right) \leq 1\right\}
$$

$$
\chi_{\alpha \beta}(b)=\prod_{i=1}^{k}\left(\sum_{\hat{j}} \alpha_{j}^{\rho_{i}}-\left(-\beta_{j}\right)^{\rho_{i}}\right)
$$

∂ cycles $\rho_{1} \geqslant \rho_{2} \cdots \geqslant \rho_{k} \geqslant 2$.

Goal: construct representations for these pred. characters.
8. Construction of S(os) representations (we need ∞-dim representations $:$) \langle see [Bo-book, ch. 8-10]〉
8.1 Unitary representations

Idea: Consider H - complex Hilbert

$$
H^{*}=H
$$

(Banach, $(0,0)$)
$B(H)=$ bounded ops

$$
\begin{aligned}
& B(H)=\left.A A^{*}=A^{*} A=1\right\} \\
& U(H)=\left\{A-b d d, \quad \operatorname{bef}-\text { of } A^{*}\right. \\
&(A u, v)=\left(u, A^{*} v\right)
\end{aligned}
$$

$A \in u(H) \Rightarrow(A u, A v)=(u, v)$.

H has uo nontrivial
irreducible T :
T-invariont subsjraces
(Note: if $F \subseteq M$ substace $T(G) F \subset F \Rightarrow F^{\perp}$ is also swariant)
$\xi \in h$ is eance cycle if span $\{T(g) \xi, \quad g \in G\}$ is dense in th

Feact if T-irred. \Rightarrow
any nowzero veotor S is cyulie
proof. If $\eta \neq 0$

$$
F=\overline{\text { span }\{T(g) \eta\}} \leftarrow \text { iwar. }
$$

$$
\left.\begin{array}{rl}
\xi \text {-eycki } & \Rightarrow \text { spherieal funict } \\
\text { ot } \xi
\end{array}\right\}
$$

Note $\varphi(g)$ may not be central, i.e.

$$
\begin{aligned}
\varphi(g h) & \neq \varphi(h g) \\
\text { Let } \gamma^{\prime}(G) & =\text { pos-def. coutral } \\
\Phi(G) & =\text { pos-def. }
\end{aligned}
$$

$$
\Phi_{1}(G)=\text { pos-def normalized }
$$

$(G \cup S)$
Theoren (Gelfoand - Naimark - Segal)
(1) T-rep of $G, \quad 0 \neq \xi \in H$

$$
\Rightarrow \quad \varphi(g)=(T(g) \xi, \xi) \quad \rho^{\circ} s-d e f
$$

(2) φ-pos. def. $\neq 0 \Rightarrow$
$\exists!$ rep. T with cyclic vector s.t. $\quad \varphi(g)=(T(q) \xi, \xi)$

Proof of (1)

$$
\varphi\left(g^{-1} h\right)=(T(h) \xi, T(g) \xi)
$$

So 4 pos.det becauge of Gram materix of

$$
\left\{\exists_{g}=T(q)\{ \}\right.
$$

$$
\left\{\left(v_{i}, v_{j}\right)\right\}_{i, j} .
$$

abways pos-def.

$$
\psi(g, x)=\varphi\left(g^{-1} h\right)
$$

(2) idea pos-det \Rightarrow Goram matrix \Rightarrow contruct $H\left[\begin{array}{l}\text { i.e. } \\ (i, i\end{array}\right]$ foam a fumity of vectors whore Gram matrix is goven (ekercise)

$$
\|\xi\|=\sqrt{(\xi, \xi)^{2}}=1 \quad \Leftrightarrow \quad \varphi(e)=(T(e) \xi, \xi)=1
$$

Theoran (see $[B 0]$ section 8 for proof) $\varphi \in \Phi_{1}(G)$ extreme (as a front in convex)
$\Leftrightarrow T$ corresp- to φ is irreducible
\qquad

Def. Commtont of T in $U(H)$

- all bad op. in be which conure with $T(g)$

Solar's Lamar.
T-irsed. \Leftrightarrow womuntonit are scalar operators
Proof. Projection to infer subspace commies with T.

If $A \in C_{0}$ In. (T), nous calcar

$$
\Rightarrow \quad A+A^{*}, \frac{i\left(A-A^{*}\right)}{} \in \operatorname{Comm}(T)
$$

\Rightarrow spectral projection ruermition asseciared to $A+A^{*}$
or $i\left(A-A^{*}\right)$ (at least one is nonzero)
is alto \in Comm.
8.2. Motivation: convection to the classical theory of reps \& characters as Traces

Let $T=G \rightarrow \operatorname{End}(V)$ be a usual fid. repro. of a finite group.
$H=\operatorname{End}(V)$ is M_{i} beet is

$$
(A, B)=\operatorname{Tr}\left(A B^{*}\right)
$$

Then define $\tilde{T}: G \rightarrow U(M)$,

$$
\tilde{T}(g) A=T(g) A .
$$

It is unitary:

$$
\begin{gathered}
(\tilde{T}(g) A, B)=\operatorname{Tr}\left(\tilde{T}(g) A B^{*}\right) \\
=\operatorname{Tr}\left(A B^{*} \tilde{T}\left(g^{-1}\right)^{*}\right) \\
=\operatorname{Tr}\left(A\left(\tilde{T}\left(g^{-1}\right) B\right)^{*}\right)
\end{gathered}
$$

$$
=\left(A, \tilde{T}\left(g^{-1}\right) B\right)
$$

Let $\delta=I_{d} \in \operatorname{Ind}(V)$

$$
\begin{aligned}
\varphi(q) & =(\tilde{T}(g) \xi, \xi) \\
& =T_{5}(T(g))=\chi_{T}(g),
\end{aligned}
$$

the character.
T-irrep $\Rightarrow \xi=I d$ is cyclic because $T(\mathbb{C}[G])=\operatorname{End}(V)$

Note: Unitary rep. give "fractional "

$$
\begin{aligned}
& \varphi_{3}(g)=\left(T(g) \xi_{1} \xi\right) . \\
& \xi \rightarrow \eta=\alpha \xi \\
& \varphi_{\eta}(g)=\quad \varphi_{\xi}(g) \cdot(\alpha)^{2} .
\end{aligned}
$$

$\varphi(g)$ - for f.d. repres.
is central (because character)
This relies on the special property

$$
\begin{aligned}
(A, B)=\operatorname{Tr}\left(A B^{*}\right) & =\operatorname{Tr}\left(B^{*} A\right)= \\
& =\left(B^{*}, A^{*}\right)
\end{aligned}
$$

For general setting, we will need a replacluent of the notion of coutratity

If \tilde{T} acts on H as

$$
\tilde{T}(g) A=T(g) A \quad\binom{G-\text { finite }}{H=\text { End }(v)}
$$

tron there is a comurtant action T^{\prime} :

$$
T^{\prime}(f)(A)=A T\left(g^{-1}\right)
$$

which commutes with T.
Consider $(G \times G, \stackrel{\overbrace{\operatorname{diag} G}^{\text {dense } K}}{ })$
\& detive spherical $\{(g, g)\}$ function on $G \times G$:

$$
\begin{aligned}
\varphi(g, h) & =\left(T \otimes T^{\prime}(g, h) \xi, \xi\right) \\
& =\operatorname{Tr}\left(T(g) T\left(h^{-1}\right)\right)\left(=x_{T}\left(g h^{-1}\right)\right)
\end{aligned}
$$

The function φ is k-birroviant, i.e.

$$
\varphi\left(k_{1} g k_{2}, k_{1} h k_{2}\right)=\varphi(g, h) \quad \forall k_{1}, k_{2} \in k
$$

Indeed,

$$
\begin{aligned}
& x_{T}\left(k_{1} g k_{2} k_{2}^{-1} h k_{1}^{-1}\right)= \\
& \left.=x_{T}\left(k_{1} g h^{-1} k_{1}^{-1}\right)=\chi_{T} \lg h\right)
\end{aligned}
$$

Next, we consider a more general setting of colfand pairs where there is K-bits variance \& not just centrality

Correction wot what was in class

- Not $\gamma(G)$ but $\Phi(G)$
- class $(=$ central) functions are replaced by birnvarsant

Recall. [I updated notes for $10 / 11$ for better presentation]

$$
T: G \rightarrow U(H) \quad, \quad \underbrace{\varphi(g)=(T(g) \xi, \xi)}_{\text {spherical } f}, \quad \xi \text {-cyclic }
$$

not live eriaracters

Notations for functions on the group

$$
=\varphi(n g)
$$

$$
\begin{aligned}
& \{\underbrace{\{\underset{(G N S)}{ }}_{\sum_{\text {Not vesersarib }}^{\text {pos-det. funct. }} \begin{array}{l}
\text { on } G
\end{array}}\left\{\begin{array}{c}
\text { spplerical t. } \\
\text { of unitary } \\
\text { represent. of } G
\end{array}\right\} \\
& \varphi(g h)=\varphi(h g),
\end{aligned}
$$

finite
Ex. $\pi: K \rightarrow$ End (V) |unitary) $H=$ End (V)
Hilbert: $\quad(A, B)=\operatorname{Tr}\left(A B^{*}\right)$

$$
\int \sqrt{\sum_{k, i} a_{i k} \overline{b_{i k}}}
$$

$T=\pi \otimes \bar{r}$ represent. of $G=K \times K$

$$
\begin{aligned}
& T(g, h) A=\pi(\xi) A \pi\left(h^{-1}\right) \\
& \xi=I d / \operatorname{dim} V \quad\|\xi\|=1 \\
& \varphi(g, h)=T_{r}\left(\pi\left(g h^{-1}\right)\right) / \operatorname{din} V .
\end{aligned}
$$

\uparrow
sph. funct. on $k \times k$

$$
k \times k>\operatorname{diag} K=\{(g, g)\}
$$

$$
\varphi(g, h)=T_{r}\left(\pi\left(g h^{-1}\right)\right) / \operatorname{din}_{\text {in }} V
$$

is cliag k - biiinvarient

$$
\varphi\left(k_{1} g k_{2}, k_{1} h k_{2}\right)=\varphi(g, h)
$$

This is more geural setup $G \supset K$, ve discurs it now
(8.3) Bicinveriant functions $K C G$ swbgroup

Exauples

$$
\begin{aligned}
& G=S(a+b) \\
& K=S(a) \times S(b) \\
& G=U(N) \supset K=O(N)
\end{aligned}
$$

$$
\begin{aligned}
& T: G \rightarrow U(H e) \text { rep } \\
& H^{k}=\{\text { iwvar. under } k\} \subseteq H
\end{aligned}
$$

Pros.
$\delta \in H^{k}$
$\Rightarrow \varphi(g)=(T(g) \xi, \xi)$ is K-binvar.
Proof. $\varphi\left(k_{1} g k_{2}\right)=\varphi(g) \quad \forall k_{1}, k_{2} \in k$

$$
(\underbrace{T\left(k_{1}\right)} T(g) \underbrace{T\left(k_{2}\right) \xi}_{\xi}, \xi)
$$

GNS

$$
y \in \begin{gathered}
\phi(\\
\Downarrow r
\end{gathered}
$$

\exists repr. in $U(\mu), \xi$.

$$
\varphi(g)=(T(g) \xi, \xi)
$$

Prop.
pos-def
Let $\varphi \in \Phi(G), k$-bivivarrant, T-worsesp. representation
\Rightarrow cyclie vectar 3 belongs to k^{k}
proof. $\left(T(k) \xi, T\left(g^{-1}\right) \xi\right)=\varphi(g k)=\varphi(g)$
$\Rightarrow T(k) \xi$ cloes not dep. on k

$$
\Rightarrow T(k) \xi=\xi \quad \forall k \in K
$$

$$
C(G)
$$

Let $\Phi_{1}(G / / K)=$ swhos pace of K-bicim - pos-def; normelized (Analogue: $\gamma^{\omega}(G)$) $\varphi(e)=1$

$$
K \backslash G / K \quad \begin{gathered}
\text { doesle } \\
\text { guotiout }
\end{gathered}
$$

$\Phi_{1}(G / / K) \longleftrightarrow$ functious on

$$
k>G / k
$$

Ex. $_{S(a) \times S(b)}^{S(a+b) / S(a) \times s(b)}$

$$
a=2 \quad\left\||\||^{b=3}\right.
$$ to jurmute

$\Phi_{1}(G / / k)$ - conses set
Fat. $([\beta O])$
$\varphi \in \Phi_{1}(G / / K)$ extreme in this convex set
$\Leftrightarrow \varphi$ extreave as a point in $\Phi_{1}(G)$

$$
\mathbb{C}[G] \supset \mathbb{C}[G \| K]
$$

(8.4) Gelfand pairs

G-finite group, $k<6$
(G, k) - Geltand pair if
(Ders) $\mathbb{C}[G / / K]$ is commetative
K-biinh. furct. on G meler
(If)

$$
T: G \rightarrow U(H)
$$

Prop. $(G, k)-G \cdot p$.
(k)
$\Leftrightarrow \forall$ irrep. $T, \quad \operatorname{din} H^{k}=0$ or 1

Recall ergodic measure-pres. trausformetions, amelo gy (Analogy)

$$
(X, \mu)
$$

$$
\mu(x)=1
$$

$$
T: X \rightarrow x
$$

$$
\mu\left(T^{-1} A\right)^{\text {weas }}=\mu(A)
$$

T is ergodic
\Leftrightarrow dim of the space of T-rius funct is 0 or 1.

$$
f(T x)=f(x) \quad \mu \text {-a.e. } x
$$

Proof of(*) $p=\frac{1}{|K|} \sum_{k \in K} k \in \mathbb{C}[G]$

$$
\begin{aligned}
& P=T(p)=\text { projection ento } H^{k} \\
& P T(f) P=T(p * f * p) \\
& \Rightarrow P T(\mathbb{C}[G]) P=T(\mathbb{C}[G / / k])
\end{aligned}
$$

T-irr- $\Rightarrow T(\mathbb{C}[C a])=\operatorname{End}(r)$

If G.p. \Rightarrow End $\left(\mu^{k}\right)$ is commut

If $\operatorname{dim} H^{k}=0$ or $1 \Rightarrow T(\mathbb{C}[G / / k])$ is comitative $\forall T$
$\Rightarrow 区[G / / k]$ is commentative (as it holds for all $T^{\prime} S$)

Prop. (1) $6: G \rightarrow G$ autio automorph.

$$
\left(\sigma^{\prime}(g h)=\sigma(h) b(g)\right)
$$

(2) $\sigma(K)=K$
(3) $k 6(g) k=k g k$
(3)

$$
\begin{aligned}
& \forall g, \exists k_{1}, k_{2} \text { s.t. } \\
& g k_{2}=k_{1} b(g) \\
& \Rightarrow(G, k) \text { is } G-\rho .
\end{aligned}
$$

Proof. B: auti-aut of $\mathbb{C}[G / / K]$ burt leaves any element invar $g n=\sigma(g h)=\sigma(h) \sigma 1 g)=4 g$ as $k g k=k \sigma(g) k$ $\Rightarrow \mathbb{C}[G / / K]$ commitative.

Arg. K - finite \Rightarrow
$(k \times k, \operatorname{diag} k)$ is $G-p$.
"double" of the group
lire previous.

$$
\begin{aligned}
& G: k \times k \rightarrow k \times k \\
& \left(k_{1}, k_{2}\right) \mapsto\left(k_{2}^{-1}, k_{1}^{-1}\right) \\
& \sigma\left(\left(g_{1}, g_{2}\right)\left(h_{1}, h_{2}\right)\right)=\sigma\left(\left(g_{1} h_{1}, g_{2} h_{2}\right)\right) \\
& =\left(h_{2}^{-1} g_{2}^{-1}, h_{1}^{-1} g_{1}^{-1}\right) \\
& \partial\left(g_{1}, g_{2}\right)=\left(g_{2}^{-1}, g_{2}^{-1}\right) \\
& \partial\left(h_{1}, h_{2}\right)=\left(h_{2}^{-1}, h_{1}^{-1}\right) \quad L
\end{aligned}
$$

Spherical rep of $G . p . \quad(G, K)$ is a unitary rep.of T with eyclic k-inuar. veetor ξ.

$$
\begin{array}{r}
\varphi(g)=\left(T(g) \xi_{1} \xi\right)-\text { sphericel } \\
\text { frunction. }
\end{array}
$$

$$
\binom{(T(g) z \xi, z \xi)}{=(((g) \xi) \xi)}
$$

$$
t=\text { oor } 1
$$

irred a spherical \Rightarrow unigue spveríal reetor $3, \quad\|\xi\|=2$ up to multiod ley $|z|=1, z \in \mathbb{C}$

Coments.

1) Fractional rep's
(from last
2) irrep of K-finite time)

$$
\begin{aligned}
& \Leftrightarrow \\
& \text { irsep. sph. of } \\
& \quad(k \times k \text {, dras } k)
\end{aligned}
$$

2 equir approaches to opp. Th of fimite groupr K.
gired. sph T of $(k \times k$, diag $k)$

$$
\begin{gathered}
\Leftrightarrow T(g, h) A=\pi(g) A \pi\left(h^{-1}\right) \\
A \in H
\end{gathered}
$$

(8.5) Gelfand parn for so grayss G-any group, $k \subset G$
Ref. (G, k) is G-p, if $\quad P=p^{\wedge} \rho^{\circ}$.onto $J t^{k}$
If T-irrep, $\quad P T(g) P$ comuth $\forall g$:

$$
P T(g) P T(n) P=P T(h) P T(g) P .
$$

(there is no $\mathbb{C}[G / / k]$ but flure are "T(C$[G / / k J) " \forall T)$

Fout G.p.

$$
\Leftrightarrow \quad \forall \text { irvep. } T, \quad \operatorname{dim} M^{k}=0 \text { or } 1
$$

Olshanski pairs. (Proposition): - Gelfanel fairs which are iveluctive líwuts

Fact.
$G=\lim G(n)$ inductive lime

$$
k=\underset{\rightarrow}{\lim } k(n)
$$ finite

$$
(G(n), k(n))-G(\forall n
$$

$\Rightarrow(G, k)$ is Gop.

Facts (fivally)
(1) $K=S(\infty)$ and $(K \times K, \operatorname{diag} K)$ is a G.p.
(2) If k - any groulp tuen there is an isomosphism

$$
\partial(K) \longleftrightarrow \Phi_{1}(G / / \text { diag } K)
$$

normailized
chovacters χ

$$
G=k \times k
$$

$$
\begin{array}{r}
\gamma\left(h^{-1} g\right)=\varphi(g, h) \\
g, h \in k .
\end{array}
$$

Abstractly, x do not corresp. to representations but $\varphi \in \Phi_{1}(G / / k) d o$ ley the GNS. construct: $: n$.

I have a very related problem this
(8.6) Realizations of rp's

$$
G=S(\infty) \text {, G.p. } \quad(G \times G, \operatorname{diag} G)
$$

- need action of $G \times G$ on H

$$
\varphi(g, h)=x \underbrace{\left.h^{-1} g\right)}_{\rho=\left(\rho_{1} z_{i} \geq \geq \rho_{u} \geq 2\right)}=\prod_{j=1}^{k}\left(\sum \alpha_{i}^{\rho_{j}}\left(-\beta_{i}\right)^{\rho_{j}}\right)
$$

$k_{1} k_{1}=S(\infty)$

$$
\begin{array}{r}
\epsilon^{S\left(k_{1} g k_{2}, k_{1}, h k_{2}\right)=y(g, h)} \\
=\varphi\left(h^{-1} g, e\right)
\end{array}
$$

(1) B_{i}^{0} ivegular is \quad irred. $\leftrightarrow \alpha_{i}=\beta_{j}=0$

$$
H=l^{2}(S(\infty))
$$

$$
T(g, h): f(x) \longmapsto f\left(g^{-1} x h\right)
$$

$S=$ delta funution at e; ξ is diag $S(\infty)$ inseriant

$$
\begin{array}{r}
\xi \text { is diag } S(\infty) \text { iusariant } \\
\hat{q}(g, e)=(T(g, e) \xi, \xi)=\left\{\begin{array}{c}
1, \quad g=e \\
0, \text { ebe }
\end{array}\right. \\
\begin{array}{l}
\text { exartly } \chi(g) \text { ou } S(\infty) \\
\text { corresp. to } \alpha i=\beta_{5}=0
\end{array}
\end{array}
$$

corresp. to $\alpha_{r}=\beta_{5}=0$
Note. G-finite \Rightarrow reguras Hepr.
G on $\mathbb{C}[G]$ is not irredubible

Let $\quad \sum \alpha_{i}=1, \quad \beta_{j}=0$

$$
E=l^{2}(\mathbb{Z})
$$

(2) E, \bar{E} Hilbert space \& dual

$$
\begin{aligned}
& v=\sum_{n=1}^{\infty} \sqrt{\alpha_{n}} e_{n} \otimes \bar{e}_{n}, \quad\left(e_{n}-\operatorname{bartis}^{\text {orth }}\right) \\
& \|v\|=1
\end{aligned}
$$

Let

$$
\begin{aligned}
& H=\bigotimes_{i=1}^{\infty}(E \otimes \bar{E}) \\
& e_{i_{1}} \otimes \overline{e_{j_{1}}} \otimes \cdot-\otimes e_{i_{k}} \otimes \overline{j_{j k}}
\end{aligned}
$$

$S(\infty) \times\{e\}$ permutes E,
$\{e\} \times s(\infty)$ permutes \bar{E}

$$
\xi=v \otimes v \otimes v \otimes \ldots-\text { cyclic \& }
$$

Invariant uneler deg $S(\infty)$

$$
v=\sum_{n=1} \sqrt{\alpha_{n}} e_{n} \otimes \bar{e}_{n}
$$

$$
\begin{aligned}
& \text { Let as compmite } \begin{array}{l}
\underline{\varphi(g, h)} \\
=(T(\xi, h) \xi, \xi)
\end{array} \\
& g \in S(n) \\
& T\left(g^{-1}, e\right) \delta=\sum_{i_{1} \ldots i_{n}} \sqrt{\alpha_{i_{1} \ldots \alpha_{i_{n}}}\left(e_{i_{g(1)}} \otimes \bar{e}_{i_{1}}\right)} \\
& \otimes \ldots\left(e_{i_{g(n)}} \otimes{\overline{e_{i_{n}}}}^{g}\right) \otimes v .-
\end{aligned}
$$

Product with $\xi \Rightarrow i_{g(1)}=i_{1}$,

$$
\begin{gathered}
i_{g(2)}=i_{2} \\
\vdots \\
i_{g(n)}=i_{n}
\end{gathered}
$$

\& rebe of the eydule structupe.

1. Recall spherical representations and what we are about to do
2. Tensor products of Hilbert spaces
3. Biregular representation with alpha_i=beta_i=0
4. Realization of representations with only alphas
5. Realization of representations with alphas and b

Next, q-analogues of Pascal and Young alphas and betas summing to 1

孔

$$
\begin{aligned}
& T: G \rightarrow U(r) \\
& \varphi(g)=(T(g) \xi, \xi)
\end{aligned}
$$

$$
k \subset G, \quad \xi \in J L^{k} \Leftrightarrow \varphi(q) \text { is }
$$

k-biinuariant

$$
\begin{aligned}
& G=k \times k>\operatorname{diag} k \\
& x\left(g h^{-1}\right)=\varphi(g, h) \quad \varphi\left(k, g k_{2}\right)=\varphi(g) \\
& S(\infty) \quad l \in K
\end{aligned}
$$

(1)

$$
\begin{aligned}
\alpha_{i}=\beta_{j}^{j} & \equiv 0 \quad \text { BeRegular rep. } \\
H & =l^{2}(s(\infty)) \\
T: & f(x) \longmapsto f\left(g^{-1} x h\right) \quad g_{0} h \in s(\infty) \\
S & =\delta \text { - funct. at } e
\end{aligned}
$$

ir rediater $\varphi(g, h)=1 g=h$

$$
x(g)=\mathbb{1}_{g=e}
$$

$$
\Omega=\left\{\sum \alpha_{i}+\beta_{i} \leq 1\right\}
$$

(2)

$$
\beta_{j} \equiv 0 \quad \alpha_{i} \geq 0, \quad \sum \alpha_{i}=2
$$

$G=S(\infty)$ acts in a ∞ tensor predent of vollbert spaces.
Before $S(\infty)$:
$\mu \sim H^{\otimes \infty}=$?

$$
\begin{aligned}
& H=L^{2}([0,1]) \sqrt{\left(e_{2}, e_{2}, e_{3} \ldots-\right.} \\
& H \otimes H \otimes L^{2}\left([0,1]^{d}\right)
\end{aligned}
$$

$$
\begin{aligned}
H^{\otimes \infty}= & L^{2}([\underbrace{[0,1]^{\infty}}) \\
& {[b-\overline{b-\text { algebra is cylindric, }}}
\end{aligned}
$$

guerased by

$$
\begin{gathered}
f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \ldots f_{k}\left(x_{k}\right) \\
\forall k \\
e_{i_{1}} \otimes e_{i_{2}} \otimes e_{i_{3}} \otimes \ldots \otimes e_{i_{k}} \otimes 1 \otimes 1 \otimes 1 \otimes \ldots \\
\text { distingmisued } \\
\text { vectar. }
\end{gathered}
$$

In general, He with bas is $\left\{e_{i}\right\}$ $\}$
$H^{(\otimes) \infty}$ with basin

$$
e_{i_{1}} \otimes \ldots \otimes e_{i k} \otimes \xi \otimes \xi \otimes \ldots
$$

$\xi \in$ he olistingrished vector

$$
\|\xi\|=1
$$

$$
\begin{aligned}
& \left(e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} \otimes \xi \otimes \xi \otimes \cdots, e_{j_{1}} \otimes \cdots \otimes e_{j_{k}} \otimes \xi \ldots . .\right) \\
& =\delta_{i_{1} j_{1}} \ldots \delta_{i_{k j K}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \alpha_{i} \geq 0 \\
& \sum d_{i}=1 \\
& H=(E \otimes \bar{E}) \otimes(E \otimes \bar{E}) \cdots \cdots \\
& \begin{array}{llll}
E & \rightarrow & \text { basis } & e_{i} \\
\vec{E} & \longrightarrow & \text { besis } & e_{i}
\end{array} \\
& \delta \in E \otimes \vec{E} \\
& \xi=\sum_{i=1}^{\infty} \sqrt{\alpha_{i}} e_{i} \otimes \overline{e_{i}} \\
& \|q\|=1
\end{aligned}
$$

$\xi \in H$ is $\quad \xi \otimes \xi \otimes \xi \otimes \xi \ldots$.

Ex. Is He a probab. space?

$$
K=\operatorname{diag} S(\infty) \subset S(\infty) \times S(\infty)
$$

1
presertues $\{\otimes \xi \otimes\} \otimes \ldots$

$$
\begin{aligned}
& \varphi(g, h)=(T(g, h) \xi, \xi) \\
&=(T(\underbrace{g h^{-1}}_{\text {any eleweat in }}, e) \xi, \xi) \\
& g \in S(n) \subset S(\infty) \\
& T(g, e) \S=\sum_{i_{1 \ldots} \ldots i_{n}=1}^{\infty} \sqrt{\alpha_{i_{1}--\alpha_{i_{n}}}}\left(e_{i_{g_{1}}} \otimes \overline{e_{i 1}}\right) \otimes
\end{aligned}
$$

$$
\cdots \otimes\left(e_{i_{g_{n}}} \otimes \overline{i_{n}}\right) \otimes \xi \otimes \theta \otimes
$$

dieting. vector in $E \otimes \bar{E}$

$$
(T(g, e) \xi, \xi)=\sum_{i_{1}, i_{n}} \alpha_{i_{1}} \ldots \alpha_{i_{n}} .
$$

$$
\cdot\left(e_{i_{g_{1}}}, e_{i_{1}}\right) \ldots\left(e_{i_{g_{n}}}, e_{i_{n}}\right)
$$

Ex. $\quad g=1 \rightarrow 2 \rightarrow 3$

$$
\begin{aligned}
& \left(e_{i_{2}}, e_{i_{1}}\right)\left(e_{i_{3}}, e_{i}\right)\left(e_{i_{1}}, e_{i_{3}}\right) \\
\Rightarrow & \left(\sum_{i=1}^{\infty} d_{i}^{3}=i_{2}=i_{3}\right.
\end{aligned}
$$

$$
\left(\sum \alpha_{i}^{4}\right) \cdot\left(\sum \alpha_{i}^{3}\right)
$$

etc.
W
If $g \sim$ crucles $\rho, \geqslant \rho_{2} \geqslant \rho_{e} \geqslant 2$

$$
(T(g, e) \xi, \xi)=\prod_{j=1}^{l}\left(\sum_{i=1}^{\infty} \alpha_{i}^{\rho_{j}}\right)
$$

Irr. Cherater of $s(\infty)$. $\sim \alpha$
(3) β-pait. \leadsto waut

$$
\begin{aligned}
& \sum \alpha_{i}+\beta_{t}=1 \\
& \text { 2-cy- } \quad \quad \sum\left(\alpha_{i}^{2}-\beta_{i}^{2}\right) \\
& H=E \otimes \bar{E} \quad, \quad E=E^{(0)} \oplus E^{(1)} \\
& \bar{E}=\bar{E}^{(0)} \oplus \bar{E}_{\uparrow}^{(1)} \\
& \left(\begin{array}{l}
E^{(0)} \sim e_{i} \\
E^{(1)} \sim f_{j}
\end{array} \quad \begin{array}{l}
\text { odd } \\
\text { operits }
\end{array}\right. \\
& \oint=\sum_{i} \sqrt{\alpha_{i}} e_{i} \otimes \bar{e}_{i}+\sum_{j} \sqrt{\beta_{j}} f_{j} \otimes \overline{f_{j}} \\
& H=\bigotimes_{1}^{\infty}(E \otimes E), \quad \operatorname{dictr} \cdot \mathrm{y} \text {. veator }
\end{aligned}
$$

Action of $S(\infty) \times S(\infty)$

$$
\begin{aligned}
& \otimes\left(E^{(0)} \otimes E^{(1)}\right) \otimes\left(\bar{E}^{(0)} \oplus E^{(1)}\right) \\
& \left.f_{1} \otimes f_{2} \otimes f_{3} \text { by } s^{(0)}\right) \\
& \sim(-1) f_{2} \otimes f_{1} \otimes f_{3}
\end{aligned}
$$

ween permuse f-vectars, nuctiply dy sign.

$$
\begin{aligned}
& T(g, e) \xi=\sum_{i_{1} i_{2}} \sqrt{\alpha_{i_{1}} \alpha_{12}} e_{i_{2}} \otimes \overline{i_{i_{1}}} \otimes \\
& e_{i_{1}} \otimes \bar{e}_{i_{2}} \text { W } \\
& +\sum_{j 1 j^{2}}(-1) \sqrt{\beta_{j i} \beta_{j 2}} f_{j_{2}} \otimes \overrightarrow{f_{j}} \otimes f_{j 1} \otimes \overrightarrow{f_{j 2}} \otimes \\
& t \quad-- \\
& e_{i_{2}} \otimes \bar{e}_{r_{1}} \otimes f(0) \otimes \tilde{f}_{2}
\end{aligned}
$$

If $\mathbb{H}=L^{2}(X, \mu) \longmapsto S(\infty) \times S(\infty)$

$$
f(T(g, e) x) \longrightarrow-
$$

4-Awelognes (of combineterics, not R.T.)

$$
\begin{aligned}
& {[n]_{q}=1+q+q^{2}-t+q^{n-1}=\frac{1-q^{n}}{1-q}} \\
& q \rightarrow 1,[n] \rightarrow n
\end{aligned}
$$

9-binomial
k

Brouchiog

Graphs with edge unltidlicities

- harmonic functions

$$
\varphi(\lambda)=\sum_{\nu \searrow \lambda} \varphi(\nu) \cdot x(\lambda, \nu)
$$

$-\operatorname{dim} \lambda \&$ recursion
$\operatorname{dive} \lambda=$ weighted \sum over paths from ϕ to λ

$$
\operatorname{div} \lambda=\sum_{\mu>\lambda} \operatorname{dim} \mu: x(\mu, \lambda)
$$

- example: Kiugiom graph branching of $\left\{m_{\lambda}\right\}$

$$
\begin{aligned}
& m_{\lambda}=\sum_{\substack{\text { ell } \\
\text { dis } s \text { inct } \\
\text { wownids }}} x_{i_{i}}^{\lambda_{1}} x_{i 2}^{\lambda_{2}} \cdots x_{i_{l}}^{\lambda l}{ }_{(433111)} \\
& m_{\lambda} \cdot\left(\sum x_{i}\right) \\
& \text { " }
\end{aligned}
$$

$$
\begin{aligned}
& t 3 \operatorname{men}(433211)
\end{aligned}
$$

Defone $x(\mu, \lambda)$ by

$$
\left.m_{\mu} p_{1}=\sum_{\lambda x_{\mu}} m_{\lambda}, x \mid \mu, x\right)
$$

Kingnamen gragh

basis
S_{λ}

exchangeatsility \& q-exchangeablity

Randon: $\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in\{0,1\}^{\infty}$
(1) Exchangeale $\mathbb{P}\left(\left(x, \quad i_{n}\right)=1 \varepsilon_{i}, \varepsilon_{i} \in\left\{\varepsilon_{n}\right)\right.$ fixed inites of roder of ε_{i} 's

$$
\begin{aligned}
& \lambda=(n-k, x) \\
& \varphi(\lambda)=\mathbb{P}\left(\left(x_{1}-x_{n}\right)=(1-1-0-0)\right)
\end{aligned}
$$

Harmovic ai pascal graph

(a) (n+1)

$$
\begin{aligned}
&+\mathbb{P}\left(\left(x_{1}--x_{n+1}\right)=\right. \\
&<(\frac{1-1}{k} \underbrace{0-0}_{n-u} 1) \\
& \varphi(n-k+1, k)+\varphi(n-k, k+1)
\end{aligned}
$$

$$
\varphi(\lambda)=\sum_{v \nu_{\lambda}} \varphi(v)
$$

Thin (de Finetti)
\forall exck raudom sequence,
子 μ on [oil] st.

$$
\varphi(k, n-k)=\int_{0}^{1} p^{k}(1-p)^{n-k} \mu(d p)
$$

Exteme $\varphi \leftrightarrow \rho \in\lceil 0,1]$,
$[0,1]=$ the boundery of Pasial Δ

$$
S(n) \quad \because=G L\left(n, f_{1}\right)^{u}
$$

Note Pascal c Young

$$
(a, b) \in P a s c a l
$$

$$
U^{2}=\{0,1\}^{\infty} \text { cytikdric }
$$

(2) qiexcrangeable $x_{0} \in\{0,1\} \quad q>0$

$$
\left.\begin{array}{l}
\mathbb{P}\left(\left(x_{1}, \ldots x_{n}\right)=(\ldots 10 \ldots)\right)= \\
=q \circ P\left(\left(x_{1}, x_{n}\right)=(-01, n)\right) \\
\left(q \mapsto \frac{1}{q} \Leftrightarrow r_{p}(a c e 0 \leftrightarrow 1\right.
\end{array}\right) .
$$

Lhuse (q-Har movicity)

$$
\begin{aligned}
& \varphi\left(n-k_{1} k\right)=\varphi(n+1-k, k)+\quad \text { dedect } \\
& +q^{q^{n-k} \underbrace{\varphi(n-k, k+1)}_{\square}} \\
& \varphi(a, b) \\
& \mathbb{P}(\underbrace{1-1}_{k+1} \underbrace{0,0}_{\text {uki }})
\end{aligned}
$$

19-Paccal graph

Prop

$$
\begin{aligned}
& \left.\operatorname{dim}_{q}\right)=\left[\left[\begin{array}{l}
n \\
b
\end{array}\right]=\frac{(q ; q)_{n}}{(q ; g)_{k}(q ; g)_{n-k}}\right. \\
& \left(\alpha_{i} g\right)_{k}=(1-\alpha)(1-q \alpha)_{--(1-q \alpha)}^{\left((q, q)_{b}\right)=[b]!}
\end{aligned}
$$

Proof

$$
\int_{1}^{q^{a}}(a, b)
$$

ding λ satisfies tie save reg.
weed to vex as 9-binomial

$$
\begin{aligned}
& {\left[\begin{array}{c}
a+b \\
b
\end{array}\right]=9^{a}\left[\begin{array}{c}
a+b-1 \\
b-1
\end{array}\right]+\left[\begin{array}{c}
a+b-1 \\
b
\end{array}\right]} \\
& \frac{1-q^{b+a}}{[a]![b]!}=q^{a} \frac{1}{[a]![b-1)!}+\frac{1}{[a-1]![b]!}
\end{aligned}
$$

$$
\begin{align*}
& {[b]!=(1-q)\left(1-q^{2}\right)-\left(1-q^{b}\right)} \\
& 1-q^{a+b}=q^{a}\left(1-q^{b}\right)+\left(1-q^{a}\right) \tag{1}
\end{align*}
$$

Prep (similar,

$$
\begin{aligned}
& \nu=(a-b, b) \in \mathbb{P}_{a} \\
& \lambda=(n-b, k) \in \mathbb{P}_{n}
\end{aligned}
$$

$$
\operatorname{dim}(\nu, \lambda)=\underbrace{g^{(k-b)(a-b)}\left[\begin{array}{l}
n-a \\
k-b
\end{array}\right]}_{\text {siven dium }}
$$

$\lambda(n) \longrightarrow$ poict in the bounday

Aspmptotics of svew dimention

Gredir-Olshamsi.
2009

$$
\lambda=(n-k, k)
$$

Theorem
rungt converse sit. $k=k(n)$ stavilzes or goes to ∞.

The bounday is $\frac{\{0,1,2,-\} \cup\{\infty\}}{c_{0} \operatorname{set}}$

$$
v=(b-a, a)
$$

$$
\frac{\operatorname{dim}(v, \lambda)}{d_{\text {im }}} \rightarrow \frac{4^{(x-a)(b-a)} \frac{\frac{(9, g)_{x}}{(9, g)_{x-a}}}{\text { if } k(n) \rightarrow \infty<\infty}}{k(n)}
$$

Proof.

$$
\begin{gather*}
k=k(n) \\
{\left[\begin{array}{c}
n \\
k
\end{array}\right]} \tag{j}
\end{gather*}
$$

$$
V=(b-a, a)
$$

$$
j=1
$$

$$
\begin{gathered}
\frac{\left.(q, q)_{n-b}\right)}{(q, q)_{n}} \cdot \frac{(q-q)_{k}(q, g)_{n-k}}{(q, g)_{k-a}(q, g)_{n-b-k+a}} \\
\frac{\left(q^{k}, \frac{1}{q}\right)_{a}}{}
\end{gathered}
$$

Note.
(1) $q^{(x-a)(b-a)} \frac{(9,9)_{x}}{(9,9)_{x-a}}$
is a paliprovial is 9
So tie divinday miey be deseribed as $\left\}^{x}\right\}$

$$
\Delta_{q}=\frac{\{0\} \cup\left\{1,9, s^{2},--\right\} \subset[0,1]}{1=\omega \sim 7} \text { d<0 }
$$

$$
\lim _{q \rightarrow 1} \Delta q=[0,1]
$$

(2) $\Phi_{(b-a, a)}\left(q^{x}\right)=q^{(x-a)(b-a)} \frac{(q, q)_{x}}{(q, g)_{x-a}}$
aualogie of $p^{a}(1-p)^{b-a}$

$$
p=q^{x}
$$

Boundary H.wory $\Rightarrow \forall$ q-ha monic φ $\exists \mu$ ou Δ_{g}
$(q \rightarrow 1$, these woon as Riemann smis.
(3)

$$
\frac{q \text {-Pascel } \subset q^{(q-\text { young }}}{k^{2}(\text { p,i })}
$$

- - Catalan
Courection

0 © mitt. 2

muit, is (area behowd b. x

Conjecfue Ergodic $\lambda(n)$ grews as

Catalan nuibers

1	2	5	6	7	9		
3	4	8	10		-		

$($ \# of toess $2 u$) is Dyyck pathes (=paretitens)

$$
\begin{aligned}
& y-\operatorname{div}\left(\frac{\square 1 H}{n}\right)=\frac{1}{n+1}\binom{2 u}{n} \\
& y_{q}-\operatorname{dim}(-)=\underbrace{C_{n}(q)}_{q-\text { Cataran }} \\
& \begin{array}{c}
X \\
\frac{1}{[n+1]}\left[\begin{array}{l}
2 n \\
n
\end{array}\right]
\end{array}
\end{aligned}
$$

(4) Growth frochy with extreaie vieasive $\sim x$ (\& the q-simple raidou walk)

Cuia.

$$
\begin{aligned}
& \mathbb{P}\binom{a}{(b-a, a)}=1-9 \\
& \left.\left.\mathbb{P}^{9}-\right)^{x-a}=\right\}^{x-a}
\end{aligned}
$$

$$
\frac{\left(1-9^{x-a}\right) q^{x-a-1}}{q^{x-a}\left(1-9^{x-a}\right)}
$$

there ir only one q-simple rio (wo p)

(5) $\mu_{0} 04 \quad 4$
or $[0,1]$

$$
\begin{aligned}
& =\frac{\operatorname{div} \lambda}{\text { ding } \tau} k(\lambda, \nu) \cdot \frac{\operatorname{din} \pi \cdot \varphi(\nu)}{\sin \cdot \lambda \cdot \varphi(\lambda)} \\
& \binom{\lambda=\left(n-k v^{v}\right)}{\left.\nu=(n-)^{\prime+}\right)}=\left(k(\lambda, v) \frac{\varphi(\nu)}{\varphi(\lambda)}\right) \\
& =k^{\left.k(\lambda i v) \cdot \frac{\int_{0}^{1} p^{k-1}(1-p)^{n-k} d \mu(p)}{\int_{0}^{1} p^{k}(1-p)^{n-k} d \mu(p)}(q=)\right)}
\end{aligned}
$$

Grasomannian over F^{\prime} g

$$
q=(p r i u e)^{d}
$$

$$
\begin{array}{r}
V_{0}=\{0\} \subset V_{1} \subset V_{2} c-\cdots \\
V_{n}=\left(\mathbb{F}_{q}\right)^{n} \quad \begin{array}{c}
\text { complete } \\
\text { flog }
\end{array} \\
V_{\infty}=V_{n=0} V_{n}
\end{array}
$$

$\operatorname{Gr}\left(V_{\infty}\right) \quad$ Gsass Manmian
Subspacel in $V_{\infty}, \lim _{\varepsilon_{n}} G r\left(V_{n}\right)$

$$
\begin{aligned}
\operatorname{Gr}\left(V_{n+1}\right) & \rightarrow \operatorname{Gr}\left(V_{n}\right) \\
V X & \longrightarrow V_{n}
\end{aligned}
$$

$$
/ / \bigcup_{n=1}^{\infty} G L\left(n, F_{q}\right)
$$

$G L\left(\infty, T_{q}\right)$ auts on $G r\left(V_{\infty}\right)$ whict natrices?
$X \in \operatorname{Gr}\left(V_{\infty}\right)$ ranelom, nitu distor inar vnder $G L\left(\infty, N_{g}\right)$

Thun [G-D] X $\quad \begin{array}{r}\text { Harmonic finctiou on } \\ \text { q-Pascal }\end{array}$ q-Pascal

$$
\begin{aligned}
& \text { Coberent neagures; } \\
& \lambda=(n-k, k) \\
& \varphi(\lambda) \cdot d m_{q} \lambda \\
& \text { Prob }\left(\operatorname{dim}\left(X \cap V_{n}\right)=k\right)
\end{aligned}
$$

Prod. $X \subset V_{n}$ of dime

Here are $1+9^{n-k}$ subs paces
$Y \subset \operatorname{Gor}\left(V_{n+1}\right) \quad$ sit $\quad Y_{n} V_{n}=X$
1 of dim \&
q^{n-k} of dim $n-k$
explain

Therefore, ethene $G L(\infty, \mid F q)$-w
Subspaces c Vo are parametrized by codimenstion*

$$
\{0,1,2, \ldots\} \cup \underbrace{\{\infty\}}_{x=\{0\}}
$$

* not divan sion
because $q>1$ so
in 9 -pascal, $k \rightarrow \infty$
u-k stabilize
\& there ss a geometric explanation

Recall
harm. f.

$$
\begin{aligned}
& \varphi(n-k, k)=\varphi(n+1-k, k)+v^{\text {eden }} \text { vip. } \\
& \downarrow^{n} \downarrow^{n+1}+q^{n-k} \varphi(n-k, k+1) \\
& \int_{0 k}^{o k+1} \\
& P(10010 \ldots)= \\
& =q \circ P(10002 \ldots) \\
& \varphi(u-k, k)=R\left(f^{k} \Delta^{n-k}\right)
\end{aligned}
$$

Proved: Extreme $\begin{aligned} & \varphi(\phi)=1 \\ & \left.\left.\varphi \geqslant 0 \leftrightarrow \Delta_{q}=\left\{1, g, g^{2}, \ldots\right\} \cup\right\} 0\right\}\end{aligned}$ (g-de finetti)
 $x \in \Delta q$

$$
p_{\text {rob }}=\frac{1}{z} q^{\text {area }}
$$

random path

Grasomannian over I'?

$$
q=(p r i m e)^{d}
$$

$$
\begin{aligned}
V_{0}=\{0\} \subset V_{1} & \subset V_{2} \subset \cdots, \\
V_{n} & =\left(\mathbb{F}_{q}\right)^{n}
\end{aligned}
$$

complete flag

$$
V_{\infty}=V_{n=0}^{\infty} V_{n}
$$

(which vectors $\in V_{\infty}$)
all but finitely navy lord are 0 .
$\operatorname{Gr}\left(V_{\infty}\right) \quad G r a s s$ memnon Subspaces in $V_{\infty}, \frac{\lim }{\leftarrow} \operatorname{Gr}\left(V_{n}\right)$

$$
\begin{aligned}
\operatorname{Gr}\left(V_{n+1}\right) & \longrightarrow \operatorname{Gr}\left(V_{n}\right) \\
V X & \longmapsto V_{n}
\end{aligned}
$$

Guess: Gupeourtan

$$
\begin{aligned}
& X \in \operatorname{Gr}\left(v_{\infty}\right) \\
& X=\left(x_{1} \subset x_{2} \subset x_{3}<x_{4} \subset x_{5} \subset \ldots\right) \\
& x_{n} \subset v_{n}, \quad x_{n+1} \cap v_{n}=x_{n}
\end{aligned}
$$

$$
\bigcup_{n=1}^{\infty} G L\left(n, \mathbb{F}_{q}\right)
$$

$G L\left(\infty, \mathbb{F}_{q}\right)$ acts on V_{∞}, on $\operatorname{Gr}\left(v_{\infty}\right)$ shich natrices:

$*$	
$0^{1} 1$	
2	

Claysify:
$X \in \operatorname{Gr}\left(V_{\infty}\right)$ caudom, with distr. Twar. under $G L\left(\infty, \mathbb{N}_{g}\right)$

$$
\begin{aligned}
& \forall A \subset G r\left(V_{\infty}\right), A \text { - Bored } \\
& \forall u \in G L\left(\infty, F_{g}\right)^{\prime}, \\
& P(U X \in A)=P(X \in A)
\end{aligned}
$$

$\underline{T h u}[G=0$.

$$
X \leftrightarrow \begin{gathered}
\text { Harmonic function } \varphi \text { on } \\
q \text {-Pascal }
\end{gathered}
$$

Via

$$
\varphi(n-k, k)=\frac{P\left(\operatorname{dim} X \cap V_{n}=k\right)}{\left[\begin{array}{l}
n \\
k
\end{array}\right]}
$$

$f\left(X_{\cap} V_{n}=V_{k}\right)$ subspaces of V_{n}

Prod. $X \subset V_{n}$ of dim $\| \varphi(n-k, k)$

there are $1+q^{n-k}$
sub spaces

(1) of dim en $K 4$

Fix $X_{n} \in G(n, k)$. We claim that there are precisely $q^{n-k}+1$ subspaces $X_{n+1} \in \operatorname{Gr}\left(V_{n+1}\right)$ such that $X_{n+1} \cap V_{n}=X_{n}$: one subspace from $G(n+1, k)$ and q^{n-k} subspaces from $G(n+1, k+1)$. Indeed, $\operatorname{dim} X_{n+1}$ equals either k or $k+1$. In the former case $X_{n+1}=X_{n}$, while in the latter case X_{n+1} is spanned by X_{n} and a nonzero vector from $V_{n+1} \backslash V_{n}$. Such a vector is defined uniquely up to a scalar multiple and addition of an arbitrary vector from X_{n}. Therefore, the number of options is equal to the number of lines in V_{n+1} / X_{n} not contained in V_{n} / X_{n}, which equals

$$
\frac{q^{n+1-k}-1}{q-1}-\frac{q^{n-k}-1}{q-1}=q^{n-k}
$$

Therfore, etterce $G L(\infty, \mid F q)$-invar.
subspacels C Vo are paraultrized by codimension*

$$
\begin{aligned}
& x \in\{0,1,2, \ldots\} \cup \underbrace{\{\infty\}}_{x=\{0\}} \\
& \left\{1,99^{2} q^{2}-\right\} \cup\{0\} \quad
\end{aligned}
$$

* not diven sion
because $q>1$ so
in \quad-pascal, $k \rightarrow \infty$

10. Young - Fibonacci
10.1. Differential poets $\left(\begin{array}{c}\text { partially } \\ \text { ordered } \\ \text { set }\end{array}\right)$
1) Let $\quad u=x, \quad D=\frac{\partial}{\partial x}$

$$
\begin{aligned}
{[D, U] f } & =(D u-u D) f \\
& =(x f)^{\prime}-x f^{\prime}=(f)
\end{aligned}
$$

2) $y, \quad l^{2}(y) \quad$ basis $\{\lambda\}_{\lambda \in \mathscr{D}}$

$$
\begin{aligned}
& D \underline{\lambda}=\sum_{\mu=\lambda-a} \underline{\mu} \quad u \underline{\lambda}=\sum_{v=\lambda+\Delta} \underline{v} \\
& {[D, u]=I d}
\end{aligned}
$$

$$
\left(\Rightarrow \overline{\left.\sum_{(\lambda)=n}(\operatorname{dim} \lambda)^{2}=n!\right)}\right.
$$

Abstract settry: Differentiar posets

$$
\begin{aligned}
\# \nu & =\# x \\
& =0 \text { or }
\end{aligned}
$$

$$
\begin{array}{r}
\lambda \\
\alpha / 1 / \text { \# }
\end{array}
$$

$$
v=\lambda u \mu \Rightarrow[D, u]=I d
$$

3) Any other prosets live Y ? Just one

- Young - Fibonaci graph Yif

$$
\text { [Stanley'88], [Fowin' } 88 \text {] }
$$

- Boundary: [Kerov-Groduan 197]

Inbermistion: D and efamples of hormonic functions

$$
\varphi(\lambda)=\sum_{v=\lambda+a} \varphi(\nu)
$$

We know

$$
\begin{aligned}
& \rho_{1} S_{\lambda}=\sum_{\nu=\lambda+\square} S_{V} \\
& \rho_{1}=x_{1}+x_{2}+\cdots
\end{aligned}
$$

So

$$
\varphi(\lambda)=s_{\lambda}\left(\alpha_{1} \ldots \alpha_{n}\right) \quad\left(\sum \alpha_{i}=1, \quad \alpha_{i} \geqslant 0\right)
$$

is an exaugle of a nomegative harmonic f. becemse $\quad P_{1}\left(\alpha_{1}-\alpha_{n}\right)=1$

$$
s_{\lambda}\left(\alpha_{1-}-\alpha_{n}\right)=\frac{\operatorname{det}\left[\alpha_{i} \lambda_{j+n j}\right]}{\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)}
$$

"Magicalby", tuese $\varphi(\lambda)$ are extlue
10.2 Young - Fibruecti Graph
finouacli words
Let $\quad y_{F_{n}}=\{$ words in $\{1,2\}$ with $|w|=n\}$

$$
\begin{aligned}
|112212|= & 9 \\
& Y F_{3}=\left\{\begin{array}{l}
21 \\
11 \\
12
\end{array}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\left|Y F_{n}\right|=\left|Y F_{n-1}\right|+\left|Y F_{n-2}\right| \quad\left(Y F _ { 0 } \left|=\left|Y F_{1}\right|=1\right.\right. \\
Y F_{n}=F_{i} b \cdot \text { number }(n)
\end{gathered}
$$

$$
(\text { Hero- Good } 1997
$$

Given a Fibonacci word v, we first define the set $\bar{v} \subset \mathbb{Y F}$ of its successors. By definition, this is exactly the set of words $w \in \mathbb{Y F}$ which can be obtained from v by one of the following three operations:
(i) put an extra 1 at the left end of the word v;
(ii) replace the first 1 in the word v (reading left to right) by 2 ;
(iii) insert 1 anywhere in between 2's in the head of the word v, or immediately after the last 2 in the head.
Example. Take $222(21112$ for the word v of rank 14 . Then the group of 3 leftmost 2's forms its head, and v has 5 successors, namely

$$
\bar{v}=\{1222121112,2122121112,2212121112,2221121112,22 \dot{2} 221112\}
$$

$$
\left(\begin{array}{lll}
1 & 222 \\
21 & 22 \\
2 & 21 & 2 \\
22 & 21
\end{array}\right.
$$

Fact. $y / F=\begin{gathered}\text { grapm oh } \\ \text { ktambling of } \\ \text { of }\end{gathered}$
subtrees

$$
222121112
$$

10.3 Examples of harmonic funct. on Y/ F
(betore takking about the bolry)

1) Plawherel fuuction,

$$
\begin{aligned}
& \text { Eudeed: }
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{dive} \omega=\left(u^{n} \Phi, \underline{\omega}\right) \\
\sum_{\omega y v} \operatorname{dicu} \omega=\left(u^{n+1} \Phi, u \underline{V}\right) \Theta \\
D=u^{*}
\end{gathered}
$$

$$
\begin{aligned}
& \theta\left(D u^{u+1} \Phi, v\right) \\
& D u=u D+1 \\
& D u^{2}=(u D+1) u= \\
&\left.n^{n} u^{n} D\right)=u D u+u \\
&=u(u D+1)+u \\
&=u^{2} D+2 u \\
& \Theta\left((n+1) u^{n} \Phi, \underline{v}\right)+\left(u^{u+1}(D \underline{D}, \underline{v})\right.
\end{aligned}
$$

2) "Clove Scour Junctions"

$$
\begin{aligned}
& \vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \\
& \operatorname{Al}(\vec{\alpha})=\operatorname{det}\left[\begin{array}{ccccc}
1 & \alpha_{1} & & & \\
1 & 1 & \alpha_{2} & & 0 \\
& 1 & 1 & \alpha_{3} \\
& 0 & 1 & 1 & \alpha_{4} \\
& & & & -
\end{array}\right] \\
& B_{l-1}(\vec{\alpha})=\begin{array}{l}
\text { bet } \\
\text { xl }
\end{array}\left[\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & & 0 \\
1 & 1 & \alpha_{3} & \\
& 1 & 1 & \alpha_{1} & \\
& 0 & 1 & 1 & \alpha_{5} \\
& & & & \ddots
\end{array}\right]
\end{aligned}
$$

Note, $B_{0}(\alpha)=\alpha_{1} \& A_{0}(\vec{\alpha})=1$

Defoue

$$
\begin{array}{ll}
\text { Defoue } \\
S_{u}(\vec{\alpha})=\left\{\begin{array}{ll}
A_{k}(\vec{\alpha}) & u=1^{k} \\
B_{k}\left(\operatorname{Sh}_{|\vec{v}|} \vec{\alpha}\right) \cdot S_{v}(\vec{\alpha}) & u=1^{k} v
\end{array}, \$\right. \text { 纹 }
\end{array}
$$

u-Fibonacki word

$$
s h_{m} \alpha^{-}=\left(\alpha_{m+1}, \alpha_{n+2}, \ldots\right)
$$

Ex.

$$
\begin{aligned}
S_{221}(\alpha) & =\alpha_{4} S_{21}(\vec{\alpha})= \\
& =\alpha_{4} \alpha_{2} S_{1}(\alpha) \\
& =\alpha_{4} \alpha_{2} .
\end{aligned}
$$

$S_{2111}(\alpha)=$ $\alpha_{4} \circ A_{3}(\vec{\alpha})$
$S_{1211}(\alpha)=$

$$
B_{1}(\operatorname{sh} 2 \vec{\alpha}) \cdot A_{2}(\vec{a})
$$

```
AM[l_] := Table[If[i== j || i== j +1, 1, 0] + If[i== j-1, 人[i], 0], {i, 1, l},{j, 1, l}]
AM[3] // MatrixForm
(
BM[l_, k_] :=
    Table[If[i== j|| i== j +1, 1, 0] + If[i== j-1, 人[i +k + 1],0] +
        If[i== j == 1, \alpha[k+1]-1, 0], {i, 1, l + 1}, {j, 1, l + 1}]
BM[1, 2] // MatrixForm
(cc[\mp@code{\alpha[ }
\alpha[2] }\times\alpha[4] + <[4]\times\operatorname{Det[AM[3]] + Det[AM[2]] }\times\operatorname{Det[BM[1, 2]]// Expand
\alpha[3]-\alpha[1]\times\alpha[3]
\alpha[3]\times\operatorname{Det[AM[2]] // Expand}
\alpha[3]-\alpha[1]\times\alpha[3]
```

Caveat interesting property;
$y] \sim \varphi(\lambda)=s_{\lambda}(\vec{\alpha})$ are extremer
$\forall y / F \sim \varphi(u)=S_{x}^{\prime}(\vec{\alpha})$,
not exterve
(except Plawcherel)

In fact, $\varphi_{\text {pl. }}(u)=\frac{\text { dime } u}{x!}$ is
gives by $\varphi_{p I}(u)=S_{n}(\vec{\alpha})$,

$$
\alpha_{i}=\frac{T}{i+1}
$$

(Now is it for V, the young gr-)
there is a similar property

$$
\begin{array}{c|c}
\text { Young - Fibonacci graph } & \{1,2\} \\
\text { \& harm-functions }
\end{array}
$$

\& their positivity

Today: shoo some examples \& explain how they differ fran Y \& some related challenges
$y 7$.

$$
\begin{gathered}
\varphi(\lambda)=S_{\lambda}\left(\alpha_{1} \ldots \alpha_{n}\right) \\
\uparrow \sum \alpha_{i}=1
\end{gathered}
$$

harmonic en W
\& extreme
(10.4)

Goal: show some harmonic functions \&s do stere exprofivents

Harmonie functions

$$
\varphi(v)=\sum_{w>v} \varphi(w)
$$

Example 1. $\quad \varphi_{\text {PI }}(w)=\frac{\operatorname{dim} w}{n!}$
$\operatorname{dim} w=\#$ paths $\phi \rightarrow w$

$$
\begin{aligned}
& \left.\begin{array}{lll}
\text { Javbot-Tuds } & h_{\lambda_{1}+j-i} \\
S_{\lambda}(\vec{x})
\end{array}\right)=\operatorname{det}\left[\begin{array}{lll}
h_{\lambda_{1}} & h_{\lambda_{1}+1} & h_{\lambda_{1}+2} \\
h_{\lambda_{2}-1} & h_{\lambda_{2}} & h_{\lambda_{2}+1} \\
& \ddots & \ddots
\end{array}\right] \\
& h_{n}(\vec{x})=\text { sime of all } \underset{\substack{\text { verumemals } \\
\text { dep }=n}}{ }
\end{aligned}
$$

Mivar of the ToepKt3 matsit

$$
\left[\begin{array}{ccccc}
1 & h_{1} & h_{2} & & \\
& 1 & h_{1} & h_{2} & \ddots \\
& 1 & h_{1} & h_{2} & \\
& & 1 & h_{1} & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

vanct mineors to be

$$
\geq 0
$$

Example 2.
Let x, y be two sequences

$$
\begin{aligned}
& A_{l}(x \mid y)=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & y_{1} & & \\
1 & x_{2} & y_{2} & 0 \\
1 & x_{3} & y_{3} \\
0 & & \ddots
\end{array}\right) \\
& B_{l-1}(x \mid y)=\operatorname{det}_{l_{x} l}\left(\begin{array}{ccc}
y_{1} & x_{1} y_{2} & \\
1 & x_{3} & y_{3} \\
& 1 & x_{4} \\
& & \\
A_{\sigma}=1, B_{0}=y_{1}
\end{array}\right) \\
&
\end{aligned}
$$

Clove Schur functions

Reficu $S_{u}(x \mid y) u-\underset{\text { word }}{\text { fibid }}$

$$
=\left\{\begin{array}{r}
A_{k}(x \mid y), u=1^{k} \\
B_{k}(x+\mid v)|y+|v|) \cdot S_{v}(x \mid y), \\
u=1^{k} 2 v \\
x+r=\left(x_{r+2}, x_{r+2}, x_{r+3}, \ldots\right)
\end{array}\right.
$$

$$
A \quad\left(\begin{array}{cccc}
x_{1} & y_{1} & & 0 \\
1 & x_{2} & y_{2} & 0 \\
0 & 1 & x_{3} & y_{3}
\end{array}\right)
$$

Ex.

$$
\begin{aligned}
& S_{\underbrace{21}_{V}}(x \mid y)=B_{0}(x+3 \mid y+3) 0 \\
& \text { - } S_{\underset{\sim}{2!}}(x \mid y) \\
& =y_{4} \cdot B_{0}(x+1 \mid y+1) \cdot s_{1}(x \mid y) \\
& =y_{4} \cdot y_{2} \cdot x_{1} \\
& S_{211}(x \mid y)=B_{0}(x+2 \mid y+2)_{0} \\
& =\frac{y_{3} \cdot\left|\begin{array}{cc}
x_{1} & y_{1} \\
1 & x_{2}
\end{array}\right|}{\quad y^{2} \mid}
\end{aligned}
$$

Harmonserty (Ex cmple \& test)

$$
x_{i} \equiv 1
$$

Theorm ($\theta \mathrm{rada}, 94$)

$$
\varphi(\omega)=S_{w}(1 \mid \vec{y})
$$

are harmonie on V If
(proof later)
Caveat /inseresting propertics
(1) Extremality

$$
\begin{gathered}
\varphi(\omega)=S_{\omega}(1 \mid y) \\
\text { are aswatly } \xlongequal{2}
\end{gathered}
$$

are aswally not
extremal
Q: how sw deromposes r'uto extroues? $\binom{$ (extreues ore) }{ obwn }
(2) Plancherel as a special case (is extreme)

Fall.

$$
\begin{aligned}
& \operatorname{Spl}(w)=\frac{\text { divew}}{n!} \\
&=S_{w}(\overrightarrow{1} \mid y) \\
& y_{i}=\frac{1}{i+1}
\end{aligned}
$$

(For young grays, we have a similar specialization)

$$
S_{\lambda}\left(\alpha_{1}, \ldots, \alpha_{K}\right)=\varphi(\lambda)
$$

Fin λ, let $k \rightarrow \infty, \quad \alpha_{i}=\frac{1}{k}$ then

$$
\begin{array}{r}
S_{\lambda}\left(\begin{array}{c}
1 \\
k
\end{array}, \cdots, \frac{1}{k}\right) \longrightarrow \frac{\binom{2}{k}}{(\lambda)=n} \\
(\lambda \mid
\end{array}
$$

10.5 Positivity
(we reed $\varphi \geqslant 0$
\& $\varphi(\phi)=1)$

Def.
\vec{y} is fibonacci positive if

$$
S_{w}(\overrightarrow{1} \mid \vec{y}) \geq 0 \quad \forall \quad \leadsto \in \notin \mathbb{F}
$$

Cobrious)

$$
\stackrel{\text { Cobrrious) }}{\Longleftrightarrow} A_{e}(\vec{y} \mid \vec{y}), \quad B e(\vec{z} \mid \vec{y}+r) \geqslant 0 \quad \forall l, r .
$$

Def. Mating T is $\underbrace{\text { totally nouncesative) }}_{\text {(totally }}$ positive (totally nonnegative)
all its minors are $\geqslant 0$

Yeury grayph, nonneys. φ
TP Toeplitz

YF \longleftrightarrow TP turdiagovel suatrices.

$$
\begin{aligned}
& \text { y. } \quad\left(\begin{array}{llll}
1 & h_{1} & & h_{1} \\
1 & h_{1} & h_{1} & 1 \\
0 & & h_{1} & \ldots
\end{array}\right) \text { is TP } \\
& \gamma=1-\sum\left(\alpha_{i}+\beta_{c}\right) \\
& \text { iff } \\
& \sum_{n=0}^{\infty} h_{n} z^{n}=\left(\prod_{i=1}^{\infty} \frac{1+\beta_{i} z}{1-\alpha_{i} z}\right) e^{\gamma z} \\
& (\vec{\alpha}, \vec{\beta})-\underset{\substack{\text { ous } \\
\text { rican } \\
\text { randers }}}{ }
\end{aligned}
$$

Fact. \vec{y} is fib-pos. iff

$$
T(\vec{y})=\left(\begin{array}{cccc}
1 & y_{1} & & \\
1 & 1 & y_{2} & \\
& 1 & 1 & y_{3} \\
& & 1 & 1
\end{array} y_{4} \ldots \ldots\right)
$$

is totably positive
\& the stifted seqpance

$$
\begin{aligned}
& \text { The shifted sernen } \\
& \vec{y}^{(r)}=\left(y_{r}^{-1} y_{r t 1}, y_{r+2}, y_{r+3}, \ldots\right) \\
& \text { is torally resitive } \forall r \text { in the sense }
\end{aligned}
$$

is torally poxitive $\forall \sigma$ (in the belye T)
Young graph parallel.
(1) $S_{\lambda}=\operatorname{det}\left(h^{\prime} s\right)$
(2) Teted prositivity of Toeplit3 matrices
10.6. Comectiver to coutivued fractions.

Back to y / F
Defive $T(x \mid y)=\left(\begin{array}{cccc}x_{1} & y_{1} & & \\ 1 & x_{2} & y_{2} & 0 \\ & 1^{1} & x_{3} & y_{3} \\ & & & \end{array}\right)$
$A e=$ det's of its principal corvers

Recursion on Ae (three-term)

$$
\begin{aligned}
A_{l}(x \mid y)= & x_{1} A_{l-1}(x+2 \mid y+1) \\
& -y, A_{e-2}(x+2 \mid y+2)
\end{aligned}
$$

overvilw
Tridiag. netpices

$$
\text { Discrete versions of }(a(x) f(x))^{\prime \prime}
$$

Ortugonal puby's which are (eigenfunetions) solut $=0$ ons to
inseresting 2 nd deqree $O D E S$

$$
\begin{equation*}
L f=f^{\prime \prime}+x f^{\prime} \tag{n}
\end{equation*}
$$

Verviite poby's

$$
T(x \mid y)=\left(\begin{array}{cccc}
x_{1} & y_{1} & & \\
1 & x_{2} & y_{2} & 0 \\
& 0 & x_{3} & y_{3} \\
& & & 1
\end{array}\right)
$$

Let

$$
J(z)=\frac{1}{1-x_{1} z-\frac{y_{1} z^{2}}{1-x_{2} z-\frac{y_{2} z^{2}}{1-x_{3} z-\frac{y_{3} z^{2}}{-}}}}
$$

We have

$$
\begin{gathered}
\frac{1}{\partial_{d, y}(z)}-1+x_{1} z+y_{1} z^{2} J_{\gamma(+1) y+1}(z)=0 \\
1=J(0)=a_{0}=\int_{0}^{\infty} 1 d \mu(x)
\end{gathered}
$$

Thooran. $T(x \mid y)$ is Totaley pesitive $\left.\begin{array}{l}(\text { Sokal } \\ 19905\end{array}\right) \Leftrightarrow J_{x, y}(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, and

$$
a_{n}=\int_{0}^{\infty} x^{n} \underbrace{d \mu(x)}
$$

nomegative
Porel
probab. measure

Then $p_{n}(t)=\left(t-x_{n}\right) p_{n+1}(t)-y_{n-1} p_{n-2}(t)$
are ortug, poby's wrt μ.

$$
\begin{aligned}
& \int_{0}^{\infty} f_{n}(x) p_{m}(x) d \mu(x)=0 \\
& \left.\operatorname{dup}_{n} p_{n}(x)=n\right)
\end{aligned}
$$

d,y porans.

$$
\left\{\begin{array}{c}
\text { via cout, fract } \\
\text { (ind=rect })
\end{array}\right.
$$ -pribimeas su $[0, \infty)$ ortrogrand poly's

$$
p_{n}(t)=\left(t-x_{n}\right) p_{n+1}(t)-y_{n-1} p_{n_{-2}}(t)
$$

$$
\begin{aligned}
\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right. & =1 \\
=x_{1} & =x_{1}^{2}+y_{1} \\
& =x_{1}^{4}+3 x_{1} y_{1}+x_{2}^{2} y_{1}+y_{1}^{2}+2 x_{1} x_{2} y_{1}+x_{2}^{2} y_{1}+y_{1} y_{2} \\
& Q_{u}=\int_{0}^{\infty} x^{u} d \mu
\end{aligned}
$$

10.7. Confirued fractions. Coutrimed

Ex.1. Let

$$
\text { et } \begin{aligned}
& \quad \begin{array}{l}
x_{k}=k+\rho-1 \\
y_{k}=k \rho
\end{array} \\
& \Rightarrow S_{1 n}(\rho)=\rho^{n} \quad \& \quad \begin{array}{l}
\rho=1 \\
\text { is Plawch }
\end{array}
\end{aligned}
$$

Chere:

$$
\left(\begin{array}{cccc}
\rho & \rho & & 0 \\
1 & \rho+1 & 2 \rho & \\
0 & 1 & \rho+2 & 3 \rho
\end{array}\right)
$$

\& colvem operations

$$
\begin{gathered}
\left.\left(\begin{array}{cccc}
\rho & 0 & 0 \\
1 & \rho & 0 & \\
0 & 1 & \rho & \cdots \\
\vdots & \vdots & 1 & \rho
\end{array}\right) \rightarrow(\rho)^{u}\right) \\
\operatorname{dim}(1 \ldots 1)=1
\end{gathered}
$$

(we know these are fib-nomegative)

$$
\begin{aligned}
\Rightarrow \quad a_{0} & =1 \\
a_{1} & =\rho \\
a_{2} & =\rho^{2}+\rho \\
a_{3} & =\rho^{3}+3 \rho^{2}+\rho \\
a_{1} & =\rho^{4}+6 \rho^{3}+7 \rho^{2}+\rho \\
& e+c .
\end{aligned}
$$

$$
P(\xi=k)=e^{-\rho} \frac{\rho^{k}}{k!}
$$

Poisson (ρ)

$$
E E\{=g=\operatorname{Var} \xi
$$

$$
p_{n}(t)=(t-n-\rho+1) p_{n+1}(t)-(n-1) \rho p_{n-2}(t)
$$

Young-Fibonacci graph (recall 10.4-0.5)

\rightarrow differential poset
(Stanley. Enmerative Combinatorics I)
$\rightarrow \quad \varphi_{p l}(\omega)=\frac{\operatorname{dive} W}{n!}$ is harmonic
\rightarrow counection to tridiagoved curtrices

$$
\begin{aligned}
& A_{l}(x \mid y)=\operatorname{det}\left(\begin{array}{cccc}
x_{1} & y_{1} & & 0 \\
1 & x_{2} & y_{2} & 0 \\
1 & x_{3} & y_{3} \\
0 & & \ddots
\end{array}\right) \\
& B_{l-1}(x \mid y)=\operatorname{det}_{l_{x l}}\left(\begin{array}{ccc}
y_{1} & x_{1} y_{2} & \\
1 & x_{3} & y_{3} \\
A_{0}=1, B_{0}=y_{1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& S_{u}(x \mid y) \quad u-\underset{\text { wibid }}{\underset{\text { fibid }}{ }} \\
& =\left\{\begin{array}{l}
A_{k}(x \mid y), u=2^{k} \\
B_{k}(x+\mid v)|y+|v|) \cdot S_{v}(x \mid y),
\end{array}\right. \\
& u=1^{k} 2 v \\
& x+5=\left(x_{r+2}, x_{r+2}, x_{r+3}, \ldots\right)
\end{aligned}
$$

Claim, (Okada 1994)

$$
\varphi(\omega)=S_{w}(\overrightarrow{1} \mid \vec{y}) \text { is }
$$

Marmonic on $\mathscr{P} \neq$

Positive harmonic f. (correction)
Def. \vec{y} is Fib positive if $\forall w$,

$$
\begin{aligned}
& S_{w}(\overrightarrow{1} \mid \vec{y}) \geqslant 0 \\
& \text { Al }\left(\vec{I} \mid y^{\prime}\right), \quad B_{e}(\vec{z} \mid \vec{y}+r) \geqslant 0 \quad \forall l, r .
\end{aligned}
$$

Fib. Pes \subset Tot. Pes. \hat{y}

$$
x_{i} \equiv 1, \quad T(\vec{y}) \equiv\left(\begin{array}{llll}
1 & y_{1} & & 0 \\
1 & 1 & y_{2} & 0 \\
1 & 1 & y_{3} \\
0 & & \cdots
\end{array}\right)
$$

Def \vec{y} is tot. pos. (tot mooney.) if primipal minors of $T(\vec{y})$ are $\geqslant 0$

Claim $\vec{y} T P$ \& f_{r},

$$
\vec{y}^{(r)}:=\left(y_{r}^{-1} y_{r+1}, y_{r+2}, y_{r+3},-\right)
$$

is TP
\vec{y} is Fiboveici positive
(Wy clear, IT fellows from properties of TP)

Role of y_{1}^{-1} is to get B_{l-1}

Note
Not all of $T \rho$ seq, \vec{y} ave FP.
Example.

$$
y_{n}=\frac{n^{2}}{(2 n-1)(2 n+1)}
$$

then $\quad A_{l}=\frac{l!}{(2 l-1)!!} \geq 0$

But: $\vec{y}^{(1)}$ is wat $T \rho$

$$
A_{3}\left(y^{-(1)}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & \frac{4}{5} & 0 \\
1 & 1 & \frac{27}{35} \\
0 & 1 & 1
\end{array}\right) \quad<0
$$

$\Rightarrow \quad S_{w}(\overrightarrow{1} \mid \vec{y})$ may toe negative.
$T P \quad \vec{y} \quad \longleftrightarrow \quad \begin{array}{r}\text { prob.meas.on } \\ {[0, \infty)}\end{array}$
(uice) olated Poisson disto. on $[0, \infty)$ to epel)

Which μ on (0,) are Fib poitive? (excypt poisson)
11. Bowndary of YIF (Goodwan $\left.\begin{array}{c}\text {-keros }\end{array}\right)$
11.1 Answer \& nou-uniqueness

Recall basic detivitiom a bout bonndary:

$$
\left\{\varphi: \varphi(w)=\sum_{v>w} \psi(v), \quad \begin{array}{c}
\varphi(\phi)=1, \\
\varphi \geqslant 0
\end{array}\right\}
$$

$\gamma(y / F)$, comeex set Extreme pts $E_{x} \gamma^{\prime}(y, F)=$?

Note: why Lermonic, gain

$$
\begin{aligned}
& (\Delta \varphi)(w)=-\varphi(w)+\sum_{v v w} \varphi(v) \\
& \psi_{w}(v)=\operatorname{dim}(v, w)-\underline{\underline{\text { Green }}} f .
\end{aligned}
$$

$$
-\left(\Delta \psi_{w}\right)(v)=1_{v=w}
$$

(exercise)

We'se ofter liuts of

$$
K(v, w)=\frac{\operatorname{dim}(v, w)}{\operatorname{dim} w},|w| \rightarrow \infty
$$

(martin verael)
Martin boundery of graph G

Fun (G), porntwise cowergence

$$
\begin{gathered}
\tilde{E} \subset \operatorname{Fun}(G)-c \text { cosure of } \\
\{v \longmapsto K(v, w)\}_{w \in G} \\
K(v, w)=\frac{\operatorname{dim}(v, w)}{\operatorname{dim} w}
\end{gathered}
$$

\tilde{E} is compact because $0 \leqslant k \leqslant 1$

$$
w \in G \quad \rightarrow \quad(0, w) \in \tilde{E}
$$

$E=\widetilde{E} \backslash G \leftarrow$ Martin boudary, deftivition
$K(v, w)$ extends to $K(v, \alpha)$, $\alpha \in E$
\&
$\varphi(v)=K(v, \alpha) \quad$ belongs to γ,

$$
\alpha \in E
$$

Thu. (Choquet) $\forall \varphi \in \gamma^{\prime}$, \exists probab, measure μ on E s.t.

$$
\varphi(v)=\int_{E} k(v, \alpha) \mu(d \alpha)
$$

Note. μ wight be won- unique (For yIP, wigheness amounced in 2020)
$E_{\text {min }} \subset E$
$\alpha \in E \min \Leftrightarrow \quad \varphi(v)=K(v, \alpha)$ is extreane
then choose μ supported by Erin? and it is unique.

Goodwon-Kerov (1997) - described E

Def. $w \in\{1,2\}^{\infty}$, inf word.

$$
\begin{gathered}
d_{i}=p o s i t i o n ~ o f ~ \\
\text { 2's } \\
w=111211111211222212 \ldots \\
d_{1} \quad T \\
d_{2}
\end{gathered}
$$

Called surmable ift

$$
\begin{aligned}
& \sum_{i} \int_{i}<\infty \quad \pi(\omega)==\prod_{i}\left(1-\frac{1}{d i}\right)>0 \\
&(1+w v e r g e s
\end{aligned}
$$

Ther. $E=E(\nmid P)$ consists of
(1) Planckerel $\varphi_{P l}(\omega)=\frac{\text { dimw }}{n!}$
(2) (β, w) s.t. $0<\beta \leq 1$, $\omega \in\{1,2\}^{\infty}$ sumable

Topalofy
ou Ω D $\left(p^{n}, w^{n}\right) \rightarrow p l$ iff

$$
\beta^{n} \rightarrow 0 \quad \text { or } \quad J\left(\omega^{n}\right) \rightarrow 0
$$

2) $\left(\beta^{n}, w^{n}\right) \rightarrow(\beta, w) \quad$ iff

$\omega^{n} \rightarrow \omega^{n}$ digituire, \&

$$
\beta^{n} \pi\left(\omega^{n}\right) \rightarrow \beta \pi(\omega)
$$

$$
\pi(\omega)==\prod_{i}\left(1-\frac{1}{d i}\right)
$$

Exauples of comergenee
(1) $n(w)=0$, wrat it means?

Many 215
(2) $\left(\beta^{n}, w^{n}\right) \rightarrow(13, w)$
11.2 Plavderel \& type I functions
we kow $\varphi_{p l}(\omega)=\frac{\text { dimw }}{x!}, \varphi_{p l} \in$ J

Type I. Let $t=\left(v_{0}>v_{1}>\ldots\right)$
inf pazn.
Hw $\operatorname{dim}\left(u, v_{n}\right)$ inveases,

$$
\operatorname{dim}(u, t):=\operatorname{lime}_{u} \operatorname{dim}\left(u, v_{n}\right)
$$

(can be ou finite)

Lemer. t - inf. path. There foll. ave equiv.
(1) diven $(\phi, t) \leftharpoonup \infty$
(2) dive $(u, t)<\infty \quad \forall \quad u$
(3) For coluost all n,
$V_{n-1} \rightarrow V_{n}$ is the ouly prodecessor
eventually yF!

$$
\text { in } y / \mathbb{F}_{1} \quad t\left[\sim 1_{N-f i x e d}^{\infty}\right.
$$

$$
\rightarrow 1_{\omega-\text { fred }}^{w}
$$

(4) There are fonitely thay patus which eveutally coimide with t

For (Y), which are the paths st. $\operatorname{dim}(\phi, t)<\infty$?

lemere.

$$
\begin{aligned}
& \varphi_{t}(v)=\operatorname{dim}(v, t) / \operatorname{dim}(\phi, t) \quad \nu \\
& \varphi_{t} \in \gamma v
\end{aligned}
$$

Def. φ_{t} are ealied typere I hermowic funcsions
\& VIIF Las many of these.

Also, y's are extremal. (because on $y F_{n}, n>z 1$, $\frac{\left.\varphi_{t} \text { is a delira function }\right)}{}$
(what words w w^{E} do they correspend to ?)
w with finitely renary 2 's.
\& sumuble w
with ∞ many 2's
are limets of type I प's
E
$p l$
(β, ω)

$\beta<1 —$?
11.3. Contraction of hermonic functions to Plamcherel
$\varphi \in \gamma^{\nu} \Longrightarrow$ Random grar th process. on G

$$
\begin{array}{ll}
|u|=n-1, \quad|v|=n & , u \rightarrow v \\
\varphi(u)=\sum_{v \searrow u} \varphi(v) \\
p_{\varphi}^{\uparrow}(u, v)=\frac{\varphi(v)}{\varphi(u)}, & \sum \text { to } 1 \\
\text { over } v .
\end{array}
$$

raudom greuth preces

Not every sandom grewth is harmonic Need the "exchayeability" ("cautrality") conelition $-\mathbb{P}_{\varphi}\left(\phi>v_{1} \times v_{2} x \ldots \rightarrow v_{n}\right)$ deponds ouly on V_{n}.

$$
\begin{array}{llll}
\varphi_{1}, \varphi_{2}-\frac{2}{} \text { harm. funct., } f_{i x} \\
\text { Define } & t \in[0,1]
\end{array}
$$

greuth process s.t.

$$
\begin{aligned}
& \mathbb{P}_{\varphi_{1} *_{\tau} \varphi_{2}}(v)=\prod_{q} \mathbb{P}_{\varphi_{1}}(u) \mathbb{P}_{\varphi_{2}}(u \rightarrow v) \\
& |v|=n
\end{aligned}
$$

$$
\sum_{k=0}^{w}
$$

$$
\binom{n}{k} \tau^{k}(1-\tau)^{n-k}
$$

$\varphi_{z}(u) \operatorname{dim} u^{0} \operatorname{dicu}(u, v)$

$$
\varphi_{2} \frac{(u)}{\varphi_{2}(}
$$

$$
\varphi_{2}(u)
$$

Q: Is this harmonic?
Weror-Gooduen $\varphi_{2}=\varphi_{p} 1$.

$$
\begin{aligned}
& \varphi_{2}(u)=\frac{\text { disen } u}{k!} \\
& \sum_{k=0}^{w} \frac{1}{(n-k)!} \tau^{k}(1-\tau)^{n-k} \\
& \sum_{|u|=k} \varphi_{2}(u) \text { dimevo } \operatorname{dicu}(u, v) \\
& \text { probar. }
\end{aligned}
$$

$$
\Rightarrow \quad C_{\tau}(\varphi)(v)=\sum_{k=0}^{n} \frac{\tau^{k}(1-\bar{k})^{n-k}}{(n-k)!} \sum_{|u|=k} \varphi(u) \operatorname{dim}(u, v)
$$

propeksis $C_{\tau}(\varphi)=\varphi^{*}{ }_{\tau} \varphi_{p e}$

$$
\begin{aligned}
& \left.C_{\tau}(\varphi) \in \gamma\right) \\
& \left(C_{\tau}\left(C_{b}(\varphi)\right)=C_{\tau b}(\varphi)\right. \\
& \left.C_{0}(\varphi)=\varphi_{p l}\right) \\
& \left(C_{\tau}(\varphi p)=\varphi_{p c} \cdot\right. \\
& C_{\tau}(\underbrace{\varphi_{\beta, \omega}}_{\eta})=\varphi_{\tau \beta, \omega}
\end{aligned}
$$

harmanic $f, \in E$

Exereise

$$
\begin{aligned}
& y, \quad \varphi=\varphi_{w} \quad, \quad w=(\alpha ; \beta) \\
& \Rightarrow c_{\tau}(\varphi) \quad \sim\left(\tau_{\alpha} ; \tau \beta\right)
\end{aligned}
$$

I and $\tau=0$ is Plaucherel.
a way to mui's in soue hloucherel

Next: use Ct to Glow that So are wo exteme

Today, boundary of YF via clove functions as much as we have tiver)

Next: Bacu to y \& Plamerel

$$
\xrightarrow{\text { nueasmes }} \longrightarrow \begin{array}{|c|}
\text { reg. tep } \\
\text { of } \delta(\infty)
\end{array}
$$

\rightarrow Linut shage
\rightarrow Ploucherel grouth process \& its hydrodynamics
\longrightarrow Iregnalities (íuchidiug some on vep-th colftieients live Littlewood - Richardion \& Krovecker)

$$
\lambda \in Y V_{n}
$$

Young - Fibonacci graph

Thun martin bounders is
\rightarrow Planeherel

$$
\rightarrow(\beta, \alpha), \quad 0<\beta \leq 1,
$$

$$
\begin{aligned}
& \varphi(w)=\frac{d n v}{n!} \quad \alpha \in\{1,2\}^{\infty}, \text { s.7. } \\
& n(\alpha)=\prod_{i=1}^{\infty}\left(1-\frac{1}{d_{i}}\right)>0
\end{aligned}
$$

d_{i}-positions of 2 's in α
($\beta=1, \alpha$-finitely many $2^{\prime} \mathrm{s}$
come form "lonely paths" \&
type 1 (dis $\left(\omega, 1^{\infty} v\right)$

Flow $\quad \longmapsto \quad C_{\tau}(\varphi) \quad \tau \in[0,1]$
Extremes: $\varphi_{\beta, \alpha} \longmapsto \varphi_{\tau \beta, \alpha}$
Def.

$$
0 \leq T \leq 1
$$

$$
\begin{aligned}
\varphi_{1} * \tau \varphi_{2}(v)= & \sum_{k=0}^{u}\binom{n}{k} \tau^{k}(1-\tau)^{n-k} \quad|V|=n \\
& \cdot \sum_{\mid u)=k} \frac{\varphi_{1}(u) \varphi_{2}(v)}{\varphi_{2}(u)} \cdot \frac{\operatorname{dimu} \operatorname{dim}(u, v)}{\operatorname{div} v} \\
C_{\tau}(\varphi)= & \varphi_{1} *_{\tau} \varphi_{P l}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0}^{u}\left(\frac{n}{k}\right) \tau^{k}(1-\tau)^{n-k}(n-k)! \\
& \cdot \sum_{|u|=k} \frac{\varphi_{1}(u) \varphi_{2}(v)}{\varphi_{2}(n)} \cdot \frac{\operatorname{dibat} k \operatorname{dim}(u, v)}{\text { divev}}
\end{aligned}
$$

Prop. (1) $C_{\tau}(\varphi)(v)$ is harmovic (in geveral, $\varphi_{1} x_{2} \varphi_{2}$-not herni)
(2) $C_{6} \circ C_{\tau}=C_{6 \tau}$
(3) $C_{0}(\varphi)=\varphi x$
(4) $C_{\tau}\left(\varphi_{p l}\right)=\varphi_{p l}$

Proof. (2) n. - fix
Clet $\xi \sim \operatorname{Bin}(n, \tau)$

$$
\text { et } \begin{align*}
& \eta \\
& \Rightarrow \operatorname{Bin}(\xi, b) \\
& \Rightarrow \quad \eta \sim \operatorname{Bin}(n, \tau b)
\end{align*}
$$

<Noter q-andlogue

$$
P(\xi=v)=\tau^{k}(\tau ; q)_{n-k}\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}
$$

(1)

$$
\sum_{w v v} C_{\tau}(\varphi)(w)=C_{\tau}(\varphi)(v)
$$

$\sum \sum_{w=0}^{u+1}$

$$
\tau^{k}(1-\tau)^{n-k+1}(n+1)!
$$

$\omega>v$

$$
\text { - } \sum_{|u|=k} \varphi_{1}(u) \operatorname{dim}(u, w)
$$

$$
|u|=k
$$

$$
|w|=u-1
$$

$\left\langle\sum_{w>y}\left\langle u^{n+1-k} \underline{\underline{n}}, \underline{\omega}\right\rangle\right.$ $\operatorname{dim}(u, v)=$

$$
=\left\langle u^{n+1-k} \underline{u}, \underline{w}\right\rangle
$$

$$
=\left\langle u^{h+1-k} \underline{u}, U \underline{v}\right\rangle
$$

$=\left\langle D u^{n+1-k} \underline{u}, \underline{v}\right\rangle \theta$

$$
\begin{aligned}
& D U^{l}=u^{l-1} \cdot l+u^{l} D \\
& D U=1+u D \\
& D U U=(1+u D) u
\end{aligned}
$$

$(\leftrightarrows)(n+1-v) \operatorname{dim}(u, v)+\left\langle u^{n+1-k} D \underline{u}, \underline{v}\right\rangle$

$$
\begin{aligned}
& \sum_{k=0}^{u+1} \frac{\tau^{k}(1-\tau)^{n-k+1}}{(u-k)!} \cdot \sum_{\mid u)=k} \varphi_{1}(u) \operatorname{dim}(u, v) \\
& \text { 1) }(1-\tau) C_{T}(\varphi)(v) .< \\
& \sum_{k=0}^{n+1} \frac{\tau^{k}(1-T)^{n+1-k}}{(n+1-k)!}\left(\sum_{n=k=k} \sum_{\rho r k} \varphi_{1}(x) \operatorname{dim}(\rho, v)\right. \text {. } \\
& \sum_{|\rho|=u-1} \operatorname{dim}(\rho, v) \cdot \sum_{u: u v \rho} \varphi_{1}(v) \\
& \Rightarrow \sum_{k=0}^{n+1} \frac{\tau^{k-1}(1-\tau)^{n-(k-1)}}{(n-(k-1))!} \cdot \tau \cdot \sum_{|\rho|=k-1} \varphi_{1}(\rho) \text { ditec }(\rho, v) \\
& =\tau C_{\tau}(\varphi) \leftarrow
\end{aligned}
$$

In prince iuplies that

$$
\varphi(v)=S_{v}(\vec{\imath} \mid \vec{y}) \leftarrow
$$

are not extreme the class of S_{v} 's

$$
C_{\tau}: \varphi_{\beta, \alpha} \rightarrow \varphi_{\tau \beta, \alpha}
$$

is nor tue same as $\left.\quad \varphi_{\beta, \alpha}\right)$

Inoleed?

$$
\begin{aligned}
C_{\tau}\left(S_{v}\right)= & \sum_{k=0}^{u}\binom{n}{k} \tau^{k}(1-\tau)^{n-k} \\
& \cdot \sum_{|u|=k} \frac{S_{u} \varphi P L(v)}{\varphi P l(u)} \cdot \frac{\operatorname{dim} u \operatorname{dim}(u, v)}{\operatorname{div} v}
\end{aligned}
$$

$$
=\sum_{k=0}^{u} \frac{\tau^{k}\left(1-\overline{)^{n-k}}\right.}{(u-k)!} \cdot \sum_{|u|=k} S_{u}^{\prime} \cdot \operatorname{dim}(u, v)
$$

has a simplification which prevents this for bling of the form $S_{v}(\vec{\Lambda} \mid \vec{y})$ for mother V
y)

YIF
$q-y F$
2

Clove fruit, ring
(live symme; frunct. but for y / F)

$$
\begin{aligned}
& R=\text { noweom. poly's in } X_{1} Y \\
& w=1^{k_{t}} 27^{k_{t-1}} 2 \ldots 1^{k_{1}} 21^{k_{0}} \\
& h_{\omega}=X^{k_{0}} y X^{k_{1}} \ldots X^{k_{t}}
\end{aligned}
$$

(Reverse!)
$R_{n}-\operatorname{deg} n$
$R_{\infty}=$ inductive limit

$$
\begin{array}{r}
R_{n} \longmapsto R_{n} X \subset R_{n+1} \\
R_{\infty}=R / X-1<f \longmapsto \frac{f X^{\infty} \in R_{\infty}}{\swarrow} \\
\varphi \text { on } R_{\infty}, \quad \varphi(f)=\varphi(f X)
\end{array}
$$

$$
\underline{X X, Y, Y X X X Y} \rightarrow \underbrace{\left(x_{1} x_{2} y_{3} y_{4} x_{5} x_{6}\right.} y_{7})
$$

Let $P_{n}=\operatorname{det}\left|\begin{array}{ccccc}x & y & & & 0 \\ 1 & x & y & & 0 \\ 1 & x & y & & y \\ 0 & & & -1 & y\end{array}\right|$

$$
\begin{aligned}
& \sum_{b}(-1)^{b} a_{b(1), 1} a_{2(2), 2} \cdots a_{b(2), n} \\
& P_{n+1}=P_{n} X-P_{n-1} Y \\
& Q_{0}=4 \\
& Q_{n+1}=\theta_{n} x-Q_{n-1} Y \\
& a=\begin{array}{l}
\left|\begin{array}{c}
y \\
x x \\
x
\end{array}\right| \neq 0 \\
=y y-x y
\end{array} \\
& Q_{0} X=X Q_{0}+Q_{1} R_{y X=x y+y x-x y()} \begin{array}{c}
Q_{0}=Y
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P_{n} X=P_{n+1}+P_{n-1} Q_{0} \\
& Q_{n} X=Q_{n+1}+Q_{n-1} Q_{0}
\end{aligned}
$$

Scluer Poly's (clove version)

$$
S_{0}=P_{k_{0}} Q_{k_{1}} \ldots Q_{k_{t}}, v=1^{k_{t}} 2.2121^{k_{1}}
$$

(same def as before, hut wow comitative)

Comut. rer. $(t) \Rightarrow$

$$
S_{w} X=\sum_{v>w} S_{v} \leftarrow y \not F \text { branding }
$$

φ an R sut.

1) $\varphi(f X)=\varphi(f) \quad \varphi(V)=\varphi\left(S_{v}\right)$
2) $\varphi(2)=2$
3) $\varphi\left(S_{V}\right) \geqslant 0$
p - functions.

$$
v=1^{k_{t}} 21^{k_{t-1}} 2 \ldots 21^{k_{0}}
$$

$$
\begin{aligned}
p_{v} & \doteqdot\left(X^{k_{0}+2}-\left(k_{0}+2\right) x^{k_{0}} y\right) \\
& \ldots\left(x^{k_{t-1}+2}-\left(k_{t-1}+2\right) X^{k_{t-1}} y\right) X^{k_{t}}
\end{aligned}
$$

$$
\begin{gathered}
p_{v} X=p_{1 v} \\
D\left(p_{2 v}\right)=0
\end{gathered}
$$

$$
\begin{aligned}
& u f \div f x \\
& u p_{v}=p_{1 v} \\
& D f=" \frac{\partial}{\partial x} " f \\
& \text { ie. }\left\langle f_{,} u g\right\rangle=\left\langle D f_{g}\right\rangle \\
& \text { where }\left\langle S_{u}, S_{v}\right)=\delta_{u v} \\
& {\left[p_{1} u\right]=I d}
\end{aligned}
$$

$\forall v \in \mathbb{Z}$, we dave $p_{v}=p_{1} \infty$

$$
\begin{aligned}
& \text { Y/: } \quad \delta_{\lambda} \leftrightarrow p_{\rho}=p_{\rho_{2}} \rho_{\rho_{2}}-\cdots \\
& p_{\rho}=\sum_{\lambda} S_{\lambda} \cdot x_{\rho}^{\lambda} \\
& \begin{array}{c}
\lambda \text {-cheracter } \\
\text { of } S_{n}
\end{array} \\
& \text { on } \rho
\end{aligned}
$$

(Det.) $p_{n}=\sum_{v} \frac{X_{u}^{v}}{T} S_{v}$
Wure an explicit prodinet formula (skip)

Recall V],

$$
\varphi_{\alpha \beta}\left(p_{\rho}\right)=\begin{gathered}
\text { preduct } \\
\text { forus }
\end{gathered}
$$

forus
\& very explicit
sare for $Y \mathbb{F}$.

$$
\left(\begin{array}{l}
\varphi_{00}\left(p_{1}\right)=1 \\
\varphi_{00}\left(p_{k}\right)=0, k \geqslant 2
\end{array}\right.
$$

(1) $\varphi_{P l}\left(P_{u}\right)=0$ if u coctains 2

Prosf

$$
\begin{aligned}
& \varphi_{p l}(D f)= n \varphi_{p l}(f) \\
& f \operatorname{deg} n \\
& \varphi_{p l}\left(S_{v}\right)= \frac{\operatorname{diuev}}{n!} \\
& \sum_{w \geq v} \operatorname{dim} w= \operatorname{dimv} \cdot(n+1) \\
&|v|=n
\end{aligned}
$$

$$
\text { because } D \rho_{2 r}=0
$$

(2) Type 1 herm.f. \sim path $7^{\infty} w$

$$
\begin{aligned}
& u=1_{1}^{\infty} 1.1212-122 \cdots-\in 1^{\infty}{ }_{y / F} \\
& T_{\delta_{1}} \rho_{\delta_{2}} \Gamma_{\delta_{3}} \\
& \left.\sqrt{\varphi_{2}\left(P_{n}\right)=\prod_{i=1}^{n^{2}} \prod_{j: \delta_{i} \leqslant d_{j}<\delta_{i+1}}\left(1-\frac{\delta_{i+1}}{d j}\right)}\right)
\end{aligned}
$$

(follows trem explieit formina for cheracters X_{v}^{u}, smip)

So, here the sumeblitity is neatural for α - scumable word, deffice $\varphi_{\alpha}\left(p_{u}\right)$ b-y 3 ave

$$
\varphi_{\alpha}\left(p_{n}\right)=\prod_{i=1}^{m} \prod_{j: \delta_{i} \leqslant d_{j}<\delta_{i+1}}\left(1-\frac{\delta_{i+1}}{d_{j}}\right)
$$

(\& we have $\varphi_{\alpha}\left(p_{1 u}\right)=\varphi_{\alpha}\left(p_{u}\right)$)

Next.

Proog

Defined: $\varphi_{\beta, \alpha}\left(p_{u}\right) \quad \forall \quad 0<\beta \leq 1$

$$
\alpha \in\{1,2\}^{\infty}
$$ Jumantle

Remaining steps
\rightarrow All $\varphi_{\text {Pl }} \& \varphi_{\beta, \alpha}$ are distinct $\rightarrow \varphi_{\beta, \alpha}=$ lime of type 1 verve. f \rightarrow Regularity conditions:
a segmence of tyre $1 \quad \varphi$'s converges to $\varphi_{p l}$ or $\varphi_{\beta \alpha}$ iff...
(1) Line $\pi\left(v^{n}\right)=0$
(2) $V^{n} \rightarrow \alpha$ swuneible, and $\pi(\alpha)^{-1}$ lim $\pi\left(V^{n}\right) \rightarrow \beta>0$

Theorm If u^{n} is reguiar then
(1) $\varphi_{v^{n}}\left(f X^{n-m}\right) \rightarrow \varphi_{P l}(f)$
(2) $\varphi_{v^{n}}\left(f x^{n-n_{n}}\right) \rightarrow \varphi_{\beta \alpha}(f)$

Q these are all possoble limits of Larm. f's
(so, martiu boundary)

(12)

Plandverel uneovre on Young diagram
(12.1) Recall what we know

$$
M_{n}(\lambda)=\frac{(\operatorname{dim} \lambda)^{2}}{n!}
$$

\rightarrow Biregular representation of $\delta(\infty)$
\rightarrow Seen to 1
\rightarrow Hook formula

$$
\operatorname{dim} \lambda=\frac{n!}{\prod_{\square \in \lambda} h(p)}
$$

\rightarrow sup recursion for dim λ
\rightarrow Plamherel growth proctors
\longrightarrow Transition distrúbution: where do we add a box?

RT $(G, k)=(S(\infty) \times S(\infty), \operatorname{diag} S(\infty))$
acts in $\ell^{2}(K) \rightarrow f(g) \mapsto f\left(h_{1}^{-} g h_{2}\right)$

$$
\left(h_{1}, h_{2}\right) \in G
$$

K-inu. vector.

$$
\begin{aligned}
& \xi(g)= \begin{cases}1, & g-e \\
0, & \text { else }\end{cases} \\
& (T(h, e) \xi, \xi)=\varphi(h)=\begin{array}{l}
\text { Plarupel } \\
\text { everacher }
\end{array} \\
& \text { curcacter } \\
& =1_{h=e} \text { funct } \\
& \begin{array}{l}
\text { funct } \\
\text { ou } \\
S(\infty)
\end{array}
\end{aligned}
$$

> Planchorel theorem

$$
\text { Then } c_{\lambda}=\frac{(\operatorname{dim} \lambda)^{2}}{n!}
$$

Plevel. Growth.

$$
\mu=x+2
$$

$$
\begin{aligned}
P(\lambda & \rightarrow \mu) \\
& =\frac{\operatorname{div} \mu}{\operatorname{dim} \lambda \cdot(u+1)}
\end{aligned}
$$

$$
\varphi_{p l}(\lambda)=\frac{\operatorname{dim} \lambda}{n!}
$$

$$
p(\lambda \rightarrow \lambda+\nu) \leftarrow \text { uhere? }
$$

(12-2) Plaweherel meararre \&
Longest increasing suloseg's
(history \& notivation for
Limit shape)
(a) LIS (n)
(b) $\lambda_{1} \sim \operatorname{Planch}(v)$
(= time to board tue airplane)

$$
\begin{aligned}
& \uparrow
\end{aligned}
$$

$$
\begin{aligned}
& 6 \in 5 m \\
& \sigma_{0}=\left(b_{1} b_{2} \ldots . \sigma_{n}\right) \\
& 3256471 \\
& \left(\begin{array}{c}
\operatorname{LIS}(6)=\begin{array}{l}
\text { length } \\
\text { of wogest } \\
\text { iver. } \\
\operatorname{LIS}=4 . \\
\text { sibseg. }
\end{array}
\end{array}\right.
\end{aligned}
$$

\exists Dynariecal prosaming to find LIS
$\operatorname{LIS}(n)=$ randon var., $=\operatorname{LIS}(b), b \in S_{n}$ wiforul

RSk
(1) Bijection
$S(n) \longleftrightarrow$?
(2) LIS matehing

Prop (wlo proof)
$\operatorname{LIS}(b)$ algorithen in $O\left(u \cdot \operatorname{leg}_{n} n\right)$ time

$$
B=325694718 \quad \in S_{q}
$$

RSK bijection (Robiuson - Scluenstled - Kauth)

RS

Planeveriel randoum λ

$$
\begin{aligned}
& \text { eherel raudom } \lambda \\
& =\text { Shrpe (RS - iweye) of } \\
& \text { uniforin o } \in S_{n}
\end{aligned}
$$

uniforin $\sigma \in S_{n}$

Def. (RS)

$$
325694718
$$ tablear

Why bijeckion? Cau ibwerts eack step

Problem

$$
n \text {-large, } \lambda=\Gamma
$$

how does wirforat $2 \in S_{n}$ wore like, given shape (R S(G)) $=\lambda$

6

$\operatorname{LIS}(b)=$ function (P, Q) (only depends

$$
=\lambda_{1}
$$

$$
6=325694718
$$

Shadow lines (Sagan 2000)

$$
\text { Leman } \quad \vdots \quad 3256944718
$$

- 7 水 (2569)

$$
(2569)
$$

Then this is the first row
of I after inserting

$$
b_{1}, b_{2}, \ldots b_{k}
$$

Proof. Induction on k, easy exercise evolution of equilvallut to the intersections first bumping leave (w|O pref)
timi't skape probkm

$$
n \rightarrow \infty, \quad M_{n}(\lambda)
$$

$\operatorname{LIS}(u) \sim 2 \sqrt{n}$

Henristies: the snage should have $\max _{\lambda \in \vartheta_{n}}(\operatorname{dim} \lambda)$
won foruuta

Recall
Plenderel measure on parititiny

$$
m_{n}(\lambda)=\frac{(\sin \lambda)^{2}}{n!}
$$

RSK
$\stackrel{d}{ }$ leugzin of LIS
of vuif. $b \in S_{n}$

$$
n!=\sum_{\lambda}(\operatorname{dim} \lambda)^{2}
$$

(KSK) $\prod_{i, i,=1}^{N} \frac{1}{1-x_{i} y_{j}}=\sum_{\text {all } \lambda} S_{\lambda}\left(x_{1}-x_{N}\right) s_{\lambda}\left(y_{1} \ldots y_{N}\right)$
Caunthy idectity

$$
\frac{\lambda_{1}}{\sqrt{n}} \rightarrow 2, n \rightarrow \infty
$$

timi't skape probkm

$$
n \rightarrow \infty, \quad M_{n}(\lambda)
$$

$\operatorname{LIS}(u) \sim 2 \sqrt{n}$

Henristies: the snage should have $\max _{\lambda \in \vartheta_{n}}(\operatorname{dim} \lambda)$
won foruuta
we will book for $\operatorname{dim} \lambda \rightarrow \max$

$$
\operatorname{dim} \lambda=\frac{n!}{\prod_{\square} h(\square)}
$$

so $\quad \prod_{\square} h(D) \rightarrow$ min
$\Leftrightarrow \sum_{D \in \lambda} \log h(D) \rightarrow$ min
idea, $\sum_{\square \in \lambda} \approx \iint_{\text {inside } \lambda} d x d y$

(12.3) hook functional \& minimizer
\rightarrow VKLS shape

Ref. $\Omega(v)=\left\{\begin{array}{c}\frac{2}{\pi}\left(u \arcsin \frac{u}{2}+\sqrt{4-u^{2}}\right), \\ |u|, \quad|u| \geqslant 2\end{array}\right.$

Notes. $\Omega^{\prime}(u)=\frac{2}{p} \arcsin \left(\frac{x}{2}\right)$ slope

(2) $\left.\quad \int_{-2}^{2}(\Omega(u)-\mid u)\right) d u=2$
(exercise, area)

Def. $A(w):=\frac{1}{2} \iint_{v<u} d(u-w(u)) d(v+w(v))$
"contiluial young diagram"

Exercise (nw)
$A(w)$ is tue same as

$$
\frac{1}{2} \int(u(u)-|u|) d u
$$

Def. $w(x)-\operatorname{costin}) y-D$.

Def. $w(u)-c \cdot y \cdot d$ if

$$
\rightarrow \mid w^{\left.\left(u_{1}\right)-w\left(u_{2}\right)|\leq| u_{1}-u_{2}\right) \quad \forall u_{1}, u_{2}}
$$

$\rightarrow|n(x)|=|n|$ for large w

Wote: $y \cdot d .(\lambda) \rightarrow \omega_{\lambda}(u)$

$$
w_{\lambda}^{\prime}(u)= \pm 1
$$

anel lout. Y-d. are uniform lowits of vescaled wi sit twe area is 1.

Goal, $\quad \sum_{D \in \lambda} \operatorname{leg} h(D)=$

$$
=\int_{\substack{\text { below } \\ w(e)}} \operatorname{lengtu}\left(\sum_{x, y}\right) d x d y
$$

Hook integral

$$
\lambda \longmapsto \prod_{n \in \lambda} h(\square)
$$

(but in a contimens setting)

$\Pi h(a) \longrightarrow \sum \log h(\square)$

$$
|X| \leq Y \leq w(X)
$$

Coordivates u>v

$$
h(x, y)=
$$

$$
\begin{aligned}
& \operatorname{cog} L^{0} \\
& y \\
& \text { dovidg }_{d_{\text {sd }}}\left\{\begin{array}{l}
y=w(u)-u \\
x=w(v)+v
\end{array}\right\} \\
& d x d y=d(u-w / u)) \\
& \text { - d }(v+w(v))
\end{aligned}
$$

$$
\begin{aligned}
t & =s+(w(u)-u)=s+y \\
t & =-s+(v+w(s))=-s+x \\
s+y & =-s+x, \quad s=\frac{x-y}{2} \\
t & =\frac{x+y}{2} \\
h(x, y) & =-2 t+w(u) t w(v) \\
& =w(u)+(w) v)-x-y=(u-v
\end{aligned}
$$

\Downarrow
To minimize :
109 of hoot varta
$\theta(\omega)$

$$
=1+\frac{1}{2} \iint_{v<n} \log (u-v) d(u-w(u)) d(v+w(v))
$$

under the area constraint

$$
\left.A(w)=\frac{1}{2} \iint_{V<w} d(v+w \mid v)\right) d(u-w(u))=1
$$

[Logan - Shepp 1977]
[Vershik-Kerov 1977]

$$
\Omega(u) \text { - vkLS lioutt }
$$ sherpe

(12.4) VKLS shape as unigue rexwimizer
let $f(u)=w(u)-\Omega(u)$

$$
\begin{gathered}
\Omega(u)=\frac{2}{n}\left(u \arcsin \frac{u}{2}+\sqrt{4-u^{2}}\right) \\
|u| \leqslant 2
\end{gathered}
$$

Then:

$$
\begin{aligned}
& \theta(w)=-\frac{1}{2} \iint_{u, V \operatorname{ang}} \log |u-v| f^{\prime}(u) f^{\prime}(v) d u d v \\
& \quad+2 \int_{\|+f} f(u) \operatorname{arccosh}\left|\frac{u}{2}\right| d u \\
& (u \mid>2 \\
& (\Rightarrow \theta(\Omega)=0)
\end{aligned}
$$

Proof
$\operatorname{arccosh} x=$

$$
\begin{aligned}
& \theta(\Omega+f)=\frac{e^{x}+e^{-x}=2 t}{=1+\frac{1}{2} \iint_{v<u} \log (u-v) d(u-f(u)-\Omega(u)) .} \\
& 0 d(v+\Omega(v)+f(v)) \\
& =1-\frac{1}{2} \iint_{v<u} \log (u-v) f^{\prime}(u) f^{\prime}(v) d u d v \\
& \quad+\text { rest }
\end{aligned}
$$

$\underline{\text { Rest }}=1+\frac{1}{2} \iint_{v<u} \log (u-v)=$

$$
\begin{aligned}
& \cdot {\left[1-\Omega^{\prime}(u)-f^{\prime}(u)+\Omega^{\prime}(v)+f^{\prime}(v)\right.} \\
&-\Omega^{\prime}(u) \Omega^{\prime}(v)+ \\
&\left.-\Omega^{\prime}(u) f^{\prime}(v)-\Omega^{\prime}(v) f^{\prime}(u)\right]
\end{aligned}
$$

"Calculus" gives -1
Then, $\frac{1}{2} \iint_{v<u} \log (u-v)\left\{\begin{array}{l}-f^{\prime}(u)+f^{\prime}(v) \\ \\ -\Omega^{\prime}(u) f^{\prime}(v) \\ \\ \left.-\Omega^{\prime}(v) f^{\prime}(u)\right\}\end{array}\right.$
// more "Call."

$$
2 \int_{|u|>2}^{\pi} f(u) \operatorname{arccosh}\left|\frac{u}{2}\right| d u
$$

Sobeler Norm $\|f\|_{\mathrm{g}}^{2}=\iint\left(\frac{f(s)-f(t)}{s-t}\right)^{2} d s d t$ \square
$f \longmapsto \hat{f}$ Rourier

$$
\|f\|_{\theta}^{2}=\frac{1}{2} \int_{R}|\xi|\left(\left.\hat{f}(\xi)\right|^{2} d \xi\right.
$$

Milbelt transform

$$
\begin{aligned}
(H f)(s) & =-\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(t) d t}{s-t} \\
& =-\frac{1}{\pi} \int_{\mathbb{R}} f^{\prime}(t) \log (s-t) d t \\
\widehat{H f}(\xi) & =-i \cdot \operatorname{sigu} \xi \cdot \hat{f}(\xi)
\end{aligned}
$$

$$
\begin{aligned}
& \int(\underbrace{\left(\int \log |x-v| f^{\prime}(u) d u\right.}_{u f}) \cdot f^{\prime}(v) d v \\
& \left\langle\widehat{k f}, \widehat{f^{\prime}}\right\rangle \\
& 11 \\
& \langle i \operatorname{sigu}\} \cdot \hat{f}(\xi) \text {, is } \hat{f}(\xi)\rangle \\
& =\frac{\int_{\mathbb{R}}|\xi| \cdot(\hat{f}(\xi))^{2} d \xi}{\text { Norm }} \\
& \text { (Soboles) }
\end{aligned}
$$

we anly reed

$$
-\iint \log f^{\prime} f^{\prime}>0
$$

for $f \neq 0$
\sqrt{V}

$$
\begin{aligned}
& \theta(w=f+\Omega) \\
& =\underbrace{\|f\|_{\theta}^{2}+2 \int_{|u|>2} f(u) \operatorname{arctorn}\left|\frac{\sim}{2}\right| d u}_{>0 \text { if } f \neq 0} \\
& =0 \quad \text { if } f=0
\end{aligned}
$$

$\Rightarrow w=\Omega$ is the unique minimizer
\Rightarrow

$$
\max (\operatorname{dim} \lambda) \simeq \lambda \asymp \operatorname{vKLS}
$$

$$
\text { let } \quad w_{\mu}=\Omega+\underbrace{}_{\substack{\varepsilon \\ \text { correction } \\ \\ \\ u \text { large }}}
$$

$$
\underbrace{\theta\left(w_{\mu}\right)}_{2} \asymp \varepsilon_{2}
$$

$\frac{(\text { dim } \mu)^{2}}{n!} \ll \operatorname{maximal}_{\text {value }}^{\text {vil }}$

Went : $P(\mu$ las shape

$$
\begin{aligned}
& \simeq \Omega+\varepsilon f \\
& e^{-n^{\alpha} \varepsilon}
\end{aligned}
$$

Plaucberel measure

VKLS shaple

Proved: Ω - unique minueiver of the hoop fursctional
$\theta(\omega)$

$$
=1+\frac{1}{2} \iint_{v<n} \log (u-v) d(n-\omega(n)) d(v+(v(v))
$$

under the area constraint

$$
\left.A(w)=\frac{1}{2} \iint_{V<\omega} d(v+w \mid v)\right) d(\mu-w(u))=1
$$

So, Plauntioel probability is maximized on Ω

$$
\left[\begin{array}{ll}
V_{k} & 1977 \\
V_{k} & 1985^{\circ}
\end{array}\right]
$$

Also showed

$$
\begin{aligned}
\theta(w)=\| w & -\Omega \|_{S}^{2}+ \\
& +2 \int_{|u|>2} f(w) \operatorname{arccosh}\left|\frac{u}{2}\right| d u
\end{aligned}
$$

Fart: $\quad\|f\|_{S}^{2}=\iint \frac{f(s)-f(t)}{s-t} d s d t$
\geqslant Cost. $\|f\|_{\text {unif }}$
12.5. Limit shape

Next, we show:

in probab; uniform

Precisely:

$$
\begin{aligned}
& M_{n}\left(\lambda: \sup _{u \in \mathbb{R}}\left|w_{\lambda}(u)-\Omega(u)\right|>\right. \\
&\left.>\varepsilon n^{-1 / 6}\right) \rightarrow 0 \\
& u \rightarrow \infty
\end{aligned}
$$

$$
(\text { conv.in piobab.) }
$$

Prof.

$$
\begin{aligned}
\sum_{\lambda=}(\operatorname{dim} \lambda)^{2}= & n! \\
& n \\
& \left(\frac{n}{e}\right)^{n} \cdot P_{0} l y(n) \\
& \sim e^{n \cdot \log n}
\end{aligned}
$$

is $\frac{1}{4 n \sqrt{3}} e^{\frac{2 \pi}{\sqrt{6}} \sqrt{n}} \sim e^{c \sqrt{n}}$

Cuax dime is $\sim e^{\frac{1}{2} n \log n-c_{1} n-c_{2} \sqrt{4} t}$

$$
\begin{aligned}
& -\log \left[M_{n}(\lambda) / \sqrt{n!}\right] \\
& =2 n \underbrace{\theta\left(\omega_{\lambda}\right)}_{\text {万ovee fouchional }}+\sqrt{n} \eta\left(\omega_{\lambda}\right)
\end{aligned}-\frac{1}{2} \log n+O(1) .
$$

hook
functional

$$
\begin{aligned}
\left\|\omega_{\lambda}-\Omega\right\|_{C} & >\varepsilon \\
\theta\left(\omega_{\lambda}\right) & >\varepsilon \text {-coust } \quad(\text { recall } \quad \theta(\Omega)=0)
\end{aligned}
$$

$$
M_{n}\left(\left\|\omega_{\lambda}-\Omega\right\|_{c}>\varepsilon\right) \longrightarrow 0
$$

because if

$$
\left\|\omega_{\lambda}-\Omega\right\|_{c}>\varepsilon \quad \Longrightarrow \quad \theta\left(\omega_{\lambda}\right)>\varepsilon_{1}
$$

then $(\text { dim } \lambda)^{2} \leqslant e^{n \log n-2 \varepsilon_{1} n}$

$$
\& \quad P(\text { siveh } \lambda) \leq e^{-2 i s n} \longrightarrow 0
$$

\&Alse can frove that

$$
W_{\lambda^{(n)}} \longrightarrow \Omega \underset{\substack{\text { alwast } \\ \text { surely }}}{\text { alt }}
$$

Cordlay (LIS)
$\zeta \in S_{u} \quad$ vu=formes raudan
Than $\frac{\operatorname{LIS}(b)}{\sqrt{n}} \xrightarrow[(1977)]{\text { P, a.s. }} 2, w+\infty$

$$
1999 \quad \operatorname{LIS}(6)=2 \sqrt{n}+\xi w^{-1 / 6}
$$

Bail-Derff Johansson

Matrix / $/ \mathbb{C}$, Nerwition, $N \times N$ lid rauchoun $\quad N \rightarrow \infty$

$$
\lambda_{\text {wax }} v 2 \sqrt{N}+N^{-1 / 6} \cdot \xi_{T \omega}
$$

More precise statement about $\operatorname{dim} \lambda$:

$$
\left[\begin{array}{ll}
V k & 1985
\end{array}\right]
$$

$\max _{x} \operatorname{dim} \lambda \supseteq \sqrt{n!} e^{-\frac{c}{2} \sqrt{n}}$ λ
up to constants,

$$
\begin{array}{r}
\exists c_{1}, c_{2}, \\
\frac{1}{\sqrt{n}} \log (\operatorname{din} \lambda / \sqrt{n}!) \rightarrow ?
\end{array}
$$

Conjecture $\left[\begin{array}{rl} & 1985] \text {, open }\end{array}\right.$ if $\lambda^{(n)} \sim$ Plancherel (n), then

$$
\frac{2}{\sqrt{n}} \log \frac{\operatorname{din} \lambda^{(n)}}{\sqrt{n!}} \rightarrow c \text { exists, } n \rightarrow \infty
$$

$\binom{C$ - should be between }{0.3 and 2.5}

$$
\begin{array}{r}
\sum_{\Lambda} \operatorname{dim} \Lambda=t_{N}, \text { где } t_{N} \sim \operatorname{const} \cdot \hat{\left(\frac{N}{e}\right)^{n / 2} \cdot e^{\sqrt{N} \bar{N}}} \\
t_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} \frac{(2 k)!}{k!2^{k}} \\
\sum_{\lambda}(\operatorname{dim} \lambda)^{\beta}
\end{array}=F_{n, \beta} \quad \begin{aligned}
\beta=0, \quad F_{n} & =e^{c \sqrt{n}} \\
\beta & =2 \quad F_{n, 2}=n!
\end{aligned}
$$

13. Hydrodynamics of Plancherel growth
13.1 Rerav interlacoly coordinates

$$
\begin{aligned}
& x_{k}=j_{k}-i_{k} \\
& y_{k}=j_{k}-i_{k} \\
& C(\square)=j-i
\end{aligned}
$$

Lenua. $x_{1}>y_{2}>x_{2}>y_{2}>\ldots>y_{d-1}>x_{d}$
(Comnectien to [random] matrices) \& ortwgoved johynomials

Fact (1)

$$
\begin{aligned}
& H \text { - } N \times N \text { liermition } \\
& H^{\top}=H^{*} \\
& \lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant x_{\sim} \quad-e_{1} \cdot . \\
& \text { We } \\
& \tilde{H} \rightarrow \mu_{1} \geqslant \mu_{2} \geqslant{ }_{1} \\
& \geqslant \mu v+
\end{aligned}
$$

(exercíse)
Then $\lambda_{1} \geqslant \mu_{1} \geqslant \lambda_{2} \geqslant \rho_{2} \geqslant \cdots \geqslant \mu_{N-1} \geqslant \lambda_{N}$

(2) $p(z)=\pi_{1}^{N}\left(z-\lambda_{i}\right) \quad\binom{$ reed }{ reats }

$$
p^{\prime}(z)=\prod_{1}^{N-1}\left(z-\mu_{i}\right)
$$

Then μ, λ iuterlace

Farts about $\quad \vec{x} / \vec{y}$.

1) (local) mama / maxima
2) $\sum_{1}^{d} x_{i}=\sum_{1}^{d-1} y_{j} \quad$ (induction)
3) $|\lambda|=\operatorname{area}=\sum_{i<j}\left(y_{i}-x_{i}\right)\left(x_{j}-y_{j}-1\right)$

13.2 Plankeres growth process (Doug graph story) Recall $\left\{M_{n}\right\}$ - oterent

Then $\mu \sim M_{n-1}$
Define $P^{\top}(\mu, \lambda)=P(\lambda \mid \mu)$ wnderthis couch distr.

$$
=\frac{M_{n}(\lambda) p^{\Downarrow}\left(\lambda_{1} \mu\right)}{M_{n-1}(\mu)}
$$

$p^{\hat{i}}$ depluds ou M_{n}.

$$
p_{\text {Plancherel }}^{\uparrow}(\lambda, \nu)=\frac{\operatorname{din} \nu}{(|\lambda|+1) \operatorname{dim} \lambda}
$$

$\left(P^{\downarrow} \longleftrightarrow\right.$ hook valin algo

(k+2 piek a unit random SYT of snape λ (hoout walk)

RSk -insert "letter" $x+\frac{1}{2}$ ilto tabkaun, where $k \in\left\{1,2, \ldots 7^{n}\right\}$.

Proprosition $\quad \frac{\prod_{j=1}^{d-1}\left(u-y_{j}\right)}{\prod_{i=1}^{d}\left(u-x_{i}\right)}=\sum_{i=1}^{d} \frac{\pi_{i}^{\uparrow}}{u-x_{i}}$

$$
\frac{\prod_{i=1}^{d}\left(u-x_{i}\right)}{\prod_{j=1}^{d-1}\left(u-y_{j}\right)}=u-\sum_{j=1}^{d-1} \frac{\pi_{j}^{\downarrow}}{u-y_{j}}
$$

Then:

$$
\rho^{\top}\left(\lambda_{1} \nu\right)=\pi_{i}^{\uparrow}, \quad P^{\downarrow}(\lambda, \mu)=\pi j / 1 \lambda 1
$$

Draef. (formala for π_{i})

$$
\begin{aligned}
& \frac{\prod_{j=1}^{d-1}\left(u-y_{j}\right)}{\prod_{i=1}^{d}\left(u-x_{i}\right)}=\sum_{i=1}^{d} \frac{\pi_{i}^{\uparrow}}{u-x_{i}} \\
& \prod_{j}\left(u-y_{j}\right)=\sum_{i=1}^{d} \prod_{i} \prod_{j \neq i}\left(u-x_{j}\right) \\
& u=x_{i}
\end{aligned}
$$

Def. Transition distribution $\left(\pi^{\uparrow}\right)$ of λ
$(=$ probab on $\mathbb{R})$

Natural questions:

$\lambda \sim$ Planglevel,	n large
$\pi^{T}(\lambda) \sim$	\sim

(2) Rsk-insertion path?

? n^{\uparrow} for cout, curre? LHee Ω
13.3 Tramsition preibalilities of contimal y, d.
w :

$$
\begin{aligned}
& |w(x)-w(y)| \leq \mid x-y) \\
& \left.w(x)=\mid x-x_{0}\right) \forall \text { large } x \\
& \left(x_{0}-\text { cenfer }\right)
\end{aligned}
$$

$\left.w(u) \leadsto \sigma(u)=\frac{1}{2}(w \mid u)-|u|\right)$
(1) $b^{\prime} \exists$ a.e.
$\left|\sigma^{\prime}\right| \leq 1$. b^{\prime} comp. supp.
(2) ω is dettermiled by o' or $3^{\prime \prime}$
($b^{\prime \prime}$ - discrete mersure)

Example

Def.

$$
\begin{aligned}
& \tilde{p}_{k}=\int_{-\infty}^{+\infty} x^{k} \sigma^{\prime \prime}(x) d x \\
& =-k \int_{-\infty}^{+\infty} x^{k-1} \sigma^{\prime}(x) d x \\
& k=1,2, \ldots \\
& x_{0}=\tilde{p}_{1}
\end{aligned}
$$

Facts (1) $x_{0}=\tilde{\rho}_{1}$
(2) area $=\frac{1}{2}\left(\widetilde{\rho_{2}}-\widetilde{\rho}_{1}^{2}\right)$

Fer discrete y.d.

$$
\tilde{P}_{k}(w)=
$$

Def. object tron symun.

$$
\begin{aligned}
S(z) & =\sum_{n=1}^{\infty} \frac{\tilde{p}_{n}(w)}{n} z^{-n} \\
& =\int_{R} \frac{\sigma^{\prime}(x) d x}{z-x}
\end{aligned}
$$

Stiltjes transform

Fact. Ω has

$$
\tilde{P}_{2 m-1}(\Omega)=0, \quad \tilde{\rho}_{2 m}(\Omega)=\binom{2 m}{m}
$$

$$
\widetilde{p_{2 m}}=-2 \int_{\mathbb{R}^{+}} \sigma^{\prime}(u) d u^{2 m}=\int_{0}^{2}\left(1-\frac{2}{\pi} \arcsin \frac{u}{2}\right) d u^{2 m}
$$

The substitution $u=2 \sin \varphi$ and integration by parts imply

$$
\begin{aligned}
\widetilde{p_{2 m}} & =2^{2 m} \int_{0}^{\pi / 2}(1-2 \varphi / \pi) d \sin ^{2 m} \varphi=2^{2 m-1} \pi \int_{0}^{\pi / 2} \sin ^{2 m} \varphi d \varphi= \\
& =\frac{2^{2 m}(2 m-1)!!}{(2 m)!!}=\frac{(2 m)!}{m!m!},
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \quad S(z)=\log \frac{z}{2}+\log \left(z-\sqrt{z^{2}-4}\right) \\
(|z|>2)
\end{gathered}
$$

Def. Transition distribution

$$
\begin{aligned}
& \begin{array}{ll}
\frac{\prod_{j=1}^{d-1}\left(u-y_{j}\right)}{\prod_{i=1}^{d}\left(u-x_{i}\right)} & =\sum_{i=1}^{d} \frac{\pi_{i}^{\uparrow}}{u-x_{i}}
\end{array} \quad \begin{array}{l}
\left\{\eta_{i}\right\} \\
\text { (for discrete) }
\end{array} \\
& \exp \left\{\sum_{j} \log \left(u-y_{j}\right)-\sum_{i} \log \left(u-x_{i}\right)\right\} \\
& =\exp S(u)
\end{aligned}
$$

Def. Transition probability of w is $d_{t}{ }^{\dagger}(u)$, where

$$
\exp S(z)=\int_{\mathbb{R}} \frac{d \pi^{t}(x)}{1-x / z},
$$

for large enough $\mid z$)

Recall symu. f -

$$
\begin{aligned}
& \varphi \times p \sum_{k \geqslant 1} \frac{p_{k}}{k} t^{k}=\sum_{n=0} h_{n} t^{u} \\
& \tilde{U}^{\|} \\
& \bar{h}_{n}=\text { moments of } \pi^{\uparrow}
\end{aligned}
$$

Prop. $\Omega \leadsto \rightarrow^{T} \leadsto$ has density

$$
\frac{1}{2 \pi} \sqrt{4-z^{2}}, \quad|z| \leq 2
$$

the moments have the form

$$
\begin{equation*}
h_{2 m+1}=0, \quad h_{2 m}=\frac{1}{m+1}\binom{2 m}{m} ; \quad m=0,1,2, \ldots \tag{3.4.7}
\end{equation*}
$$

The moment generating function of the semicircle distribution equals

$$
\begin{equation*}
H(x)=\frac{x}{2}\left(1-\sqrt{1-(2 / x)^{2}}\right), \quad x>2 \tag{3.4.8}
\end{equation*}
$$

Proof. Clearly, all odd moments vanish. The substitution $u=2 \sin \varphi$ implies

$$
\begin{aligned}
h_{2 m} & =\frac{1}{2 \pi} \int_{-2}^{2} u^{2 m} \sqrt{4-u^{2}} d u=\frac{2^{2 m+2}}{\pi} \int_{0}^{\pi / 2}\left(\sin ^{2 m} \varphi-\sin ^{2 m+2} \varphi\right) d \varphi= \\
& =\frac{2^{2 m+2}}{\pi} \cdot \frac{\pi}{2}\left(\frac{(2 m-1)!!}{(2 m)!!}-\frac{(2 m+1)!!}{(2 m+2)!!}\right)=\frac{1}{m+1}\binom{2 m}{m}
\end{aligned}
$$

It follows from the binomial identity that

$$
\frac{1}{s}\left(1-\sqrt{1-s^{2}}\right)=\frac{s}{2} \sum_{m=0}^{\infty} \frac{(2 m-1)!!}{(2 m)!!} \frac{s^{2 m}}{m+1}
$$

Using the substitution $s=2 / x$ and the formula (3.4.7) which had been proved above, we derive

$$
H(x)=\sum_{m=0}^{\infty} h_{2 m} x^{-2 m}=\frac{x^{2}}{2}\left(1-\sqrt{1-(2 / x)^{2}}\right)
$$

Re call

$$
\begin{aligned}
& p^{T}(\lambda, \nu)=\frac{d: m \nu}{(1 \lambda)+1) d \text { thru } \lambda,} \begin{array}{r}
\text { Plawherel } \\
\text { growth }
\end{array} \\
& \phi^{\uparrow}\left(\lambda, \lambda+\square_{x_{i}}\right)=\pi_{i}^{i}, \quad \text { where } \\
& (*)=\sum_{i=1}^{\prod_{i=1}^{d-1}\left(u-y_{i}\right)} \frac{\pi_{i}^{i}}{u-x_{i}}\left(\mu-x_{i}\right)
\end{aligned}
$$

Note: (*) works for an interlacing \vec{x} / \vec{y}, not recess. \mathbb{Z}

$$
\exp (\Sigma \log -\Sigma \log) \quad \int_{\mathbb{R}} \frac{d \pi^{T}(x)}{\mu-x}
$$

Next: $\pi^{\uparrow}(\omega)$ as a distribution
\rightarrow Contivenens version of (t)

$$
\begin{aligned}
& \sum \log \left(u-y_{5}\right)-\sum \log \left(u-x_{i}\right) \\
& \left.\quad=\int \log (u-x) \cdot \mu \operatorname{ld} x\right)
\end{aligned}
$$

13.3 Tramsition prébabilities of continual $y=d$.
$w:$

$$
\begin{aligned}
& |w(x)-w(y)| \leq|x-y| \\
& w(x)=|x| \quad \forall \text { large } x
\end{aligned}
$$

$$
\left.w(u) \sim b(u)=\frac{1}{2}(w \mid u)-|u|\right)
$$

$$
\begin{gathered}
b^{\prime}-\square \\
\square
\end{gathered} \begin{array}{cc}
6^{\prime \prime} & +\delta_{x} \\
b^{\prime \prime} & -\delta_{x}
\end{array}
$$

(1) $b^{\prime} \exists a \cdot e$

$$
\left|\sigma^{\prime}\right| \leq 1 . \quad \sigma^{\prime} \text { comp. subp. }
$$

(2) ω is determiled by σ^{\prime}

$$
\text { or } \quad \sigma^{\prime \prime}
$$

($b^{\prime \prime}$ - discrete mersuse)

Example (rectangular)

$$
\begin{aligned}
& x=(3,-1,-3) \\
& y=(1,-2)
\end{aligned}
$$

Def. $\tilde{p}_{k}=\int_{-\infty}^{+\infty} x^{k} d b^{\prime}(x)$,

$$
k=1,2, \ldots
$$

Farts $(1) \tilde{p}_{2}=0$

$$
\left.\sum_{k} \mid \alpha, \beta\right)=\sum \alpha_{i}^{k}-(-1)^{k} \sum \beta_{i}^{k}
$$

$$
\chi_{\alpha \beta}(k \text { oof } s(\infty)
$$

Feer rectangular Y, d.,

$$
\left(\tilde{p}_{k}(w)=\sum_{i=1}^{d} x_{i}^{k}-\sum_{j=1}^{d-1} y_{j}^{k}\right.
$$

Def. object from symu- f.

$$
\begin{aligned}
S(z): & =\sqrt{\sum_{n=1}^{\infty} \frac{\tilde{p_{n}}(w)}{n} z^{-n}} \\
& =\underbrace{\int_{R 2} \frac{\sigma^{\prime}(x) d x}{z-x}}_{\text {Stiltjes transfarm }}
\end{aligned}
$$

Rect. yod. $\quad \vec{x} / \vec{y}$

$$
\begin{aligned}
& \int_{\mathbb{R}} \frac{f^{\prime}(x) d x}{z-x}=\frac{1}{z} \int_{\mathbb{R}} \sum\left(\frac{x}{z}\right)^{k} \sigma^{\prime}(x) d x \\
& \tilde{p}_{k}=-k \int_{-\infty}^{+\infty} x^{k-1} \sigma^{\prime}(x) d x \\
& -k x^{k-1} d x \\
& =-d x^{k} \\
& \sum_{n=1}^{\infty} \frac{\tilde{\rho}_{n}(\omega)}{n} z^{-n}=\sum_{n=1}^{\infty} \frac{\sum x_{i}^{n}-\sum y_{j}^{n}}{n} z^{-u} \\
& =-\sum_{i}^{d} \log \left(1-x_{i} / z\right)+\sum_{1}^{d-1} \log \left(1-\frac{y_{j}}{z}\right) \\
& =-\sum_{1}^{d} \log \left(z-x_{i}\right)+\sum_{1}^{d-1} \log \left(z-y_{j}\right) \\
& +\log z \\
& =\text { as before } \\
& \rightarrow \int_{\mathbb{R}} \log (z-x) d b^{\prime}(x)
\end{aligned}
$$

$$
\Omega^{\prime}(u)=\frac{2}{p} \arcsin \left(\frac{n}{2}\right), \quad|n| \leq 2
$$

Fact, Ω has

$$
\begin{aligned}
& \tilde{\rho}_{2 m-1}(\Omega)=0, \quad \tilde{\rho}_{z_{m}}(\Omega)=\binom{2 m}{m} \\
& b^{=\frac{1}{2}\left(\Omega^{-|u|}\right)} \\
& \tilde{p}_{z_{2}=-2} \int_{\mathbb{E}+} \sigma^{\prime}(u) d u^{2 m}=\int_{0}^{2}\left(1-\frac{2}{\pi} \arcsin \frac{u}{2}\right) d u^{2 m} .
\end{aligned}
$$

The substitution $u=2 \sin \varphi$ and integration by parts imply

$$
\begin{aligned}
\widetilde{p}_{2 m} & =2^{2 m} \int_{0}^{\pi / 2}(1-2 \varphi / \pi) d \sin ^{2 m} \varphi=2^{2 m-1} \pi \int_{0}^{\pi / 2} \sin ^{2 m} \varphi d \varphi= \\
& =\frac{2^{2 m}(2 m-1)!!}{(2 m)!!}=\frac{(2 m)!}{m!m!},
\end{aligned}
$$

$$
\Rightarrow\left(\begin{array}{l}
\quad \int(z)=\log _{2}+\log _{2}\left(z-\sqrt{z^{2}-4}\right) \\
\sum_{n=1}^{\infty} \sum_{2 n}^{-2 n}\binom{2 n}{n}
\end{array}\right.
$$

Def. Transition distribution

$$
\begin{array}{r}
\frac{\prod_{j=1}^{d-1}\left(u-y_{j}\right)}{\prod_{i=1}^{d}\left(u-x_{i}\right)}=\sum_{i=1}^{d i} \frac{\pi_{i}^{\uparrow}}{u-x_{i}} \quad \begin{array}{c}
\left\{\lambda_{i}^{\uparrow}\right\} \\
\text { (for discrete) }
\end{array} \\
=\exp S(u)=\operatorname{epp}\left(\begin{array}{l}
\sum \log \left(u-y_{j}\right)- \\
-\sum \log \left(u-x_{i}\right)
\end{array}\right. \\
+\log u)
\end{array}
$$

Def. Travsition propability of w is $d t^{t}(a)$, where

$$
\left.\exp (S(z))=\int_{\mathbb{R}} \frac{d \pi^{\dagger}(x)}{1-x / z}\right)
$$

for lange tnougk $\mid z$)

$$
\begin{aligned}
\frac{1}{1-x / z} & =\sum_{n=0}^{\infty}\left(\frac{x}{z}\right)^{n} \\
\beta \text { NeS } & =\sum_{n=0}^{\infty} z^{-n} \int_{\substack{n-t a m e n t}}^{\int x^{n} d \pi^{\top}}
\end{aligned}
$$

\Rightarrow corsesprondence, $\widetilde{P_{n}} \leftrightarrow \pi^{T}$
w

Recall symu.f-
$\pi \frac{1}{1-t x_{i}}$

$$
\operatorname{l\not p}\left(\sum_{k \geq 1} \frac{p_{k}}{k} t^{k}\right)=\sum_{n=0} h_{n} t^{u}
$$

${\widetilde{h_{n}}}^{\| \prime}=$ moments of π^{\uparrow}
w

$$
\begin{aligned}
& \longrightarrow \quad \widetilde{p}_{n}=\underset{\sigma^{\prime \prime}}{ } \\
& \tilde{h}_{n}=\text { momeas of } \pi^{\dagger}(\omega)
\end{aligned}
$$

Prop $\Omega \leadsto \rightarrow^{\uparrow}$ has density

$$
\frac{1}{2 \pi} \sqrt{4-z^{2}},|z| \leq 2
$$

(semicircle law)
$\Omega \longrightarrow$

$$
\begin{aligned}
& S(z)=\log \frac{z}{2}+\log \left(z-\sqrt{z^{2}-4}\right) \\
& e^{S(z)}=\frac{z}{2} \cdot\left(z-\sqrt{z^{2}-4}\right)=z^{2} C\left(\frac{1}{z}\right) \\
& C(z)=\frac{z-\sqrt{4-z^{2}}}{2 z}
\end{aligned}
$$

Catalan numbers g.8.

Proof. Clearly, all odd moments vanish. The substitution $u=2 \sin \varphi$ implies

$$
\begin{aligned}
\widetilde{h}_{2 m} & =\frac{1}{2 \pi} \int_{-2}^{2} u^{2 m} \sqrt{4-u^{2}} d u=\frac{2^{2 m+2}}{\pi} \int_{0}^{\pi / 2}\left(\sin ^{2 m} \varphi-\sin ^{2 m+2} \varphi\right) d \varphi= \\
& =\frac{2^{2 m+2}}{\pi} \cdot \frac{\pi}{2}\left(\frac{(2 m-1)!!}{(2 m)!!}-\frac{(2 m+1)!!}{(2 m+2)!!}\right)=\frac{1}{m+1}\binom{2 m}{m} .
\end{aligned}
$$

It follows from the binomial identity that

$$
\frac{1}{s}\left(1-\sqrt{1-s^{2}}\right)=\frac{s}{2} \sum_{m=0}^{\infty} \frac{(2 m-1)!!}{(2 m)!!} \frac{s^{2 m}}{m+1}
$$

Using the substitution $s=2 / x$ and the formula (3.4.7) which had been proved above, we derive

$$
H(x)=\sum_{m=0}^{\infty} \widetilde{h}_{2 m} x^{-2 m}=\frac{x^{2}}{2}\left(1-\sqrt{1-(2 / x)^{2}}\right) .
$$

2π
because

$$
\frac{1}{m+1}\binom{2 m}{m}=\int_{-2}^{2} \frac{1}{2 \pi} x^{2 m \sqrt{4-x^{2}} d x}
$$

So, in a Plemberel randon pattition, add a box as squiciral disto.

Applaramee of semicirole law $\frac{1}{2 \pi} \sqrt{4-x^{2}} d x$ (wigner, 1950s)

$$
\left(\sum_{\substack{ \\n \times N}}^{\text {eal }}\right.
$$

real sy mum ga Xeiguwalues

$$
N \rightarrow \infty
$$

VKLS $\leftrightarrow S C$ in randon warvices

Rect. Y.d. $\longrightarrow \lambda^{\tau}$

$$
\pi^{\uparrow}(\cdots)
$$

Via rupwents

$$
e^{S(z)}=\int_{\mathbb{R}} \frac{d \pi^{T}(x)}{1-x / z}
$$

$X X^{*} \rightarrow$ eigenardes

13.4 Difflermitial undel of growth ("hydradynomins")

Large scale behavior of Plauckerel grousth.

$$
\begin{aligned}
& \text { Area }=t \quad(\text { time }) \\
& \|_{\mathbb{R}} \\
& \int_{t} \delta_{i}(z) d z, \sigma_{t}(z)=\frac{\left.w_{t}(z)-\mid z\right)}{2}
\end{aligned}
$$

Let $T_{t}(z)=\frac{\partial}{\partial t} \sigma_{t}(z)$,
So $\quad \int_{\mathbb{R}} \frac{\left.T_{t} \mid z\right)}{\Pi} d z=1$
probab. distribution

At each time t, want that w_{t} "grows by" $\pi^{\top}\left(\omega_{t}\right)$, i.e.

$$
d \pi^{\top}\left(w_{t}\right)(z)^{\text {density }}=T_{t}(z) d t
$$

lequarity of 2 probab. distr.)
(∞-dim. ODE ru space of cont. diagrams)

Forus of ditf. eq. for w_{t}
(1)

$$
\begin{aligned}
\exp & \int_{\mathbb{R}} \frac{\sigma_{t}^{\prime}(x) d x}{z-x}= \\
& =\int_{\mathbb{R}} \frac{\partial_{t} \sigma_{t}(x) d x}{1-u / x}
\end{aligned}
$$

for large $|x|$
(2) Vin Mooments:

$$
\begin{array}{r}
\frac{\frac{\partial}{\partial t} \widetilde{p}_{n+2}(t)}{n+2}=(n+1) \widetilde{\zeta}_{p n}(t) \\
\quad n=0,2,2,
\end{array}
$$

where

$$
\begin{aligned}
& \tilde{p}_{n}=\int_{-\infty}^{+\infty} x^{n} b^{\prime \prime}(x) d x \\
& \tilde{h}_{n}=\text { two vents of } \pi^{\uparrow}
\end{aligned}
$$

(3) Defore $B_{t}(x)=\sum_{n=0}^{\infty} \tilde{h}_{n} x^{-(n+1)}$ (arge $)_{x 1}$

Then: $\quad \frac{\partial}{\partial t} R+R \frac{\partial}{\partial x} R=0$

Prook $S=\sum \frac{\tilde{p}_{n+2}}{n+2} x^{-(n+2)}$

$$
\begin{aligned}
& =\log (x R) \\
& \left(\forall w, \text { as } \tilde{p}_{1}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
& S=\log (x R)=\log x+\log R \\
& \frac{\partial}{\partial t} \Rightarrow \\
& \frac{\partial}{\partial t} S=\frac{\frac{\partial}{\partial t} R}{R} .
\end{aligned}
$$

\& vote $\frac{\partial}{\partial x} R=\sum_{n=0}^{\infty}-(n+1) \widetilde{h}_{n} x^{-(n+2)}$

$$
\frac{\partial}{\partial t} S=\cdots
$$

(using moments relation in tue evolution $\mathrm{eq}^{\prime} n$)

Semicircle / VKLS

$$
\begin{aligned}
& S(x)=\log (x R) \\
& \Rightarrow R=\frac{1}{2}\left(x-\sqrt{x^{2}-y}\right)
\end{aligned}
$$

(essentially, giver- function of Catalans at $\frac{1}{x}$)
(Def)

$$
\begin{aligned}
& r(x)=\frac{1}{2}\left(x-\sqrt{x^{2}-4}\right) \\
& R_{t}(x)=\frac{r(x / \sqrt{t})}{\sqrt{t}}
\end{aligned}
$$

R_{t}
(1) Satisties: $\frac{\partial}{\partial t} R+R \frac{\partial}{\partial x} R=0$
(2) $\frac{r(x / \sqrt{t})}{\sqrt{t}}$ is the uniqule automedel solution
(3) can prove (b.y moments) that Plandere growth converges to this h stasted from ay

$$
R_{t=1} \text {, i.e. out }
$$

automodel jehution is an attractor
14. Plancherel himit shape via determinantal formulas.

\rightarrow Random wake (locally)?

$$
\mathbb{P}\left(\alpha_{0} f^{\prime}\right) \text { us } \mathbb{P}(\text { No })
$$

\longrightarrow Something else?
19.) Infirite wedge space
(1) $\lambda \in y \longrightarrow\left\{\lambda_{1}-i+\frac{1}{2}\right\}_{i \geqslant 1}$

$$
\begin{gathered}
v_{\lambda}=v_{\lambda_{1}-1+\frac{1}{2}} \wedge v_{\lambda_{2}-2+\frac{1}{2}} \wedge \ldots \\
\lambda=(4,3,1) \longrightarrow v_{\lambda}=\ldots \\
V_{\phi}=V_{-\frac{1}{2}} \wedge \delta_{-\frac{3}{2}} \wedge S_{-\frac{5}{2}} \wedge \ldots \\
\left(. \operatorname{vachtum}{ }^{\prime \prime}\right)
\end{gathered}
$$

(2)

(3) let

$$
\begin{aligned}
& u v_{\lambda}=\sum_{\mu=\lambda+0} v_{\mu} \\
& D v_{\lambda}=\sum_{\mu=\lambda-\square} v_{\mu}
\end{aligned}
$$

Lerme.

$$
\begin{aligned}
& u=\sum_{k} \psi_{k} \psi_{k-1}^{*} \\
& D=\sum_{k} \psi_{k} \psi_{k+1}^{*}
\end{aligned}
$$

(4) $\operatorname{dim} \lambda$ ina U, D

Plaveberl measure vis U, D
(5) Defore

$$
\begin{aligned}
r_{+}(\theta) & =e^{\theta u} \\
r_{-}(\theta) & =e^{\theta D}
\end{aligned}
$$

Suer.

$$
p^{\top}(\lambda, v)=\frac{d_{i} w_{i} v}{(|\lambda|+1) \operatorname{dim} \lambda}=\pi_{i}^{i}
$$

$$
\frac{\prod_{i=1}^{d-1}\left(z-y_{i}\right)}{\prod_{i=1}^{d}\left(z-x_{i}\right)}=\sum_{i=1}^{d} \frac{ग_{i}^{p}}{z-x_{i}}
$$

$$
\begin{aligned}
& \sigma(x)=\frac{1}{2}(w(x)-|x|) \\
& S(z)=\int_{\mathbb{R}} \frac{b^{\prime}(x) d x}{z-x} \\
& \text { Def. } \quad \begin{array}{l}
\pi^{\top}(x)= \\
|z| \text { arse }
\end{array} \quad e^{S(z)}=\int_{\mathbb{R}} \frac{d \pi^{\top}(x)}{1-x / z}
\end{aligned}
$$

(2)

Moments:

$$
\begin{aligned}
\tilde{p}_{k} & =\int_{\mathbb{R}} x^{k} d b^{\prime}(x) \\
& =-k \int_{\mathbb{R}} x^{k-1} b^{\prime}(x) d x \\
& =-\int_{\mathbb{R}} b^{\prime}(x) d\left(x^{k}\right)
\end{aligned}
$$

(for rect.) $=\Sigma x_{i}^{k}-\Sigma y_{j}^{k}$

$$
\begin{aligned}
& S(z)=\sum_{n=1}^{\infty} \frac{\tilde{p}_{n}}{n} z^{-n} \\
& \exp (S(z))=\sum_{n=0}^{\infty} \tilde{h}_{n} z^{-n}=\int_{\mathbb{R}} \frac{d \pi^{\top}(x)}{1-x / z}
\end{aligned}
$$

$\Rightarrow \tilde{h}_{n}$ are moments of T^{\top} :

$$
\tilde{h}_{n}=\int_{\mathbb{k}} x^{n} d \pi^{\Gamma}(x)
$$

(3)

Sypu. \&.

$$
\begin{aligned}
& p_{k}=\sum x_{i}^{k} \\
& h_{n}=\text { complete homog. } \\
& =e^{\sum_{i}^{\infty} p_{n} / n t^{n}}=\sum_{0}^{\infty} h_{n} t^{n}
\end{aligned}
$$

Also $\exists s_{x}$ (cout incal Y.d.)

Ex. $s_{\lambda}(\Omega)=\operatorname{det}[\underbrace{h_{\lambda_{1}+j-i} \text { or }}_{0}{ }_{n}(\Omega)]$
(4) VKLS Ω

$$
\begin{aligned}
& \widetilde{p}_{2 m-1}(\Omega)=0, \quad \tilde{p}_{2 m}(\Omega)=\binom{2 m}{m} \\
& S(z)=\sum_{n=1}^{\infty} \frac{\tilde{p}_{n}}{m} z^{-n} \operatorname{arc} j \sin (2 z) \\
& =\log \frac{z}{2}+\left(\log \left(z-\sqrt{z^{2}-4}\right)\right.
\end{aligned}
$$

(Taylor series for acstre)

$$
\tilde{h}_{2 m-1}^{\sim}=0, \quad \widetilde{h}_{2 m}=\underbrace{\frac{1}{m+1}\binom{2 m}{m}}_{\text {Catalan }}
$$

$$
\Rightarrow d \pi^{\uparrow}(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} d x
$$

Semies de deubity

13.4. Grouth model

Large scale behavior of Plauckeres grourti.
irrof/

$$
\begin{aligned}
& \text { Area }=t \quad \text { (time) } \\
& \| \\
& \int_{\mathbb{R}} b(t, z) d z, \quad b(t, z)=\frac{\omega(t, z)-\mid z)}{2}
\end{aligned}
$$

Stort at $t=1$

Let $\operatorname{ri}^{1^{0}}(t, z)=\frac{\partial}{\partial t} \sigma(t, z)$,
So $\quad \int_{\mathbb{R}} \int_{\Gamma}^{T(t, z)} d z=1$
probab. distribution

Def. Plemberel grouth w_{t} :

$$
\frac{\partial}{\partial t} \delta(t, x) d x=d \pi^{\top}(\omega(t, 0))(x)
$$

equality of 2 probar demities
(∞ - dim ODE in ssace of)

$$
\frac{\partial}{a t} b=F(b)
$$

Rewrite equation
(1)

$$
\begin{aligned}
& \int_{\mathbb{R}} x^{n} T(t, x) d x= \\
&=\frac{\widetilde{p}_{n+2}^{\prime}(t)}{(n+1)(n+2)}
\end{aligned}
$$

because

$$
\begin{aligned}
& \int_{\mathbb{R}} x^{n} T(t, x) d x=\frac{\partial}{\partial t} \int_{\mathbb{R}} x^{n} \sigma(t, x) d x \\
& \int_{\mathbb{R}} x^{n} \sigma(t, x) d x= \\
& \\
& =\text { twice by parts } \\
& \\
& =\int \frac{x^{n+2}}{(n+1)(n+2)} \sigma^{\prime \prime}(t, x) d x
\end{aligned}
$$

$$
=\frac{p_{n+2}(t)}{(n+1)(n+2)} .
$$

(2) $T(t, x) d x=d \lambda^{T}(\omega(t, 0))(x)$
\Rightarrow moments :

$$
\frac{\tilde{p}_{n+2}^{\prime}(t)}{(n+1)(n+2)}=\tilde{\tilde{h}}_{n}(t)
$$

(3) via $s(t, z)=$

$$
\begin{aligned}
& \exp (s(t, z))=\int \frac{d \pi^{\top}(w(t, 0))(x)}{1-z / x} \\
\Rightarrow & \exp \int \frac{\sigma_{x}^{\prime}(t, x) d x}{z-x}= \\
& =\int \frac{\sigma_{t}^{\prime}(t, x) d x}{1-z / x}
\end{aligned}
$$

(4) Define

$$
R^{K}(t, z)=\sum_{n=0}^{\infty} \tilde{h}_{n}(t) z^{-n-1}
$$

$$
\left(\sum_{n=1}^{\infty} \frac{\tilde{p}_{n}(t)}{n} z^{-n}\right)=S(t, z)=\log (z R(x, z))
$$

$$
\frac{\partial}{\partial t} \Rightarrow S_{t}^{\prime}=\frac{R_{t}^{\prime}}{R}
$$

\& know

$$
\frac{\tilde{p}_{n+2}^{\prime}(t)}{(n+1)(n+2)}=\tilde{h}_{n}(t)
$$

$\Rightarrow R$ satisfies $R_{t}^{\prime}+R R_{z}^{\prime}=0$

Freed,

$$
\begin{aligned}
S_{t}^{\prime} & =\sum_{n=0}^{\infty} \frac{\tilde{\rho}_{n+2}^{\prime}(t)}{n+2} z^{-n-2} \quad\left(\tilde{\rho}_{1}=0\right) \\
& =\sum_{n=0}^{\infty} \tilde{h}_{n}(t)(n+1) z^{-n-2} \\
& =-R_{z}^{\prime}
\end{aligned}
$$

$$
\Rightarrow \quad-R_{z}^{\prime}=\frac{R_{t}^{\prime}}{R^{\prime}}, \quad R_{t}^{\prime}+R R_{x}^{\prime}=0
$$

(Burgers: $\left.\rho_{t}+(\rho(1-\rho))_{x}=0\right)$

Apple to UrLS

$$
\text { Fer of } \Omega=1
$$

Let $r(x)=\frac{1}{2}\left(x-\sqrt{x^{2}-4}\right)$
cheek:

$$
\begin{aligned}
(R(t, x)= & \frac{r(x / \sqrt{t})}{\sqrt{t}} \operatorname{satis} f i e s \\
& R_{t}^{\prime}+R R_{z}^{\prime}=0
\end{aligned}
$$

Facts. $\quad(x / \sqrt{t}) / \sqrt{t}$ is
(1) tue vinigre automodel solution to

$$
R_{t}^{\prime}+R R_{z}^{\prime}=0
$$

(2) Started from any contimaal young diagram

$$
R(t=1, x)=R_{1}(x),
$$

The equation's sonntion couverges to the VKLS solection.
(so, \forall initial y, d, the Planeteres grourth produces $\checkmark k \angle S$)

14. Local cosiclations of Placiberel

Locally Bernoulli? - No
Some other Law?
$\mathbb{P}($ mon $)$ vs

\uparrow
14.1 Infinite wedge space (Fork space)
[Mac ∞ dim Lie alg.]
[ovounkor 1999],... we only take a partíanlar case

$$
\left\langle v_{\lambda,}, v_{\mu}\right\rangle=\delta_{\lambda \mu} \quad \text { (HEibert space) }
$$

$$
\begin{aligned}
& \text { (1) } \lambda \in y \longrightarrow\left\{\lambda_{i}-i+\frac{1}{2}\right\}_{i \geqslant 1} \\
& 1984 \\
& 6 \\
& v_{\lambda}=v_{\lambda_{1}-1+\frac{1}{2}} \wedge v_{\lambda_{2}-2+\frac{1}{2}} \wedge \ldots \\
& \lambda=(4,3,1) \longrightarrow v_{\lambda}=v_{3+\frac{1}{2}} \wedge v_{1+\frac{1}{2}} \wedge v_{-2+\frac{1}{2}} \\
& V_{\phi}=V_{-\frac{1}{2}} \wedge \delta_{-\frac{3}{2}} \wedge S_{-\frac{5}{2}} \wedge \ldots \\
& \text { ("vacrturn") }
\end{aligned}
$$

(2) ψ_{i}, ψ_{i}^{*}

$$
e_{i} \in \mathbb{Z}+\frac{1}{2}
$$

$$
V_{i} \cap v_{\lambda}
$$

anticominte place
to fue

$$
S_{i} \wedge V_{i}^{0}=0
$$

Hi $_{1}^{*}$ - conlugate, remures Si if it can
(3) Let $\mid u v_{\lambda}=\sum_{\mu=\lambda+0} v_{\mu}$

$$
D V_{\lambda}=\sum_{\mu=\lambda-\square} V_{\mu}
$$

Lemur.

$$
\begin{aligned}
& u=\sum_{k} \psi_{k} \psi_{k-1}^{*} \\
& D=\sum_{k} \psi_{k} \varphi_{k+1}^{*}=u^{*}
\end{aligned}
$$

Proof.

D:

(4) $\operatorname{dim} \lambda$ ria U, D

$$
\begin{aligned}
\operatorname{dim} \lambda & =\left\langle u^{n} v_{\phi}, v_{\lambda}\right\rangle, \quad|\lambda|=u \\
& =\left\langle D^{n} v_{\lambda}, v_{\phi}\right\rangle
\end{aligned}
$$

Planderel weasure via U, D

$$
\begin{aligned}
M_{n}(\lambda)= & \frac{1}{n!} \frac{\left\langle u^{n} v_{\phi}, v_{\lambda}\right\rangle\left\langle\underline{\left.D^{n} v_{\lambda_{1}} v_{\phi}\right\rangle}\right.}{v s} \begin{aligned}
? & \left\langle B^{n} v_{\phi}, v_{\phi}\right\rangle
\end{aligned}
\end{aligned}
$$

Poissocizel Plaudherel ($\theta^{2}-$ Parameter)
$n \sim$ Poírson raudan $\sim \theta^{2}$

$$
\begin{aligned}
M_{\theta^{2}}(\lambda) & =\operatorname{Prob}\left(\pi_{\theta^{2}}=n\right) \cdot M_{n}(\lambda) \\
& =e^{-\theta^{2}} \theta^{2 n}\left(\frac{d i m \lambda}{n!}\right)^{2}[u=|\lambda| \\
H b o x l s & =\theta^{2} \pm c-\theta \\
\left(e^{\theta U} v_{\phi}, V_{\lambda}\right) & =\sum_{n \geq 0} \frac{\theta^{n}}{n!}\left\langle u^{n} \phi, v_{\lambda}\right\rangle \\
M_{\theta^{2}}(\lambda) & =e^{-\theta^{2}}\left\langle e^{\theta D} \mathbb{1}_{\lambda} e^{\theta U} v_{\phi}, S_{\phi}\right\rangle
\end{aligned}
$$

$\mathbb{1}_{\lambda}$ operstor, $\quad \mathbb{1}_{\lambda} v_{\mu}= \begin{cases}v_{\lambda}, & \lambda=\mu \\ 0, & \lambda \neq \mu\end{cases}$

Ex. $\quad P_{\text {rap }}\left(\exists i: \lambda_{i}-i+\frac{1}{2}=5\right)$

$$
\left.e^{-\theta^{2}}<e^{\theta D}\left(\begin{array}{c}
\text { indicator } \\
\text { twat } \\
\text { at } 5
\end{array}\right) e^{\theta U} v_{\phi}, S_{\phi}\right)
$$

(5) Correlation function of Poisaonized Plan cher \& its expression via ∞ wedge space
$\forall v, x_{1} \ldots x_{k} \in \mathbb{Z}+\frac{1}{2}$ distinct

$$
X=\left\{x_{2} \ldots x_{k}\right\}
$$

$$
\rho_{k}(x)_{1)} \rho(x)=\text { Prob. } \cdot\left(\begin{array}{c}
\text { coutig }\left\{\lambda_{i}-j+\frac{1}{2}\right\}_{i=1,2,-} \\
\operatorname{coutains} \\
\text { each } \\
\text { of } x_{1}, x_{2, \ldots}, x_{k}
\end{array}\right)
$$

$$
\begin{aligned}
& e^{-\theta^{2}}\left\langle e^{\theta i} \prod_{\phi=1}^{v} \psi_{x i} \psi_{x_{i}}^{*} e^{\theta \|} \delta_{\phi}, v_{\phi}\right\rangle \\
& \rho_{k}(x) \\
&
\end{aligned}
$$

Wout to skow:

$$
\begin{aligned}
& \int_{k}(x)=\operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right]_{i, j}^{k} \\
& \text { Wick theoren }
\end{aligned}
$$

because

$$
\text { anse } \psi_{i} \psi_{j}+\psi_{j} \psi_{i}=0
$$

$$
\left[\begin{array}{l}
\psi_{i}^{*} \psi_{j}^{*}+\psi_{j}^{*} \psi_{i}^{*}=0 \\
\psi_{i} \psi_{j}^{*}+\psi_{j}^{*} \psi_{i}=f_{i=j}
\end{array}\right.
$$

(2)

$$
\begin{aligned}
& \left\langle e^{\theta D} \prod_{c} \psi_{\partial c_{i}} \psi_{d_{i}}^{*} e^{\theta U} U \phi, U_{\phi}\right\rangle \\
& =\langle\prod_{i} \underbrace{\Psi_{x_{i}}}_{V_{i, w} \psi_{i}} \underbrace{\Psi_{i}^{*}}_{x_{i}^{*}} \nu \phi, \delta \phi\rangle
\end{aligned}
$$

14. 2 Cosrelatious \& density - formulas
14.1 Infinite wedge \& raudom partitions

$$
M_{\theta}(\lambda)=e^{-\theta^{2}} \theta^{2(\lambda)}\left(\frac{\operatorname{dim} \lambda}{|\lambda|!}\right)^{2}
$$

©peasure on whote \forall

$$
\mathbb{E}|\lambda|=\theta^{2}
$$

$$
|\lambda| \rightarrow \infty \quad \Leftrightarrow \quad \theta \longrightarrow \infty
$$

$$
M_{\theta}(\lambda)=e^{-\theta^{2}}\left\langle e^{\theta D} \mathbb{1}_{\lambda} e^{\theta u} v_{\phi}, v_{\varnothing}\right\rangle
$$

v_{λ}
$l^{2}(\varnothing)$
$v_{\phi} \leftarrow \phi$ leupty

$$
u v_{\lambda}=\sum_{\mu=\lambda+\square} v_{\mu}
$$

$$
\begin{aligned}
& D V_{\lambda}=\sum_{\mu=\gamma-\square} V_{\mu} \\
& \mathbb{H}_{\lambda} V_{\mu}= \begin{cases}V_{\lambda}, & \mu=\lambda \\
0, & \text { ese }\end{cases}
\end{aligned}
$$

Anticonn rel.

$$
\psi_{i} \psi_{j}+\psi_{j} \psi_{i}=0
$$

$$
\begin{aligned}
& \psi_{i}^{*} \psi_{j}^{*}+\psi_{j}^{*} \psi_{i}^{*}=0 \\
& \psi_{i} \psi_{0}^{*}+\psi_{j}^{*} \psi_{i}=1_{i=j}
\end{aligned}
$$

$$
\begin{array}{rr}
u=\sum_{k \in \mathbb{Z}+\frac{1}{2}} \psi_{k} \psi_{k-1}^{*}, & D=\sum_{k \in \mathbb{Z}+\frac{1}{2}} \psi_{k} \psi_{k+1}^{*} \\
(\alpha-1)^{k} & ((\alpha+))
\end{array}
$$

$U_{\lambda}=U_{\lambda_{1}-\frac{1}{2}} \wedge V_{\lambda_{2}-\frac{3}{2}} \wedge \cdots$

14.2 Determ. formula for $\rho(x)$

1) $e^{\theta D} v_{\phi}=v_{\phi}=\left(e^{\theta u}\right)^{*} v_{\phi}$
2) $e^{\alpha D} e^{\beta u}=e^{\alpha \beta} e^{\beta u} e^{\alpha D} \Leftrightarrow[D, u]=1$

Proof of 2)
((a) differential poser
$\left.\begin{array}{r}(b) \text { f Skew cauchy } \\ \text { identity proof }\end{array}\right)$

$$
\begin{aligned}
D^{n} u & =D^{n-1} D u \\
& =D^{n-1}(u D+1) \\
& \left.=D^{n-1}+D^{n-1} u \Gamma\right) \\
& =n D^{n-1}+u D^{n}
\end{aligned}
$$

(b) we have syew candy id.

$$
\begin{aligned}
& \frac{\& \text { spucialization. }}{\lambda \nu} \\
& x_{0}^{v 2} x^{2 v}-\lambda_{y_{1}, y_{2} \ldots} \\
& \sum_{\nu} S_{\nu / \mu}(\vec{x}) S_{\nu / \lambda}(\vec{y}) \\
& =\frac{1}{I\left(1-x_{i} y_{j}\right)} \sum_{x} S_{Y_{x}}(\vec{x}) S_{\mu_{x}}(\vec{y})
\end{aligned}
$$

3)

$$
\begin{aligned}
& e^{\alpha D} u^{n} e^{-\alpha D} \\
&= e^{\alpha \cdot a d D} u^{n} \\
&= \sum_{k} \frac{\alpha^{*}}{k!} \underbrace{(a d D)^{k} u^{n}} \\
& \underbrace{\left.\ldots\left[D,\left(D, \mid D, u^{n}\right)\right]\right\} \ldots}_{k \text { eomeratars }}
\end{aligned}
$$

$$
\begin{gathered}
\rho(X)=e^{-\theta^{2}}\left\langlee ^ { \theta \cdot D } \left(\left(\prod_{i=1}^{k} \psi_{x_{i}} \varphi_{x_{i}}^{*}\right) e^{\left.\theta u v_{\phi_{p}}, v_{p}\right\rangle}\right.\right. \\
\text { Detive } \quad G=e^{\theta D} e^{-\theta u}, G^{-1}=e^{\theta u} e^{-\theta D} \\
\Psi_{k}=G \psi_{k} G^{-1} \\
\Psi_{k}^{*}=G \psi_{k}^{*} G^{-1}
\end{gathered}
$$

Prup. $\quad \rho(x)=\left\langle\psi_{x} \psi_{x}^{*}, \cdots \psi_{x_{n}}^{*} \psi_{x_{n}}^{*} v_{\phi_{p}}, v_{\phi}\right\rangle$

$$
\begin{aligned}
& \text { Proog. } \\
& \psi_{x} \psi_{y}^{*}+\Psi_{y}^{*} \psi_{x}=\psi_{x}
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \text { Vote: } \\
& \rho(\phi)=1 \\
& \langle\| \\
& \left\langle U_{\phi}, v_{\phi}\right\rangle
\end{aligned}
$$

Prop wick theorem

$$
\begin{aligned}
& \rho(x)=\quad \operatorname{det}\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \\
& k(x, y)=\left\langle\psi_{x} \psi_{y}^{*} v_{\phi}, v_{\phi}\right\rangle \\
& =\| \psi_{x_{u}--\psi_{x u}^{*} v_{\phi} \|^{2}}
\end{aligned}
$$

$$
\underbrace{\rangle<\rangle \ldots<\rangle}_{n}
$$

Crucial (hidden) algebraic property

$$
F_{k}=\sum_{m} c_{m} \psi_{k}, F_{k}^{*}=\sum_{m} c_{m}^{*} \psi_{k}^{*}
$$

$\left(\Psi_{k}, \psi_{k}^{*}\right.$ belong to the same algebra as generated by smalt $\psi_{i}, \psi_{i}^{*}, \ldots$)
Def. $\psi(z)=\sum z^{k} \psi_{k}, \psi^{*}(\nu)=\sum \omega^{-k} \psi_{k}^{*}$
Drop. $[D, \varphi(z)]=z \psi(z)$

$$
\begin{aligned}
& {\left[D, \psi^{*}(w)\right]=-\omega \psi^{*}(w)} \\
& {\left[u, \psi^{(z)]}=z^{-1} \psi(z)\right.} \\
& {\left[u, \psi^{*}(w)\right]=-w^{-1} \psi^{*}(w)}
\end{aligned}
$$

Indeed

$$
\begin{aligned}
& \sum_{i, k}(\psi_{i} \underbrace{\left.\psi_{i+1}^{*} \psi_{k} z^{k}+z^{k} \psi_{i} \psi_{k} \psi_{i+1}^{*}\right)}_{k=i+1} \\
& \Rightarrow \sum_{i} \psi_{i} z^{i+1}=z \psi^{(z)}(z)
\end{aligned}
$$

\Downarrow

$$
\begin{aligned}
& \Psi_{k}=e^{\theta D} e^{-\theta U} \psi_{k} e^{\theta U} e^{-\theta D} \\
& \Psi_{1}(z)=\frac{e^{\theta D} e^{-\theta U} \psi(z) e^{\theta U} e^{-\theta D}}{(2 \text { adjosut actoons })}
\end{aligned}
$$

$$
\begin{align*}
& e^{-\theta u} \psi(z) e^{\theta u}=e^{-\theta a d_{u}} \psi(z) \\
& \quad=\sum_{n=0}^{\infty} \frac{(-\theta)^{n}}{n!}{ }_{(\ldots, u(z)])^{n} \psi(z)}^{(\operatorname{ad})} \tag{-n}\\
& \quad=e^{-\theta z^{-1}} \psi(z)
\end{align*}
$$

$=$ inf.lineat coutbination of the $\psi_{k}^{\prime} s$.

$$
\Psi(z)=\psi(z) \cdot e^{\theta\left(z-z^{-1}\right)} \leftarrow
$$

19.3 Deuble Coutour integrals

Rewrins to congute

$$
\begin{aligned}
& K(x, y)=\left\langle\psi_{x} \psi_{y}^{*} v_{\phi}, v_{\phi}\right\rangle \\
& \{ \\
& \tilde{K}(z, w)=\sum_{x, y} K(x, y) z^{x} w^{-y} \\
& =\left\langle\psi(z) \psi^{*}(w) v_{\theta,} v_{\theta}\right\rangle \\
& J(z)=e^{\theta\left(z-z^{-1}\right)} \quad \psi_{(z)}^{\eta *}=\psi(z) J(z)^{-1} \\
& \begin{aligned}
\Rightarrow \tilde{K}(z, w)=\frac{J(z)}{J(w)}\left\langle\psi(z) \psi^{*}(w) v_{\phi}, v_{\phi}\right\rangle \\
\left.\psi, \psi_{0}^{-j} z^{j} \omega^{j} \psi_{-j}^{*}\right\rangle j_{j}>0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{J(z)}{J(w)} \sum_{j=\frac{1}{2}, \frac{3}{2}, \cdots} \frac{w^{j}}{z^{j}} \\
& =\frac{J(z)}{J(w)} \frac{\sqrt{z w}}{z-w}, \quad|w|<|z|
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow K(x, y)=\left[z^{x} w^{-y}\right] \tilde{k}(z, w) \\
& =\frac{1}{(2 \pi i)^{2}} \oiint^{|w|<|z|} \frac{z^{1 / 2-x-1} w^{1 / 2+y-1}}{z-w} \cdot \frac{e^{\theta\left(z-z^{-1}\right)}}{e^{\theta\left(\omega-w^{-1}\right)}} \\
& \text { avound } 0
\end{aligned}
$$

(Complete info on, Plawherer me asure!) woll, Poissarized

On corselations \& regmision

14.4. Asymptotic of density via \iint

$$
\begin{aligned}
& \rho(x)=\operatorname{Prob}(\text { at } x \text { we see } \\
& x \in \mathbb{Z}+\frac{1}{2} \quad x^{\prime} \\
& K(x, x)= \\
& =\frac{1}{(2 \pi c)^{2}} \iint_{\substack{|w|\langle\mid z\rangle \\
\text { around } 0}} \frac{z^{-x-1 / 2} w^{x-1 / 2}}{z-w} \frac{e^{\theta\left(z-z^{-1}\right)}}{e^{\theta\left(w-\omega^{-1}\right)}}
\end{aligned}
$$

Let $x=\theta u \quad \& \quad \theta \rightarrow \infty$

$$
\exp [\theta \underbrace{\left(z-z^{-1}-u \cdot \log z\right)}_{\omega S(z)}]
$$

Look for critical points of $S(z)$

$$
S^{\prime}(z)=1+\frac{1}{z^{2}}-\frac{u}{z}=0
$$

$$
z^{2}-u z+1=0, \quad \sqrt{z_{c}=\frac{\sqrt{u^{2}-4}+n}{2}}
$$

Cases: $|u| \geqslant 2,2$ real or 1 real

$$
|u|<2, \quad 2 \text { cony lex }
$$

$\frac{\text { Real: }}{\operatorname{lu} \mid \geqslant 2}$

$$
\frac{k(u d, u \theta) \rightarrow 0 \text { or } 1}{\text { expou. fast }}
$$

Couphex: $k(x, x) \rightarrow$ single $\int_{\bar{z}_{c}}^{z_{c}}$

$$
\frac{1}{2 \pi i} \int_{\frac{z_{c}}{z_{c}}}^{z_{c}} \frac{d \omega}{\frac{\arg z_{c}}{\pi}}
$$

$$
\begin{array}{ll}
z_{c}=\frac{\sqrt{u^{2}-4}+u}{2} \\
\left|z_{c}\right|=\frac{1}{4}\left[4-u^{2}+u^{2}\right]=1 \\
\arg z_{c}=\frac{a r c c o s}{}\left(\frac{u}{2}\right)
\end{array}
$$

$$
\begin{aligned}
& \Omega^{\prime}(u) \in[-1,1) \leftarrow \\
&=\frac{\left(\operatorname{saccos} \frac{u}{2}\right) / \pi}{2} \\
& \Rightarrow \Omega(u)=\sqrt[\Omega^{\prime}(u)]{=} \\
&= \begin{cases}\frac{2}{\pi}\left(u \arcsin \frac{u}{2}+\sqrt{4-u^{2}}\right)_{3} \\
\left.y u\right|_{1} & |u| \geqslant 2\end{cases}
\end{aligned}
$$

