
[[Problems, 2-1|6 problems]] due 2/15

1. Introduction
1.1 Links

• My homepage https://lpetrov.cc
• Course page https://publish.obsidian.md/particle-systems/
• [[../Syllabus | Syllabus]]

1.2 Some reminders
1. Lectures are recorded and available by request
2. It is helpful if you have camera on during lectures
3. If you’re taking the class for grade, see [[../Syllabus#Expectations and

assessment | this section of the syllabus]]
4. The course is officially “hybrid”, so there will be some in-person activities

like outside walks and discussions, and maybe class meetings. Nothing is
set and planned as of now. All in-person activities will either be optional,
or with remote participation possible

1.3 Please introduce yourself
What is your background in. . .

• Probability theory, graduate and undergraduate?
• Symmetric functions?
• Real analysis (as in, measure theory)?

1.4 Preview
One rather famous particle system - the sticky tetris / ballistic deposition - models
a lot of interesting behaviours. A readable account is here. Unfortunately, this
system is not mathematically tractable (yet).

{ }
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https://physics.aps.org/articles/v6/7


And here is an animation of an “integrable” particle system TASEP (totally
asymmetric simple exclusion process), which demonstrates a lot of the same
behavior (which is conjectural for the ballistic deposition). This system can be
solved exactly - we know “everything” about its probability distribution and
asymptotics.

{ }
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https://wt.iam.uni-bonn.de/ferrari/research/jsanimationtasep


1.5 Goal
{ }

2 Background in measure theory and probability
•

2.1 Measure spaces
{ }
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Definition. Sigma-algebra { }

Definition. Measure { }
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Example. Measure spaces { }
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We will need both probability measures (on them we define randomness), and
measure spaces like R with Lebesgue measure. On R (or Z) we will define
random point configurations and particle systems in particular.

For the present lecture, we mostly stick to the probability context.

{ }
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2.2 Random variables
Random variables
Let (Ω, F , P) be a probability space, that is, P(Ω) = 1.

Definition. Random variable { }

Example. Random variables taking values ±1 { }
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Definition. Probability distribution { }
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Definition. Equality in distribution { }

Definition. Discrete and absolutely continuous random variables { }
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{ }

Examples. Random variables { }
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{ }
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Independence
{ }

Definition. Independence of two random variables { }

Definition. Independence of several random variables { }
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Example. Independence { }

•

2.3 Poisson random variable
{ }
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Definition. Expectation { }

Computation. Poisson random variable expectations Let us compute
some expectations with respect to the Poisson random variable ξ ∼ Poisson(λ).

First,

Eξ =
∞∑

n=0
n · λn

n! e−λ =
∞∑

n=1

λn−1

(n − 1)!λe−λ = λ.

Another way to compute the same expectation is to apply d
dλ to the Taylor

expansion of eλ. We have

eλ =
∞∑

n=0

d

dλ

(
λn

n!

)
=

∞∑
n=0

nλn−1

n! .

After multiplying by λe−λ in both sides, we have

λ =
∞∑

n=0
n · λn

n! e−λ.

In fact, we can apply the operator (d/dλ) several times (say, k), and then
multiply by λk, to get

E(ξ(ξ − 1) . . . (ξ − k + 1)) = λk.
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This is the so-called k-th factorial moment, where we denote ξ↓k = ξ(ξ−1) . . . (ξ−
k + 1) (k factors).

In particular, from this we also get the variance

Var(ξ) := E (ξ − Eξ)2 = E(ξ2) − (Eξ)2 = λ.

Exercise. Factorial moment { }

Exercise. Additivity of Poisson random variables { }
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# 3 Poisson Process
3 Poisson Process I
3.1 General definition
{ }

Definition. Poisson process { }

On this picture we have N(A) = 0, N(B) = 3, N(C) = 1. These three random
variables must be independent.

{ }
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Notes. Poisson process

1. There are no double points in a Poisson process, since µ({x}) = 0 for all
points x ∈ X.

2. If µ(A) = ∞, then there are infinitely many points of the Poisson process
in A. An example, there are infinitely many points of the usual Poisson
process in R.

3. If A ∩ B = ∅, then N(A) and N(B) are independent, and N(A ∪ B) =
N(A)+N(B). Note that here we use additivity of Poisson random variables,
so that N(A ∪ B) is also Poisson, and definition is self-consistent.

4. Same additivity can be employed for countable disjoint unions. In this
sense, the Poisson process can be viewed as a random atomic measure.

{ }
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3.2 Uniformity and independence in a Poisson process
{ }

Theorem 3.2.1 { }

Proof 3.2.1 { }
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Then points are independent, because each of them independently chooses
whether to land in B or A \ B, with probabilities p and 1 − p, respectively.

Let us now show the binomial distribution. We have

P (N(B) = m | N(A) = K) = P (N(B) = m, N(A) = K)
P(N(A) = K) = P (N(B) = m, N(A \ B) = K − m)

P(N(A) = K) ,

and now we can use independence of the point counts corresponding to B and
A \ B:

= e−µ(B)(µ(B))k/k! · e−µ(A\B)(µ(A \ B))K−m/(K − m)!
e−µ(A)(µ(A))K/K!

=
(

K

m

)
pm(1−p)K−m,

as desired. □

Converse statement: from uniform to Poisson { }
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3.3 Using homogeneous Poisson process in 1d to model
arrivals
The homogeneous Poisson process in R1 is a model for successive rings of an
exponential clock, which is used in describing TASEP and other particle systems.

{ }

Theorem 3.3.1 { }

Proof 3.3.1 { }

{ }

20



{ }

4 Notes and references
1. On measure theory, most graduate books work well. At UVA we typically

use Gerald B. Folland. Real Analysis: Modern Techniques and
Their Applications. 2nd Edition.

2. Basic graduate probability theory is the subject of numerous textbooks.
I was learning from Albert N. Shiryaev. Probability, there is a new
English edition: Part I, II.

3. A great short book on Poisson processes which does not require too much
background: J. F. C. Kingman. Poisson Processes. Clarendon
Press, 1993.

Problems
[[_Lecture 1, 2-1| Lecture 1]]

Due date February 15, solutions posted around that day.

1
If F is a σ-algebra and A1, A2, . . . ∈ F , show that

⋂∞
n=1 An ∈ F . # 2
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https://www.springer.com/gp/book/9780387722054
https://www.springer.com/gp/book/9780387722078


Does there exist an uncountable set A ⊆ R such that its length (i.e., its Lebesgue
measure) is zero? # 3 Show that∫ +∞

−∞
e−x2/2dx =

√
2π.

4
Using the example from section 2.3 of the lecture, explicitly construct countably
many random variables ξ1, ξ2, ξ3, . . . which are iid (independent and identically
distributed) and have P(ξj = +1) = P(ξj = −1) = 1

2 .

5
Let ξ be the Poisson random variable with parameter λ ≥ 0. For each integer
k ≥ 0, find the k-th factorial moment E

(
ξ↓k

)
:= E (ξ(ξ − 1) . . . (ξ − k + 1)).

6
Let ξ be a Poisson random variable with parameter λ, and η be a Poisson random
variable with parameter µ. Let ξ, η be independent. Then ξ + η is a Poisson
random variable with parameter λ + µ.

[[Solutions, 2-1]]

Solutions
[[../../Lecture 1, 2-1/Problems, 2-1|Problems 1]]

[[../../Lecture 1, 2-1/_Lecture 1, 2-1|Lecture 1]]

1
{ }
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2
{ }

See also https://en.wikipedia.org/wiki/Cantor_set

3
{ }
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4
{ }

24



5
{ }
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6
{ }
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[[Problems, 2-3| 3+? problems]], due 2/17

1 Poisson process
We continue from [[../Lecture 1, 2-1/3 Poisson Process I|the end of L1]], and
finish the discussion of Poisson process in

•

1 Poisson Process II
1.1 Recall
Definition of Poisson process { }

Example of Poisson vs determinantal process { }
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1.2 Poisson process in 1d
{ }

Lemma 1.2.1 { }

Theorem 1.2.2 { }

Proof 1.2.2 Step 1

{ }

2



Step 2

{ }

Step 3

{ }

Step 4

{ }
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{ }

{ }
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Step 5

{ }

{ }
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Remark 1.2.3. Waiting time paradox { }

{ }
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Theorem 1.2.4 { }

Proof 1.2.4 { }
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Here is an associated problem: [[Problems, 2-3#1]]

2 TASEP. Definition and existence
•

2.1 Definition of TASEP
{ }

Definition. TASEP { }
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Examples. TASEP { }

Definition. Height function { }
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2.2 Existence of TASEP
Theorem 2.2.1 { }

Remark 2.2.2 The existence of TASEP is not too obvious, as the process
makes infinitely many jumps in finite time. Sure, the interaction is local, but
there is no deterministic bound on the lenght of the interaction for any finite
time. Therefore, one cannot say that the system evolves independently in some
finite-size blocks.

{ }
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Proof 2.2.1 { }

{ }

After the proof of Theorem 2.2.1 see [[Problems, 2-3#2]].
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Remark 2.2.3. Basic coupling From the proof of Theorem 2.2.1, we see
that it is possible to put onto the same probability space all TASEPs started
from all possible initial configurations. Indeed, for this we only need to use the
same Poisson process, sampled once. This probability space is the space for the
Poisson process on

⊔
i∈Z R≥0.

In particle systems literature, this construction of all TASEPs on the same
probability space is called basic coupling.

Remark 2.2.4 There is an explicit procedure for sampling the Poisson process.
It is not required for our process on

⊔
i∈Z R≥0, because here it suffices just to

take countably many independent exponential random variables Exp(λ), and
they would be the inter-arrival times.

However, for Poisson processes on general spaces (even consider the Poisson
process on the plane R2 — there are no exponential inter-arrival times), there
is a nice explicit procedure. Suppose that our space X =

⊔
n Xn is a countable

union of spaces with µ(Xn) < ∞ (such a space X is called σ-finite). Then,
for each Xn, sample a Poisson random variable Nn with mean µ(Xn). After
that, sample Nn independent points in Xn with distribution µ(·)/µ(Xn). The
collection of all these points is the Poisson process.

See [[Problems, 2-3#3]], where you need to prove that this sampling indeed
produces the desired Poisson process.

•

2.3 Markov property
Here we discuss the Markov property of TASEP.

Recall. Markov property { }
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Equivalently, the future and the past are independent conditioned on the state
of the process at present.

Theorem 2.3.1 TASEP on Z started from any initial configuration is a Markov
process on {0, 1}Z.

Proof 2.3.1 This is quite obvious, especially if we adopt the definition through
independence of past and future. Indeed, if we fix the present, then the past
and the future are determined by the states of the Poisson process on

⊔
i∈Z R

corresponding to two disjoint sets. Therefore, we get independence directly from
the properties of the Poisson process. □

Remark 2.3.2 Is there another clock distribution, besides the exponential,
such that TASEP constructed with these clocks is Markov? For example, what
if the waiting time before the jump has uniform distribution on [0, 1]?

It turns out that no. It is not hard to see that the Markov property of TASEP
is equivalent to the memoryless property of the waiting time ξ:

P(ξ > a + b | ξ > a) = P(ξ > b).

This property, in its turn, is equivalent to the fact that the function f(a) = P(ξ >
a) is multiplicative in a. Given the appropriate boundary conditions f(0) = 1,
f(+∞) = 0 coming from probability, we see that it must be f(a) = e−λa, which
singles out the exponential distribution.

•

2.4 Some other particle systems
ASEP
{ }
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Here parameter t is a number between 0 and 1, and not a time parameter. While
this notation might be unfortunate, it has reasons within integrability.

Coloured TASEP
2 Colours

{ }

The configuration X(2) should be “bigger” than X(1), notation X(2) ≻ X(1).
This means that if a location i ∈ Z is occupied under X(1), then it must be
occupied under X(2).

Possible nontrivial transitions (each at rate 1) in this TASEP are

14



{ }

Therefore, we call (1, 1) a first-class particle, and (0, 1) a second-class particle.
That is, first-order particles treat second-class particles as empty space.

See the “question to think”, [[Problems, 2-3#?]].

Many colours

{ }
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{ }

PushASEP
Under PushASEP, each particle jumps to the right according to the TASEP
rules (in particular, the jump is blocked if the destination is occupied), at rate
R. And in parallel, each particle jumps to the left at rate L to the left, but any
particle can jump, and the jumping particle lands at the nearest empty space to
the left. Therefore, there is no blocking mechanism in left jumps, but rather one
can say that there is a “pushing” mechanism.

{ }
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q-TASEP
Here 0 ≤ q < 1 is a parameter. Each particle jumps to the right by one at
rate 1 − qgap, where gap is the distance to the nearest particle to the right. If
gap = +∞ (i.e., the configuration has the rightmost particle), then the jump is
with rate 1.

{ }

When q = 0, q-TASEP turns into the usual TASEP, as

1 − 0n = 1, n ≥ 1, 1 − 00 = 0.

- ASEP - coloured TASEP - PushASEP - q-TASEP

Notes and references
1. A great short book on Poisson processes which does not require too much

background: J. F. C. Kingman. Poisson Processes. Clarendon
Press, 1993.

2. Picture of Poisson vs determinantal point processes is taken
from J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and
Bálint Virág. Determinantal Processes and Independence,
https://projecteuclid.org/euclid.ps/1146832696
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3. TASEP was introduced in probability theory and biology almost simulta-
neously, around 50 years ago:

• C. MacDonald, J. Gibbs, and A. Pipkin. “Kinetics of
biopolymerization on nucleic acid templates”. In: Biopolymers
6.1 (1968), pp. 1–25.

• F. Spitzer. “Interaction of Markov processes”. In: Adv.
Math. 5.2 (1970), pp. 246–290.

4. The graphical construction (in the proof of the existence of TASEP) is
due to Harris, T. E. Additive set-valued Markov processes and
graphical methods. Ann. Probability 6 (1978), no. 3, 355–378.

5. The “basic coupling” leading to the coloured TASEP dates back to at
least T. M. LIGGETT, Interacting Particle Systems, Springer,
Berlin, 1985.

6. A survey on point processes (including the notion of convergence of proba-
bility measures on point configurations) is Soshnikov’s survey.

Problems
[[_Lecture 2, 2-3| Lecture 2]]

Due date February 17, solutions posted around that day.

1
Let Π be a Poisson process on (X, F , µ). For each point in Π, independently
for all points, erase this point with probability p ∈ (0, 1). Denote the resulting
configuration by Π′. Show that Π′ is again a Poisson process, and find the
corresponding mean measure µ′ for it.

2
Adapt the proof of the existence of TASEP to the case of a generic countable
bounded degree directed graph G = (V, E). The bounded degree condition
means that there exists d ≥ 1 such that all degrees (incoming and outgoing, if
needed) do not exceed d.

3
Show that the sampling procedure of a Poisson process on a general σ-finite
space X described in Remark 2.2.4 indeed produces the point configuration
distributed as the Poisson process.

18

https://arxiv.org/abs/math/0002099


?
This is a question to think for a week, the answer will be given in the next
lecture on Feb 7.

{ }

[[../Lecture 3, 2-8/1.1 TASEP second-class particle asymp-
totics|Answer]]

[[Solutions, 2-3]]

Solutions
[[Problems, 2-3|Problems 2]]

[[_Lecture 2, 2-3|Lecture 2]]
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1
{ }
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2
{ }

3
{ }
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[[Problems, 2-8|6 problems + T1]], due 2/22

1 Leftovers from the previous lecture
• 1.1 [[../Lecture 2, 2-3/2.4 Some other particle systems#Coloured

TASEP|Coloured TASEP]] and answer [[../Lecture 2, 2-3/Problems,
2-3#?|to the question about the limiting behaviour of the second class
particle]], without proof. Here is the [[1.1 TASEP second-class particle
asymptotics|answer]].

• 1.2 [[../Lecture 2, 2-3/2.4 Some other particle systems#q-TASEP|q-
TASEP]] and [[Problems, 2-8#1|problem of its existence]]

2 TASEP and Last Passage Percolation
•

2.1 Height function
Recall the TASEP’s height function:

{ }

Now let us rotate it, and we obtain a model of a down-right interface in Z2 which
grows in continuous time (“invades in the up-right direction”) by adding boxes.

{ }
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2.2 Random interface growth
The model of random interface growth is a more efficient way of running
TASEP, as there are no “lost” events in the governing Poisson process, like it was
in the [[../Lecture 2, 2-3/2.2 Existence of TASEP|Harris graphic construction]].

In the growth model, each cell (i, j) of Z2 is equipped with an independent
exponential random variable αi,j ∼ Exp(1) (with mean 1). When the interface
reaches (i, j) and (i, j) becomes the corner of the unoccupied zone, then the
interface waits time αi,j and after that covers the cell (i, j).

{ }
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2.3 Percolation times
{ }

3



Let Li,j ∈ R be a random variable representing the time t at which the growing
interface ht covers (i, j). Clearly, Li,j depend on the initial condition, the initial
interface h0.

We have Li,j ≥ Li−1,j , Li,j ≥ Li,j−1.

{ }

Proposition 2.3.1 { }
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This immediately follows from definitions.

Corollary 2.3.2 The space covered by ht at time t is {(i, j) : Li,j ≤ t}.

Corollary 2.3.3 { }

This interpretation explains the name oriented (= directed) last-passage
percolation.

Proof 2.3.3 Show that the right-hand side (maximum of sums) satisfies
the same recursion as the Li,j ’s in [[2.3 Percolation times#Proposition 2 3
1|proposition]].

Remark 2.3.4 In [[2.3 Percolation times#Corollary 2 3 3|Corollary 2.3.3]],
the paths π start at the initial interface h0 and ends at (i, j). Note that when
h0 has a straight part, the path must start at the corner of the initial interface -
we cannot start the growth from the middle of a straight part.

5



{ }

Remark 2.3.5 There is also first-passage percolation (FPP), in which max is
replaces by min. Moreover, by first-passage percolation people usually mean the
undirected process, i.e., we do not restrict minimization to directed paths but
rather look at paths of certain length ≤ n. Although the FPP model is related,
it is usually not integrable.

•

2.4 Point-to-point directed LPP
{ }

{ }

6



{ }

In fact, the step initial configuration in TASEP is the simplest one to study, and
this connection to LPP also motivates to study the step initial configuration.

•

2.5 Other environment weights
{ }

Definition 2.5.1 { }
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Remark 2.5.2 { }

Summary of section 2 { }

8



{ }

See [[Problems, 2-8#2|problem]] about a TASEP with geometric weights. Here
is a slight hint:

{ }

3 Subadditive ergodic theory and limit shape
•

3.1 Subadditivity in LPP
We take weights αi,j ≥ 0 in the environment, where the weights are:
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1. Independent identically distributed
2. Nonnegative
3. Have enough moments, i.e., E|αi,j |r < ∞ for large enough r.

Recall the definition of the point-to-point last-passage time L(x, y), x, y ∈ Z2.

Remark 3.1.1 Unless x = (x1, x2), y = (y1, y2) are in the “up-right position”
(x1 ≤ y1 and x2 ≤ y2), then clearly L(x, y) = 0.

Definition 3.1.2. Percolation time along a vector Pick a unit direction
v⃗ ∈ R2

≥0, |v⃗| = 1. Define L(0, nv⃗) to be the last-passage percolation time from 0
to nv⃗.

Remark 3.1.3 Instead of nv⃗, we should take the integer part in both coordi-
nates. This is always assumed throughout the lecture. Moreover, some proofs
rely on v⃗ being a rational vector, and more care is needed when one wants to
extend the limits to irrational v⃗’s. Especially this is important when considering
invariance under translations by v⃗. I am not touching these issues for simplic-
ity of the discussion, and refer to Timo Seppalainen’s notes (see [[_Lecture 3,
2-8#Notes and references|ref 3]]) for a more careful analysis.

Proposition 3.1.4 As a function of n, the quantities L(0, nv⃗) satisfy super-
additivity:

L(0, nv⃗) ≥ L(0, mv⃗) + L(mv⃗, nv⃗), m ≤ n.

Proof 3.1.4 The left-hand side maximizes over a larger set of up-right paths.

{ }
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Definition 3.1.5 Now take the averages, and define the following nonrandom
quantities: T (n) = EL(0, nv⃗). Then T (n) ≥ T (m) + T (n − m). Indeed, because
the iid environment (αi,j) is translation-invariant, the expectation of L(mv⃗, nv⃗)
is the same as T (n − m).

Thus, the nonrandom sequence T (n) satisfies superadditivity.

Definition 3.1.6 A sequence (an) is called superadditive, if am+n ≥ am +an

for all m, n.

A sequence (an) is called subadditive, if am+n ≤ am + an for all m, n.

Remark 3.1.7 Subadditivity and superadditivity are essentially equivalent
(take negation of all the elements of the sequence). In last-passage percolation
we need superadditivity, but the convergence result we need is traditionally called
subadditive ergodic theorem.

•

3.2 Limit in expectation
Theorem 3.2.1 The limit T (n)/n exists.

11



Definition 3.2.2 Assuming the previous theorem, define

ℓ(v⃗) = lim
n→+∞

EL(0, nv⃗)
n

, |v⃗| = 1.

Now, extend this to all vectors v⃗ = (a, b) ∈ R2
>0. Clearly, the resulting function

ℓ(v⃗) = ℓ(a, b) is homogeneous:

ℓ(γa, γb) = γℓ(a, b), γ > 0.

Proof 3.2.1 Theorem follows from the next classical result:

Lemma 3.2.3. Fekete’s lemma for superadditive sequences { }

The proof is left as an [[Problems, 2-8#3|exercise]].

Remark 3.2.4 The limit in the above lemma can be +∞, consider an = log(n!).

Definition 3.2.5. Limiting percolation cluster { }
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3.3 Subadditive ergodic theorem
Definition 3.3.1. Measure preserving transformations { }

Example 3.3.2. Bernoulli shift { }

Let us discuss this example in more detail. Here P, the probability measure,
which corresponds to tossing a fair coin infinitely many times.
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The preimage is

{ }

Note that for this map, it is not true that P(TA) = P(A) for all A. Indeed, if
A = {x1 = 0}, then TA is the whole space Ω.

In the Venn diagram form, the map T looks as

{ }

[[Problems, 2-8|Problems 4-6]] discuss measure-preserving maps and ergodicity a
little further.

Theorem 3.3.3. Subadditive ergodic theorem (in superadditive form)
We are giving this theorem in a superadditive form so that it’s easier to apply
later to last-passage percolation.

Let gn(x), x ∈ Ω, be a sequence of integrable functions which satisfy superaddi-
tivity:

gn+m(x) ≥ gn(x) + gm(T nx), ∀x ∈ Ω.

Then 1. Almost surely (i.e., for P-almost every x) there exists a limit

g(x) = lim
n→+∞

gn(x)
n

,

which is ≤ +∞. 2. The limiting function is invariant, i.e., g(Tx) = g(x) for
P-almost every x ∈ Ω.

14



Proof 3.3.3 We leave the proof of this result out of this course. However,
you are welcome to give a 10-minute talk on this proof. See [[Problems, 2-
8#T1|Assignment T1]] and let me know if you’re interested.

We also discussed applications of the subadditive ergodic theorem to the last-
passage percolation limit shape, but I am going to repeat this in the next
lecture.

Notes and references
1. The uniform limit law of the second class particle extends to arbitrary

product measures with densities ρ to the left of the origin and λ to the
right of the origin, where ρ > λ (then the segment on which the uniform
distribution lives should be suitably modified). There are many papers
discussing second class particles, and several beautiful exact couplings
available, including:

1. P. A. Ferrari. Shock fluctuations in asymmetric simple
exclusion. Probab. Theory Related Fields, 91(1), 1992.

2. P. A. Ferrari and C. Kipnis. Second class particles
in the rarefaction fan. Ann. Inst. H. Poincare Probab.
Statist., 31(1), 1995.

3. P. A. Ferrari and L. P. R. Pimentel. Competition interfaces
and second class particles. Ann. Probab., 33(4), 2005.

4. O. Angel, A. Holroyd, and D. Romik. The oriented swap
process. Annals of Probability, 37(5):1970–1998, 2009.

2. Subadditive ergodic theorem is originally due to Kingman
1. J. F. C. KINGMAN, The Ergodic Theory of Subadditive

Stochastic Processes, J. Roy. Statist. Soc. Ser., Vol.
B30, 1968, pp. 499-510.

2. J. F. C. KINGMAN, Subadditive Ergodic Theory, Ann.
Probability, Vol. 1, 1973, pp. 883-909.

3. J. F. C. KINGMAN, Subadditive Processes, Lecture Notes
in Math., Vol. 539, 1976, pp. 167-223.

4. See also J. MICHAEL STEELE. Kingman’s subadditive ergodic
theorem Annales de l’I. H. P., section B, tome 25, no 1
(1989), p. 93-98 (link) for a proof.

3. The proofs of the limit shape results were done without a careful exploration
of integer parts. In particular, note that the subadditive ergodic theorem
holds for sequences. Therefore, one has to extend the function ℓ from
integer/rational points to all points. This exercise is done with great care
in Seppalainen’s lecture notes, Theorem 2.1.

4. First-passage (undirected) percolation is a subject of intense study, too. See,
for example, the survey Antonio Auffinger, Michael Damron, Jack
Hanson. 50 years of first passage percolation.
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Problems
[[_Lecture 3, 2-8|Lecture 3]]

Due date February 22, solutions posted around that day.

1
Show that the q-TASEP defined in [[../Lecture 2, 2-3/2.4 Some other parti-
cle systems#q-TASEP|L2]] exists, using a graphical construction similar to
[[../Lecture 2, 2-3/2.2 Existence of TASEP#Proof 2 2 1|the one for TASEP]].

2
Describe the Markov chain with discrete time on {0, 1}Z which corresponds to the
Last Passage Percolation with independent Geo(q) weights. That is, “discretize”
the time in TASEP.

Hint: consider the case of one particle. Which random jumping mechanism
corresponds to the waiting time till jump distributed as Geo(q)?

3
Show that if for a sequence (an)n we have an+m ≥ an + am for all n, m, then
there exists

lim
n→+∞

an

n
= sup

n

an

n

(this limit may be equal to +∞).

4
In the setup of [[3.3 Subadditive ergodic theorem|section 3.3]], use the subadditive
ergodic theorem to establish the classical Birkhoff theorem. That is, for T an
ergodic map, and f(x) an integrable function on Ω define

Sn(x) = 1
n

n−1∑
k=0

f(T kx), x ∈ Ω.

So Sn is the “time”, or “orbital” average. As n → +∞, Sn converges to the
space (“probabilistic”) average,

lim
n→+∞

Sn =
∫

Ω
f(x) P(dx).

16



5
Show that

lim
n→+∞

1
n

n−1∑
k=0

{
2kx

}
= 1

2

for (Lebesgue-)almost every x ∈ [0, 1], where {a} is the fractional part of a.

6
A number x ∈ [0, 1) is called normal (in base 2), if the number of 1-s in its base
2 expansion x = 0.a1a2a3 . . . among the first n digits a1, . . . , an goes to 1

2 as n
grows. Show that (Lebesgue-)almost all numbers in [0, 1) are normal.

T1
By Ti I will suggest topics for 10-minute talks, where i is a counter throughout
all lectures. This first talk idea is to present the proof of the subadditive ergodic
theorem (Theorem 3.3.3 [[3.3 Subadditive ergodic theorem|here]]).

[[Solutions, 2-8]]

Solutions
[[../../Lecture 3, 2-8/Problems, 2-8|Problems 3]]

[[../../Lecture 3, 2-8/_Lecture 3, 2-8|Lecture 3]]

1
{ }
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2
{ }
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3
{ }
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4
{ }
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5
{ }
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{ }
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[[Problems, 2-10|2 problems]], due 2/24

1 Remark / correction
•

1 Remark correction in LPP
{ }

Let me clarify that the last passage percolation paths need to end at corners of
the initial interface h0 (orange in the picture), and not at arbitrary points of h0.
This is consistent with how the random growth proceeds.

2 Subadditive ergodic theorem
Recall the material from [[../Lecture 3, 2-8/_Lecture 3, 2-8|L3]], and add more
details. I am going to repost the notes from L4 below, but there is significant
overlap with the L3 material.

1



•

2.1 Measure preserving transformations
Definition 2.1.1 { }

Example 2.1.2 { }

Example 2.1.3 { }

2



This is called the (one-sided) Bernoulli shift. There are several important
aspects of this construction. First, this is a way to look at an independent
sequence of coin flips from the measure-theoretic perspective, by introducing the
measure space {0, 1}Z≥1 with product measure. Then the sequence of independent
coin flips becomes the sequence of functions (x1, x2, . . .) 7→ xi.

Then, the Bernoulli shift T is an example of a not one-to-one measure preserving
transformation.

Finally, the Bernoulli shift is a model of the shift by a vector that is used in the
LPP limit shape result.

Definition 2.1.4. Ergodicity of a measure preserving map { }

3



See also [[Problems, 2-10#2|Problem 2]] related to ergodicity of the rotation of
the circle.

Example 2.1.5 { }

Here we use the structure of the product σ-algebra on the countable product
space. Namely, any function measurable with respect to this σ-algebra (in plain
terms, any function depending on the iid coin flips xi) is a limit of functions
which depend on finitely many coordinates. Therefore, it essentially is enough
to check the condition for invariant functions of finitely many coordinates.

Proposition 2.1.6. Kolmogorov 0-1 law This is [[Problems, 2-10#1|
Problem 1 from this lecture]].

{ }

Proof 2.1.6 (sketch) { }

4



2.2 Ergodic theorem
Let

{ }

Theorem 2.2.1. Superadditive ergodic theorem { }

5



As discussed before, the proof of this result is not given in the course, and is left
as an additional readong.

Corollary 2.2.2. The classical Birkhoff ergodic theorem Let f be an
integrable function on Ω, and define

gn(x) =
n−1∑
k=0

f(T kx).

Then clearly
gn(x) + gm(T nx) = gm+n(x),

which means that g satisfies subadditivity / superadditivity. Then

lim
n→+∞

1
n

gn(x) → g(x).

Moreover, because T is measure preserving, in case of ergodic T we have (by
taking averages with respect to P):

1
n

∫
gn(x) P(dx) =

∫
f(x) P(dx) ⇒ 1

n
gn(x) →

∫
f(x) P(dx).

Corollary 2.2.3. Law of large numbers For the Bernoulli shift, we can
define f(x1, x2, . . .) = x1. Then $g_n(x)=x_1+. . . +x_n $, and the result says

x1 + . . . + xn

n
→
∫

x1 P(dx) = 1
2 .

6



In fact, the same results holds for any iid sequence of random variables Xn,
n ≥ 1, where we define the shift T in the same way. This result

X1 + . . . + Xn

n
→ E(X1) almost surely

is called the (strong) law of large numbers.

3 Application to limit shapes
•

3.1 Setup
{ }

3.2 Limit shape
Definition 3.2.1 { }

7



Theorem 3.2.2 { }

Proof 3.2.2 We assume that v⃗ = (a, b) is an integer vector. Using homogeneity,
this allows to extend the result to all rational points. Extending to irrational
points is a standard limiting argument.

Let T be the shift by v⃗. This is like the Bernoulli shift, but along a direction in
Z2.

Recall that L(0, nv⃗) is the last-passage time from 0 to nv⃗.

Then L satisfies superadditivity:

{ }

8



So:

{ }

Finally, ℓ is nonrandom because of the ergodicity of T , which follows from
Kolmogorov 0-1 law.

Definition 3.2.3 Recall the notion of the scaled percolation cluster G:

{ }

9



3.3 Properties of the limit shape function
Theorem 3.3.1 The last passage limit shape function ℓ(a, b) satisfies the
following properties: 1. ℓ is homogeneous, symmetric in a, b, and nondecreasing
in both arguments 2. Either ℓ = +∞ or ℓ < ∞ for all points 3. ℓ is superadditive:
ℓ(p + q) ≥ ℓ(p) + ℓ(q) for all p, q ∈ R2

≥0 4. ℓ is concave: γℓ(p) + (1 − γ)ℓ(q) ≤
ℓ(γp + (1 − γ)q), γ ∈ [0, 1] 5. ℓ is continuous

Proof 3.3.1

1. Is straightforward
2. If ℓ = +∞ at some point, then it is infinite in the whole quadrant. Moreover,

the other points can be shifted (using homogeneity) into this quadrant.

{ }

10



3. Superadditivity follows from the same prelimit statement:

{ }

4. Superadditivity + homogeneity implies concavity:

γℓ(p) + (1 − γ)ℓ(q) = ℓ(γp) + ℓ((1 − γ)p) ≤ ℓ(γp + (1 − γ)q).

5. Finite concave functions are continuous.

□

Corollary 3.3.2 Therefore, the boundary of the limit shape cluster looks as
follows:

{ }

11



It is concave, continuous, and may contain straight or curved
pieces.
3.4 Explicit limit shapes
Theorem 3.4.1 For exponental weights with mean 1, we have:

{ }

This is the piece of the parabola which is tangent to both axes at unit points.

We will prove this theorem eventually in the course.

12



Theorem 3.4.2 For geometric weights ∈ Z≥0 with parameter q ∈ (0, 1), we
have:

ℓ(a, b) = b

((√
aq
b + 1

)2

1 − q
− 1
)

{ }

(note that this function is symmetric in a, b)

We will prove this theorem eventually in the course.

Remark 3.4.3 { }

13



{ }

Open problem 3.4.4

The case of any other iid weights is wide open. Namely,
we don’t know any other explicit limit shapes in the last
passage percolation model.
3.5 From LPP to TASEP limiting density
If we believe in the parabola limit shape ([[3.4 Explicit limit shapes#Theorem 3
4 1]]), we can derive the limit shape of the TASEP density.

Moreover, there is a general relation between the height and the density.

Let H(t, x), t ∈ R≥0, x ∈ Z≥0, be the finite-time height function of TASEP.
Define

ht(x) = lim
R→+∞

H(Rt, ⌊Rx⌋),

and similarly define the limiting density ρ(t, x).

14



Lemma 3.5.1 { }

Proof 3.5.1 Straightforward from the picture

{ }

Corollary 3.5.2 Modulo [[3.4 Explicit limit shapes#Theorem 3 4 1]], the
limiting density of TASEP started from the step initial configuration is

ρ(t, x) = 1
2 − x

2t
.

Proof 3.5.2 This is obtained by scaling the parabola by t, and differentiating
as in [[#Lemma 3 5 1]].

Here is an illustration of the density’s evolution:

{ }

15



4 Heuristic hydrodynamics of TASEP
•

4 Heuristic hydrodynamics of TASEP
Let us begin by formulating principles on which the hydrodynamics approach is
based.

{ }

{ }
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Definition 4.0.1 { }

Propopsition 4.0.2 { }

Proof 4.0.2 (sketch) { }

17



Propopsition 4.0.3 { }

Proof 4.0.3 Straightforward.

Continuity equation for the TASEP limiting density { }

18



Proposition 4.0.4 The density ρ(t, x) = 1
2 − x

2t solves the Burgers equation

∂

∂t
ρ(t, x) + ∂

∂x
(ρ(t, x) (1 − ρ(t, x))) = 0.

Proof 4.0.4 Straightforward check.

Notes and references
1. Limit shape theorem for TASEP using hydrodynamics is es-

tablished in Rost, H. Non-equilibrium behaviour of a many
particle process: Density profile and local equilibria. Z.
Wahrscheinlichkeitstheorie verw Gebiete 58, 41–53 (1981),
https://doi.org/10.1007/BF00536194. This paper also essentially shows
that the limit shape of the exponential last passage percolation is a
parabola.

2. Explicit limit shape for last passage percolation with geometric
weights can be found in K. Johansson. Shape fluctuations and
random matrices. Commun. Math. Phys., 209(2):437–476, 2000,
arXiv:math/9903134 [math.CO]. However, this is not the first place where
this limit shape was obtained. The original references are:

1. H. Cohn, N. Elkies, and J. Propp. Local statistics for
random domino tilings of the Aztec diamond. Duke Math.
J., 85(1):117–166, 1996. arXiv:math/0008243 [math.CO].
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https://doi.org/10.1007/BF00536194
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2. W. Jockusch, J. Propp, and P. Shor. Random domino tilings
and the arctic circle theorem. arXiv preprint, 1998.
arXiv:math/9801068 [math.CO].

3. T. Seppäläinen. Hydrodynamic scaling, convex duality
and asymptotic shapes of growth models. Markov Process.
Related Fields, 4(1):1–26, 1998.

3. A more careful exposition of the last passage percolation limit shape result
is found in Seppalainen’s lecture notes, Theorem 2.1.

Problems
[[_Lecture 4, 2-10|Lecture 4]]

1
Prove or find in the literature the proof of the Kolmogorov 0-1 law. That is, let
X1, X2, . . . be independent random variables, and T be the tail σ-algebra:

T =
∞⋂

n=1
σ(Xn, Xn+1, Xn+2, . . .).

In words, T consists of events which are independent of any finite subcollection
of the Xj ’s. Then, if A ∈ T , then P(A) = 0 or 1.

2
Let (Ω, F , P) be the unit circle with the normalized length measure. Let Tα

be the counterclockwise rotation by the angle α. 1. Show that Tα is measure-
preserving 2. Show that for α irrational multiples of 2π, Tα is ergodic 3. Is Tα

ergodic for α rational multiples of 2π?

{ }
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[[Solutions, 2-10|Solutions]]

Solutions
[[../../Lecture 4, 2-10/Problems, 2-10|Problems 4]]

[[../../Lecture 4, 2-10/_Lecture 4, 2-10|Lecture 4]]

1
{ }
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{ }
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2
Parts 1 and 3
{ }
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Part 2
{ }
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{ }
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{ }
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[[Problems, 2-15|3 problems + T2 + T3]], due 3/1

1 Hydrodynamics of TASEP
•

1.1 Burgers equation
Definition 1.1.1 { }

Definition 1.1.2 Alternatively, ρ(t, x) can be defined as

{ }

(if the limit exists)

1



Claim 1.1.3 { }

Heuristics supporting Claim 1.1.3 { }

{ }

{ }

2



Application to step initial condition { }

At t = 0, the density is not differentiable at 0. However, ρ(t, x) = 1
2 − x

2t has
pointwise limit to the step function ρ(0, x) as t → 0 (for all x ̸= 0).

The Burgers equation with this initial condition does not have a unique solu-
tion. To select this particular ρ(t, x), additional conditions are needed, such as

3



conservation of particles, or “entropy” solution requirement.

•

1.2 Stationarity of Bernoulli product measures
Definition 1.2.1 Let Ber(ρ) denote the Bernoulli product measure on {0, 1}Z.

Proposition 1.2.2 For each ρ ∈ [0, 1], the measure Ber(ρ) is stationary under
the TASEP evolution.

Lemma 1.2.3. Single site. { }

{ }

Proof 1.2.3 { }

4



{ }

{ }

5



Lemma 1.2.4. Process on the half-line { }

Remark 1.2.5 In fact, [[#Lemma 1 2 3 Single site|Lemma 1.2.3]] is not
necessary, and we discussed it just for an illustration.

Proof 1.2.4 We prove this by induction on n. That is, it suffices to look at a
single site.

{ }

6



Proof 1.2.2 { }

{ }
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Remark 1.2.6 This technique of constructing stationary processes works for
most integrable systems, including stochastic six vertex model and random
polymers.

•

1.3 Stationarity of geometric LPP
In the last-passage percolation model with geometric weights, its stationary
version (meaning in a sense the full-plane LPP) may be constructed by adding
certain carefully selected boundary weights.

{ }

The stationarity of this model is checked in [[Problems, 2-15#1|Problem 1]] and
[[Problems, 2-15#2|Problem 2]].

8



2 Liggett’s characterization of invariant measures
•

2.1 Coupled process
Definition 2.1.1. Basic coupling Having 2 TASEPs ηt and ζt on Z, we
couple them into a single process (ηt, ζt), such that the processes use the same
exponential clocks attached to vertices of Z. In particular, once two particles
glue:

{ }

then they stay glued together forever

Definition 2.1.2. Ordering of states { }

9



Definition 2.1.3. Ordering of measures We say that µ1 ≤ µ2 if there
exists a probability measure on {0, 1}Z × {0, 1}Z with marginals µ1, µ2, under
which η ≤ ζ with probability one (where (η, ζ) is the configuration on Z ⊔ Z).

We refer to a measure with prescribed marginals as a “coupling”.

Lemma 2.1.4 { }

The proof is straightforward.
2.2 Properties of the coupled process
Definition 2.2.1. Stationary, translation invariant, extreme { }

{ }

10



Example 2.2.2. Some convex sets { }

Proposition 2.2.3 { }

11



Remark 2.2.4 Moreover, under an extreme stationary measure, every invariant
set has probability 0 or 1.

Proof 2.2.3 { }

2.3 Ordering of measures
Proposition 2.3.1. Main proposition { }

Proof 2.3.1

12



Step 0 { }

Step 1 { }

Step 2 { }

13



{ }

Step 3 { }

14



It suffices to check that:

{ }

This is where I am omitting some smaller details, and refer to Lemmas 2.4,
2.5, and 3.1 in Liggett’s 1976 paper (see [[_Lecture 5, 2-15#Notes and refer-
ences|references]]). In broad terms, that these configurations have zero probability
makes sense because ν is stationary. Each of these configurations has a nonzero
chance of gluing the particles together (to a state (0, 1)), and because ν is
stationary, this gluing should have already happened.

Step 4 So, for a pair of extreme, translation invariant, stationary measures
µ1, µ2 we have constructed a coupling ν which is itself extreme, translation
invariant, stationary for the coupled process. Moreover, we have shown that

ν (ζ ≤ η or ζ ≥ η) = 1,

which means that µ1 ≤ µ2 or µ1 ≥ µ2. This proves the proposition.

15



Remark 2.3.2 The above proposition means that the extreme, translation
invariant, stationary measures form a totally ordered set, which suggests that
they are indeed indexed by a single parameter.

•

2.4 Liggett’s theorem
Theorem 2.4.1 { }

Proof 2.4.1 { }

{ }

16



{ }

{ }
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Notes and references
1. The proof that all extreme stationary translation invariant measures for the

TASEP are the Bernoulli product measures is given in Liggett, Thomas
M. Coupling the Simple Exclusion Process. Ann. Probab. 4
(1976), no. 3, 339--356. doi:10.1214/aop/1176996084. We follow this
paper in our proof.

2. Construction of the stationary stochastic six vertex model is described
in Amol Aggarwal. Current fluctuations of the stationary ASEP
and six-vertex model. Duke Math. J., Volume 167, Number 2
(2018), 269-384, https://arxiv.org/abs/1608.04726, Lemma A.2.

Problems
[[_Lecture 5, 2-15|Lecture 5]]

1
Notation. In this and the next problem we denote by a+ = max(a, 0) the
positive part of a.

Let 0 < r < p < 1. Let I, J and Y be independent geometric random variables
with distributions

P [I = k] = p − r

1 − r

(
1 − p

1 − r

)k

, P [J = k] = r(1 − r)k, P [Y = k] = p(1 − p)k

for k ∈ Z≥0. Let I1 = (I − J)+ + Y, J1 = (J − I)+ + Y and X = min(I, J). Then
the triple (I1, J1, X) has the same distribution as (I, J, Y ).

Hint: Use the joint moment generating function E
[
aI1bJ1cX

]
and show that

it’s the same as for (I, J, Y ).

2
Consider the last-passage model with boundaries:

18
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{ }

Recall the notation L(m, n) for the last-passage times from (0, 0) to (m, n).

In the last-passage model with boundaries we define some new random variables.
Horizontal and vertical increments are given by

Ii,j = L(i, j) − L(i − 1, j) for i ≥ 1, j ≥ 0
and Ji,j = L(i, j) − L(i, j − 1) for i ≥ 0, j ≥ 1

An alternative formula for Ii,j develops as follows, if i, j ≥ 1 :

Ii,j = L(i, j) − L(i − 1, j)
= max(L(i − 1, j), L(i, j − 1)) + Yi,j − L(i − 1, j − 1)
− [L(i − 1, j) − L(i − 1, j − 1)]
= max(Ji−1,j , Ii,j−1) + Yi,j − Ji−1,j

= (Ii,j−1 − Ji−1,j)+ + Yi,j

Similar formula works for Ji,j by symmetry, so we have

Ii,j = (Ii,j−1 − Ji−1,j)+ + Yi,j

Ji,j = (Ji−1,j − Ii,j−1)+ + Yi,j for (i, j) ∈ Z2
≥1

Define
Xi,j = min(Ii+1,j , Ji,j+1) for (i, j) ∈ Z2

≥0

Take a down-right path σ and let

Zℓ(σ) =
{

L(σ(ℓ + 1)) − L(σ(ℓ)) = Iσ(ℓ+1) if σ(ℓ + 1) − σ(ℓ) = (1, 0)
L(σ(ℓ)) − L(σ(ℓ + 1)) = Jσ(ℓ) if σ(ℓ + 1) − σ(ℓ) = (0, −1)

19



Prove the following:

Theorem The random variables Xi,j below σ, and Zℓ(σ) for all ℓ are inde-
pendent and geometrically distributed. Moreover, Xi,j are distributed as “bulk”
LPP weights; along σ horizontal increments have the “horizontal” distribution;
and along σ the vertical increments have the “vertical” distribution.

{ }

%%# 3

Show that the Bernoulli product measure µρ on {0, 1}Z is extreme within the
class of translation invariant measures.

Notation. µρ is the measure corresponding to the sequence of iid Bernoulli
random variables (with ρ the probability of 1) at each component of Z. A
translation invariant probability measure is called extreme if the equality µ =
γµ1 + (1 − γ)µ2, where γ ∈ (0, 1) and µ1, µ2 are translation invariant probability
measures, implies µ1 = µ2 = µ.

Hint. We have µ1 ≤ 1/γµ, so µ1 is absolutely continuous with respect to µ.
Therefore by Radon–Nikodym, there exists a function f for which µ1 = f dµ.
Show that f must be a translation invariant function on {0, 1}Z. Show that this
leads to a contradiction with γ ∈ (0, 1).

4
Extreme translation invariant probability measures on {0, 1}Z form a wider
family than just the Bernoulli product measures. Produce an example of an
extreme translation invariant measure which is not Ber(ρ).%%
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3
Take the action of another group of transformations on {0, 1}Z, namely, finitary
permutations. These are permutations σ which fix all but finitely many points
(but which points are fixed depends on σ); they form a group which is usually
called the infinite symmetric group. A measure invariant under this group is
usually called exchangeable.

De Finetti’s theorem states that all extreme exchangeable probability measures
on {0, 1}Z are Bernoulli product measures.

Prove this theorem, or find its proof in the literature and understand the
argument.

T2
By Ti I will suggest topics for 10-minute talks, where i is a counter throughout
all lectures. This second talk idea is to continue the discussion of the stationary
LPP field using Seppalainen’s lecture notes, and explain how to get the explicit
limit shape via a certain variational principle.

T3
(By Ti I suggest topics for 10-minute talks, where i is a counter throughout all
lectures.)

Explain a proof of de Finetti’s theorem in a 10-minute talk.

[[Solutions, 2-15|Solutions]]

Solutions
[[../../Lecture 5, 2-15/Problems, 2-15|Problems 5]]

[[../../Lecture 5, 2-15/_Lecture 5, 2-15|Lecture 5]]

1
{ }

21



2
{ }
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3
We refer to the book of Borodin-Olshanski, see section 5 there with two proofs,
explained in great detail.
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[[Problems, 2-22|5 problems]], due 3/8

1 Push-block process
•

1.1 Interlacing arrays
Definition 1.1.1. { }

GT stands for “Gelfand-Tsetlin”. Elements of GTN are usually called signatures.

Connection to representation theory: GTN encodes irreducible representa-
tions of the unitary group U(N). This is the group of complex N × N matrices
A such that A∗A = Id, where “∗” is conjugate transpose. (This is the complex
analogue of orthogonal matrices.)

Definition 1.1.2. Interlacing { }

Definition 1.1.3. Interlacing arrays Let C ⊂ GT1 × GT2 × GT3× be the
set of interlacing arrays, i.e., of sequences

{
λ(k) ∈ GTk

}
with the property that

λ(1) ≺ λ(2) ≺ λ(3) ≺ . . .. For example:

{ }

1



Note. Interlacing naturally appears in several contexts: - roots of a polynomial
and of its derivative; - matrix spectra (this context is closer to us here).

See [[Problems, 2-22#1|Problem 1]], for example.

Example 1.1.4. Lozenge tiling interpretation There is a bijection of the
set of interlacing arrays of a fixed depth N to lozenge tilings of a strip of width
N with N “defects” on top. Therefore, infinite interlacing arrays are in bijection
with tilings of the upper half plane. Lozenges are three types of rhombi on the
regular triangular grid.

For step 1, shift the coordinates so that they are distinct on each level:

{ }

Then draw vertical lozenges at these coordinates, in a coordinate system with
120◦ angle between the axes:

{ }

2



•

1.2 Push-block process
Definition 1.2.1 On C, we define a continuous time Markov process as follows:

{ }

3



{ }

You may think that this dynamics preserves interlacing, and also under it the
lower particles are heavier than the higher particles.

See also [[Problems, 2-22#2|Problem 2]].

Example 1.2.2 Here are a few transitions of the push-block process

{ }

4



Corollary 1.2.3 { }

So, the asymptotic behaviour of the first particle is as follows, by the CLT:

{ }

5



2 TASEP and push-block
•

2.1 TASEP as a marginal
It is known that a function of a Markov process is not necessarily a Markov
process itself. Indeed, if a function is not one-to-one, it could “forget” some
information.

However, we can see that TASEP is represented as a function of the push-block
dynamics, and moreover it is marginally Markovian.

Theorem 2.1.1 Let xk = λ
(k)
k − k, where

{
λ

(k)
j

}
is an interlacing array

evolving as a push-block process. Then {xk} evolves as TASEP.

Proof 2.1.1 This follows in a straightforward way from the definition of the
push-block process. Here is an example of the mapping:

{ }
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2.2 PushTASEP
There is one more Markovian marginal in the push-block process - the Push-
TASEP, or long-range TASEP.

{ }

{ }

7



See [[Problems, 2-22#3|Problem 3]] on existence of this process.

3 Gibbs measures
•

3.1 Definition of Gibbs measures
Definition 3.1.1 Let N be fixed. An extreme Gibbs measure on interlacing
arrays λ(1) ≺ . . . ≺ λ(N) of depth N is a probability measure on these arrays,
under which λ(N) is fixed, and the joint distribution of

λ(1) ≺ . . . ≺ λ(N−1)

is uniform on the set of interlacing arrays of depth N with fixed top row λ(N).

In other words, extreme Gibbs measures of finite depth are just uniform measures.

Example 3.1.2 If N = 3 and λ(3) = (4, 1, 1), then the corresponding extreme
Gibbs measure places probability weight 1

10 onto each of the 10 arrays:

{ }
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Definition 3.1.3 A Gibbs measure on interlacing arrays λ(1) ≺ . . . ≺ λ(N) of
depth N is a probability measure on these arrays which is a mixture (=~convex
combination of extreme ones).

In other words, conditioned on λ(N) = λ, the conditional distribution of all the
lower rows λ(1), . . . , λ(N−1) is uniform among all interlacing arrays with top row
λ(N).

Definition 3.1.4 A measure M on interlacing arrays of infinite depth is called
Gibbs, if for every N , conditioned on λ(N) = λ, the conditional distribution of
the lower rows λ(1), . . . , λ(N−1) does not depend on the higher rows λ, and is
uniform on the set of interlacing arrays with top row λ. That is,

M
(

λ(1), . . . , λ(N−1) | λ(N) = λ
)

= 1
# {interlacing arrays of depth N with top row λ}

Example 3.1.5 The delta measure with λ
(k)
j = 0 for all 1 ≤ j ≤ k < +∞ is

Gibbs for trivial reasons.

Example 3.1.6 Take β ∈ (0, 1) and a random walk. Place 0 everywhere to
the left of the random walk, and 1 everywhere to the right of it. Thus, we get a
random interlacing array. In fact, this measure is Gibbs.

{ }

9



See [[Problems, 2-22#4|Problem 4]].
3.2 Harmonic functions
There is an equivalent description of the Gibbs property using so-called harmonic
functions.

Definition 3.2.1 Let λ ∈ GTN . By DimN λ denote the number of interlacing
arrays of depth N with top row λ.

For example, Dim3(4, 1, 1) = 10.

See [[Problems, 2-22#5|Problem 5]].

In fact, DimN λ is the dimension of the irreducible representation of U(N)
corresponding to λ.

Definition 3.2.2 Let M be a Gibbs measure on infinite interlacing arrays.
Associate to it a family of functions on GTN for each N , by

φN (λ) = M(λ(N) = λ)
DimN λ

.

For a Gibbs measure this is the same as M(λ(1) = µ, . . . , λ(N−1) = ν, λ(N) = λ)
for any fixed interlacing array (µ, . . . , ν, λ) of depth N with top row λ. In this
equivalent description we use the Gibbs property in an essential way, as an
independence from the lower rows µ, . . . , ν.

10



Proposition 3.2.3 The space of Gibbs measures on infinite interlacing arrays
is in a one-to-one correspondence with the space of harmonic functions {φN },
that is, which satisfy

φN (λ) =
∑

ν∈GTN+1

φN+1(ν)

for all N and all λ ∈ GTN .

Example of the harmonicity:

{ }

Proof 3.2.3 For any measure M on infinite interlacing arrays we have

{ }
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If the measure is Gibbs, we immediately get the harmonicity of φN defined by
φN (λ) = M(λ(N) = λ)/DimN λ.

On the other hand, if the functions φN (λ) are harmonic, let us define a measure
M using φN ’s and the Gibbs property:

M(λ(1) = µ, . . . , λ(N−1) = κ, λ(N) = λ) := φN (λ),

independently of µ, . . . ,κ. This measure is automatically Gibbs, and the measure
M is well-defined thanks to the harmonicity condition. □

•

3.3 Classification (answer)
Recall that a Gibbs measure (on infinite interlacing arrays) is called extreme if
it cannot be represented as a nontrivial convex combination of other such Gibbs
measures.

The problem of classification of extreme Gibbs measures is solved, but its solution
is very interesting and has lead to many developments. There are also several
equivalent ways to formulate this problem, including a representation-theoretic
one (classify all indecomposable normalized characters of the infinite-dimensional
unitary group U(∞)).

Let us mention the answer. The space of parameters of extreme measures is a
certain subset Ω ⊂ R4∞+2, and the mapping at the level of harmonic functions
is as follows:

{ }
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Notes and references
1. Push-block process was introduced in A. Borodin and P. Ferrari.

Anisotropic growth of random surfaces in 2+1 dimensions.
Commun. Math. Phys., 325:603–684, 2014. arXiv:0804.3035 [math-
ph].

2. A simulation of the push-block process due to P.Ferrari can be found here.
3. The problem of classification of extreme Gibbs measures on tilings of the

upper half plane has a long history. For example, see A. Borodin and
G. Olshanski. The boundary of the Gelfand-Tsetlin graph: A
new approach. Adv. Math., 230:1738–1779, 2012. arXiv:1109.1412
[math.CO].

Problems
[[_Lecture 6, 2-22|Lecture 6]]

1
Let A be an N × N complex hermitian or real symmetric matrix. Let λ1 ≥ . . . ≥
λN , λi ∈ R, be eigenvalues of A. Let B be the (N − 1) × (N − 1) matrix which
is obtained by deleting, say, the N -th row and the N -th column of A. Show that
the eigenvalues µ1 ≥ . . . ≥ µN−1 of B interlace with those of A:

λ1 ≥ µ1 ≥ . . . ≥ λN−1 ≥ µN−1 ≥ λN .

Hint. Use the “variational” characterization of the eigenvalues: λ1 is the
coefficient of maximal dilation of the norm of a vector by A, and so on:

λk = min
U

{max
x

{ (Ax, x)
(x, x) | x ∈ U and x ̸= 0} | dim(U) = k}

λk = max
U

{min
x

{ (Ax, x)
(x, x) | x ∈ U and x ̸= 0} | dim(U) = n − k + 1}

2
Show that the push-block process on infinite two-dimensional interlacing arrays
(starting from an arbitrary initial configuration) exists.

Hint. Use compatibility of the dynamics restricted to the first N levels, for all
N .
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3
Show that the PushTASEP (started from an arbitrary initial particle configura-
tion on Z) exists.

Hint. Use a suitable version of the graphical construction, and maybe it is
useful to replace particles by holes, and vice versa.

4
Show that the measure on interlacing arrays coming from a random walk with a
fixed β ∈ (0, 1) satisfies the Gibbs property.

{ }

5
Prove the formula for DimN λ, the number of interlacing arrays of depth N and
with top row λ:

DimN λ =
∏

1≤i<j≤N

λi − λj + j − i

j − i
, λ ∈ GTN .

Hint. You may use induction: DimN λ is the sum of DimN−1µ over all µ ∈
GTN−1 which interlace with λ.

[[Solutions, 2-22|Solutions]]
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Solutions
[[../../Lecture 6, 2-22/Problems, 2-22|Problems]]

[[../../Lecture 6, 2-22/_Lecture 6, 2-22|Lecture]]

1
{ }

15



{ }

16



2
The push-block process exists by Kolmogorov extension theorem. Namely, for
each finite N the evolution of λ(1), . . . , λ(N) exists (starting from an arbitrary
initial configuration) because it is a finite-dimensional Markov jump process (like
a Poisson process, but possibly more complicated).

Then, for different N ’s, the stochastic processes are compatible with each other.
That is, given N and the evolution of λ(1), . . . , λ(N), the marginal evolution of
λ(1), . . . , λ(k), k < N , is independent of levels k + 1, . . . , N , and coincides with
the push-block process on the first k levels. Therefore, by Kolmogorov extension,
we can define the process on infinitely many levels.

3
Let us assume that the initial configuration is not densely packed to the left.

Model the PushTASEP process by putting independent Poisson clocks at each
site. Then make the graphical construction as follows. When a Poisson clock

17



rings at a site, if there is a hole then nothing happens. If there is a particle, then
the particle jumps to the next available hole on the right.

{ }

There could be an issue with having a densely packed configuration of particles
to the right, so that there is no available hole. In this case, employ Kolmogorov
extension theorem and construct the process on Z≤N for some N , with modified
jumping rule: if there is no available hole before N , then the particle which
wants to jump past N must disappear. These processes are compatible with
each other, and so a global process on Z exists. If initially there is a densely
packed configuration to the right, then the process makes infinitely many jumps
in finite time.

4
{ }
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5
{ }

19



{ }

20



{ }

21
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[[Problems, 2-24|4 problems]], due 3/10

1 Gibbs measures on interlacing arrays
•

1 Gibbs measures on interlacing arrays
Recall the definition of Gibbs measures:

Definition 1.0.1 { }

Definition 1.0.2 Gibbs measures form a convex set. That is, for µ1, µ2
Gibbs, their convex combinations γµ1 + (1 − γ)µ2 are also Gibbs — as convex
combinations of uniform conditional distributions are uniform, too.

Recall that a Gibbs measure µ is called extreme if from µ = γµ1 + (1 − γ)µ2,
0 < γ < 1, µ1, µ2 Gibbs, it follows that µ1 = µ2 = µ.

Example 1.0.3 The “Bernoulli random walk” measure is an example of a
nontrivial Gibbs measure. In fact, it is extreme.

{ }

1



Now, let us formulate several equivalent problems of classifying extreme Gibbs
measures.

Problem 1.0.4 Classify extreme Gibbs measures on infinite interlacing arrays.

Problem 1.0.5 { }

The connection between Gibbs measures and harmonic functions is φN (λ) =
M(λ(N) = λ)/DimN λ, λ ∈ GTN .

Problem 1.0.6 Classify irreducible normalized characters of the infinite-
dimensional unitary group U(∞).

Problem 1.0.7 { }

2



Example of a minor:

{ }

Theorem 1.0.8 All the 4 problems formulated above are equivalent to each
other. Details are outside of our scope for now; see the many papers in [[_Lecture
7, 2-24#Notes and references|Notes and references]].

Answer to all these problems { }

3



For a not necessarily extreme normalized harmonic function {φN }N , there exists
a unique probability measure µ on Ω such that

φN (λ) =
∫

Ω
φω

N (λ) µ(dω),

for all N and all λ ∈ GTN . Here φω
N (λ) are the extreme harmonic functions

(which have determinantal form).

Example 1.0.9 (Bernoulli random walk) Below are some rough notes on
the Bernoulli random walk extreme Gibbs measure.

{ }

4



{ }

{ }

5



2 Translation invariant Gibbs measures
•

2 Translation invariant Gibbs measures
Here I am discussing the analogue of the Liggett’s classification leading to
Bernoulli product measures, but in two dimensions. For two dimensions, the
translation invariant Gibbs measures on Z2 are much more complicated than
the Bernoulli measures.

{ }
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Problem 2.0.1 { }

Solution 2.0.2 { }
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3 Hydrodynamics of the push-block process
•

3.1 Push-block and Gibbs measures
Recall the push-block process:

{ }
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Theorem 3.1.1 The push-block process preserves the class of Gibbs measures
on interlacing arrays. Moreover, it preserves the class of extreme Gibbs measures.
The action on the extreme Gibbs measures’ parameters is as follows:

γ+ 7→ γ+ + time elapsed under the push-block process

We do not prove this theorem now, as it needs some Schur polynomials machinery.
It might be proven using some intertwining of noncolliding Poisson random walks,
but this intertwining also follows from the Schur polynomials machinery.

Example 3.1.2 Let us focus on one example which confirms the previous
theorem in a particular case.

{ }

9



{ }
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In general, to show the preservation of the class of Gibbs measures on interlacing
arrays, we need:

{ }
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•

3.2 Hydrodynamics
Recall the 1d situation with TASEP:

{ }
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Theorem 3.2.1 { }

Discussion 3.2.2. Hydrodynamics for the 2d process { }

13



{ }

14



{ }

This final equation is what replaces the Burgers equation.

4 Schur polynomials
•

4.1 Two definitions of Schur polynomials
Definition 4.1.1. Schur polynomial as a determinant { }

15



This expression is clearly symmetric in the xi’s. Moreover, it is a polynomial
because the numerator is divisible by xi −xj , and the denominator is the Vander-
monde determinant (see [[Problems, 2-24#1 Vandermonde determinant|Problem
1]]).

Example 4.1.2 { }

Definition 4.1.3. Schur polynomial as a sum { }

16



This represents the Schur polynomial as a sum over interlacing arrays of depth
N with fixed top row λ(N) = λ.

For example, for N = 2 and λ = (a, b), there are a − b + 1 such arrays, and the
formula is identical to the one in [[#Example 4 1 2]] above.

Theorem 4.1.4 Two definitions of Schur polynomials - [[[#Definition 4 1 1
Schur polynomial as a determinant|1]] and [[#Definition 4 1 3 Schur polynomial
as a sum|2]] - are equivalent.

Corollary 4.1.5 The sum over interlacing arrays in [[#Definition 4 1 3 Schur
polynomial as a sum|Definition 4.1.3]] is symmetric in the xi’s.

Proof 4.1.5 It is informative to prove [[#Corollary 4 1 5]] independently of
[[#Theorem 4 1 4]]. Graphically, let us swap xi and xi+1.

{ }

17



{ }

In combinatorics, this operation of flipping is known as the Bender-Knuth

18



involution.

Proof 4.1.4 { }

{ }

19



4.2 Eigenoperators
{ }

The basis claim will be proven in the next lecture.

Example of an eigenoperator is the following analouge of the Laplacian:

20



Example 4.2.1 { }

See [[Problems, 2-24#3|Problem 3]].

Definition 4.2.2 Let q ∈ C be fixed, and define the following q-difference
operator:

{ }

Proposition 4.2.3 { }

See [[Problems, 2-24#4|Problem 4]].

Proposition 4.2.4 { }

21



Proof 4.2.4 { }

Notes and references
1. Push-block process was introduced in A. Borodin and P. Ferrari.

Anisotropic growth of random surfaces in 2+1 dimensions.
Commun. Math. Phys., 325:603–684, 2014. arXiv:0804.3035
[math-ph].

2. Works on Gibbs measures on interlacing arrays:
• In the context of totally nonnegative sequences:

1. M. Aissen, A. Edrei, I. J. Schoenberg, and A. Whitney,
On the generating functions of totally positive
sequences, Proc. Nat. Acad. Sci. U. S. A. 37 (1951),
303–307.

2. M. Aissen, I. J. Schoenberg, and A. Whitney, On the
generating functions of totally positive sequences I,
J. Analyse Math. 2 (1952), 93–103.

3. A. Edrei, On the generating functions of totally
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positive sequences. II, J. Analyse Math. 2 (1952),
104–109.

4. A. Edrei, On the generating function of a doubly
infinite, totally positive sequence, Trans. Amer.
Math. Soc. 74 (1953), 367–383.

• In the context of representation theory:
1. D. Voiculescu, Representations factorielles de type

II1 de U(infinity), J. Math. Pures Appl. 55 (1976),
1–20.

2. R. Boyer, Infinite traces of AF-algebras and characters
of U(infinity), J. Operator Theory 9 (1983), 205–236.

• In symmetric functions / combinatorics context:
1. A. Vershik and S. Kerov, Characters and factor-representations

of the infinite unitary group, Dokl. Akad. Nauk SSSR
267 (1982), no. 2, 272–276.

2. A. Okounkov and G. Olshanski, Asymptotics of Jack
polynomials as the number of variables goes to
infinity, Int. Math. Res. Notices 1998 (1998), no.
13, 641–682, arXiv:q- alg/9709011.

3. A. Borodin and G. Olshanski, The boundary of the
Gelfand-Tsetlin graph: A new approach, Adv. Math. 230
(2012), 1738–1779, arXiv:1109.1412 [math.CO].

4. L. Petrov. The Boundary of the Gelfand-Tsetlin Graph:
New Proof of Borodin-Olshanski’s Formula, and its
q-analogue (2012) • Moscow Mathematical Journal, 14
(2014) no. 1, 121-160 • arXiv:1208.3443 [math.CO]

3. Sheffield’s paper on translation invariant extreme Gibbs mea-
sures: Sheffield, S.: Random surfaces, Asterisque 304 (2005).
arXiv:math/0304049 \[math.PR\]

Problems
[[_Lecture 7, 2-24|Lecture 7]]

1. Vandermonde determinant
Show that

det
[
xN−j

i

]N

i,j=1
=

∏
1≤i<j≤N

(xi − xj).
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2
Show that to prove the branching rule for the Schur polynomials

sλ(x1, . . . , xN ) =
∑

µ : µ≺λ

sµ(x1, . . . , xN−1)x|λ|−µ
N ,

it suffices to show this for xN = 1.

3
{ }

Write D2 as an explicit differential operator acting in the xi’s, and compute its
eigenvalues when acting on the Schur polynomials.

4
Show that Dq

{ }
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has the following form:

{ }

Solutions
[[Problems, 2-24|Problems]]

[[_Lecture 7, 2-24|Lecture]]

1
{ }

25



{ }

26



2
{ }

27



3
{ }

{ }

28



{ }

29



{ }

30



4
{ }
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[[Problems, 3-1|6 problems + T4]], due 3/15

1 Schur polynomials
•

1 Schur polynomials
In the last lecture, we gave two definitions of Schur polynomials, and showed
the equivalence of their two definitions:

{ }

2 Basic properties of Schur polynomials
•

2 Basic properties of Schur polynomials
Proposition 2.0.1 Schur polynomial sλ(x1, . . . , xN ) is a symmetric polynomial
in x1, . . . , xN . It is a homogeneous polynomial, of degree |λ| = λ1 + . . . + λN .

Proof 2.0.1 Straightforward from the definitions.

1



Proposition 2.0.2. Stability of Schur polynomials We will identify
signatures λ = (λ1, . . . , λN ) and (λ1, . . . , λN , 0, 0, . . . , 0) (any finite number of
zeroes), where λN ≥ 0.

With this identification, we have the following stability of Schur polynomials:

{ }

In fact, this stability allows to define symmetric functions, which might be seen
as an abstraction meaning “symmetric polynomials in an unspecified number of
variables”. We will not discuss these just yet.

Proof 2.0.2 { }

2



Proposition 2.0.3 The Schur polynomials sλ(x1, . . . , xN ), as λ ranges
over all nonnegative signatures with N parts, form a basis in the space
S = C[x1, . . . , xN ]SN of symmetric polynomials.

Proof 2.0.3 Let us look at the space of polynomials C[x1, . . . , xN ]. It has
basis of monomials, xα1

1 . . . xαN

N , (α1, . . . , αN ) ∈ ZN
≥0. That is, any polynomial is

a finite linear combination of monomials.

Now, consider two subspaces, S = C[x1, . . . , xN ]SN of symmetric polynomials,
and A of antisymmetric polynomials. A polynomial is antisymmetric if f(σx) =
sgn σ · f(x), where σ ∈ SN acts by permuting the variables.

A basis in A is formed by antisymmetrized monomials,

aµ(x1, . . . , xN ) =
∑

σ∈SN

sgn σ · xµ1
σ(1) . . . xµN

σ(N).

Here µ1 > . . . > µN ≥ 0 must be strictly ordered. Another way to write aµ is to
use the determinant, aµ(x1, . . . , xN ) = det

[
x

µj

i

]N

i,j=1.

Moreover, any antisymmetric polynomial f ∈ A is divisible by the Vandermonde
V (x) =

∏
i<j(xi − xj), and the ratio is a symmetric polynomial. Therefore, we

have A = S · V (x).

Passing from the basis in A to the basis in S, we get Schur polynomials. And
they form a basis in S, as desired.

Remark 2.0.4 In fact, the functions sλ form an orthogonal basis, with respect
to an inner product defined using certain contour integrals over a torus. We will
need this fact soon, and then will formulate and prove it.

3 Skew Schur polynomials
•

3 Skew Schur polynomials
Schur polynomials form a basis in symmetric polynomials. Viewing
sλ(x1, . . . , xN ) as a symmetric polynomial in $x_{k+1},. . . ,x_N $ and
expanding into the basis of Schur polynomials, we arrive at the following
definition:

Definition 3.0.1. Skew Schur polynomials { }

3



Skew Schur polynomials are symmetric and homogeneous of degree |λ| − |µ|.

Examples 3.0.2 { }

4



Proposition 3.0.3 { }

Proof 3.0.3 Quite straightforward:

{ }

5



4 Cauchy identities
•

4.1 Formulation, examples
Theorem 4.1.1. Cauchy identity { }

Remark 4.1.2 From stability ([[2 Basic properties of Schur polynomi-
als#Proposition 2 0 2 Stability of Schur polynomials|here]]) it follows that the
numbers of variables can be different, x1, . . . , xN and y1, . . . , yM . However, for
the first proof it is essential that M = N .

Example 4.1.3 When N = 1, Cauchy identity reduces to the geometric sum:∑
n≥0

xnyn = 1
1 − xy

, |xy| < 1.

•

4.2 Proof via determinants
{ }

6



Here it is crucial that M = N .

Lemma 4.2.1. Cauchy-Binet identity. For K ≥ N :

{ }

Note two particular cases, N = 1 is the definition of the matrix product. And
N = K is the fact that det(AB) = det A · det B.

For the proof, we refer to [[Problems, 3-1#1|Problem 1]].

We apply Cauchy-Binet identity to infinite matrices:

7



{ }

{ }

It remains to compute an explicit N × N determinant.

Lemma 4.2.2. Cauchy determinant { }

8



Proof 4.2.2 There are two ways to prove this. We refer to [[Problems, 3-
1#2|Problem 2]] and [[Problems, 3-1#3|Problem 3]].

[[#Lemma 4 2 1 Cauchy-Binet identity|First]] and
[[#Lemma 4 2 2 Cauchy determinant|second]] lemma imply
the [[4.1 Formulation, examples#Theorem 4 1 1 Cauchy
identity|Cauchy identity]]. □

4.3 Skew Cauchy identity and a bijective proof
We give a second proof of the Cauchy identity.

First, generalize it:

Theorem 4.3.1. Skew Cauchy identity { }

9



Remark 4.3.2 { }

Proof 4.3.1 { }

10



See [[Problems, 3-1#4|Problem 4]].

{ }

We will produce a bijection:

{ }
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Bijection in a graphical form:

{ }

{ }
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See also [[Problems, 3-1#5|problem 5]] for the statement which finalizes this
proof.

# 5 Schur measures and processes
5 Schur measures and processes
Definition 5.0.1. Schur measure { }

13



Notation, if parameters are important:

SM(x⃗,y⃗)(λ)

Definition 5.0.2. (Ascending) Schur process { }

14



Notation:
SP(x⃗,y⃗)(λ(1), . . . , λ(N))

Proposition 5.0.3 { }

Proof 5.0.3 { }

15



We see that the probability weight does not depend on λ(1), . . . , λ(N−1), and
depends only on λ(N). This is precisely the Gibbs property from [[../Lecture 6, 2-
22/_Lecture 6, 2-22|Lecture 6]] and [[../Lecture 7, 2-24/_Lecture 7, 2-24|Lecture
7]].

Proposition 5.0.4 Under the Schur process SP(x1,...,xN ;y1,...,yM ), the marginal
distribution of λ(k) is the Schur measure SM(x1,...,xk;y1,...,yM ).

Proof 5.0.4 (sketch) For simplicity, let k = N − 1. Other cases are similar.

We sum the probability weights of SP(x1,...,xN ;y1,...,yM )(λ(1), . . . , λ(N−2), ν, λ(N−1))
over λ(1), . . . , λ(N−2) and over λ(N−1), where ν is fixed. The first sum does not
involve yj ’s, and using the definition of the skew Schur polynomials we get
sν(x1, . . . , xN−1). Then we need to sum over λ(N). This sum looks as∑

λ(N)

sλ(N)/ν(xN )sλ(N)(y1, . . . , yM ).

This sum can be computed using the [[4.3 Skew Cauchy identity and a bijective
proof#Theorem 4 3 1 Skew Cauchy identity|skew Cauchy identity]], and the
result follows. [[Problems, 3-1#6|Problem 6]]: finalize the details of the proof.

Notes and references
1. A fundamental treatise on symmetric functions, I.G. Macdonald,

Symmetric functions and Hall polynomials, 1995. We covered
some of the material from Ch. I, sections 2-5.

2. Schur measures and processes:
• Okounkov. Infinite wedge and random partitions. https://arxiv.org/abs/math/9907127
• Okounkov and Reshetikhin. Correlation function of Schur

process with application to local geometry of a random
3-dimensional Young diagram. https://arxiv.org/abs/math/0107056

Problems
[[_Lecture 8, 3-1|Lecture 8]]
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1
Show the Cauchy-Binet identity:

{ }

2
Evaluate the [[4.2 Proof via determinants#Lemma 4 2 2 Cauchy determi-
nant|Cauchy determinant]] via induction on N and row-column operations.
Hint:

{ }
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3
Evaluate the [[4.2 Proof via determinants#Lemma 4 2 2 Cauchy determi-
nant|Cauchy determinant]] via induction on N Desnanot-Jacobi identity (also
known as Dodgson condensation / Lewis Caroll identity):

{ }

That is, show that the right-hand side of the Cauchy identity satisfies the same
quadratic relations.

4
Show that the skew Cauchy identity (see [[4.3 Skew Cauchy identity and a
bijective proof#Theorem 4 3 1 Skew Cauchy identity|here]]) for arbitrary number
of variables follows from the skew Cauchy identity for single variables. For this,
use the “branching” of skew Schur polynomials.

5
Show that the bijection given in [[4.3 Skew Cauchy identity and a bijective
proof#Proof 4 3 1|this proof]] indeed preserves the powers of x, y as it should.

6
Finish the proof of [[5 Schur measures and processes#Proposition 5 0 4|the
marginal distribution under the Schur process]].

T4
By Ti I will suggest topics for 10-minute talks, where i is a counter throughout
all lectures. For the fourth idea, I propose to explain how the bijective proof of
the skew Cauchy identity given in [[4.3 Skew Cauchy identity and a bijective
proof|this part]] upgrades to the Robinson-Schensted-Knuth correspondence.
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Solutions
[[../../Lecture 8, 3-1/Problems, 3-1|Problems]]

[[../../Lecture 8, 3-1/_Lecture 8, 3-1|Lecture]]

1
{ }

{ }

19



2, 3
{ }

4
{ }

20



{ }

21



5
{ }

22



{ }
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6
{ }

{ }

24
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[[Problems, 3-3|3 problems]], due 3/17

1 Orthogonality of Schur polynomials
•

1 Orthogonality of Schur polynomials
Definition 1.0.1 Here we define an inner product on the space of symmetric
polynomials, under which Schur polynomials are orthonormal:

{ }

1



Theorem 1.0.2 { }

Proof 1 of Theorem 1.0.2. Via determinants { }

Proof 2 of Theorem 1.0.2. Via difference operators We can prove a
weaker statement, orthogonality, using difference operators.

2



Recall the difference operators Dq.

{ }

One can show that Dq are self-adjoint with respect to the inner product ⟨·, ·⟩,
that is, ⟨Dqf, g⟩ = ⟨f, Dqg⟩. See [[Problems, 3-3#1| Problem 1]].

Then

{ }

2 Continuous specialization
•

3



2 Continuous specialization
Proposition 2.0.1 We have an integral formula for Schur polynomials:

{ }

Proof 2.0.1 Recall Cauchy identity

{ }

Multiply it by sλ(x) and integrate using orthogonality. This picks out the right
coefficient:

{ }

□

This proof requires some justifications of convergence, see [[Problems,
3-3#2|Problem 2]].

4



Proposition 2.0.2. Plancherel specialization { }

Proof 2.0.2 { }

Corollary 2.0.3. Cauchy identity for Plancherel specialization { }

5



See [[Problems, 3-3#3|Problem 3]].

3 Push-block dynamics and Schur process - for-
mulation

•

3 Push-block dynamics and Schur process
{ }

See [[../Lecture 6, 2-22/1.2 Push-block process#Definition 1 2 1|definition]].

Theorem 3.0.1 { }

6



Note that this Schur process has a rather simple form:

{ }

This result can be proven in a number of ways. I am going to use the machinery
of Schur processes and commuting Markov operators.

Corollary 3.0.2 { }

7



4 Commuting Markov operators
•

4.1 Commuting operators from Schur polynomials
Let us set up some notation:

{ }

8



Definition 4.1.1 { }

Definition 4.1.2 { }

9



{ }

Theorem 4.1.3 We have the following commuting diagram of Markov opera-
tors:

{ }

10



(By λ, etc., we denote the elements of these sets)

In other words, for a fixed λ, the conditional distributions of ν̄ obtained by
applying operators along two routes are the same.

Proof 4.1.3 { }

Let us write this out:

{ }

11



Then there are lots of cancellations:

{ }

4.2 From commuting operators to dynamics on interlacing
arrays
Let us now shift the focus a little bit. Instead of trying to show that the push-
block dynamics is related to Gibbs property and Schur processes, let us develop
the push-block dynamics as a particular case of a multilayer dynamics on
interlacing arrays. The ingredients which we use are the commuting operators Λ
and PN ’s.

Two layers
We begin the discussion with two levels N − 1 and N . Then we will find the
solution, a Markov operator Q from

{
(λ̄, λ) : λ̄ ≺ λ

}
⊂ GT +

N−1 × GT +
N to itself

in the form

{ }

12



There are many good couplings. One can show that they are encoded by functions
U satisfying:

{ }

13



The second condition means that on “Gibbs” distributions, i.e., on those com-
patible with Λ, the update λ → ν is governed by the upper Markov chain
PN .

For a particular solution (in fact, the simplest one), we pick U in the form

{ }

14



In other words, we update λ̄ → ν̄ on the lower level first, and then pick ν as the
middle point in the Markov chain λ → ν → ν̄, conditioned on λ and ν̄. This
effectively “forgets” the state λ̄.

Multiple layers
{ }

15



For any fixed number N of layers, we update λ(1) → ν(1) first, then given the
update on the first layer, update the second layer using U , and so on. On each
pair of consecutive levels, we use the two-level mechanism described above.

Theorem 4.2.1 Thus defined Markov operator Q on interlacing arrays with
N rows preserves the class of Gibbs measures.

Proof 4.2.1 This follows from the properties of U . The update looks like:

{ }

16



The action on Gibbs measures looks like:

{ }

17



Notes and references
1. The proof of orthogonality via difference operators extends almost without

changes to Macdonald polynomials. See I.G. Macdonald, Symmetric

18



functions and Hall polynomials, 1995, Chapter VI.9.
2. The idea of commuting Markov operators is originally due to P.

Diaconis and J.A. Fill, Strong stationary times via a new
form of duality, Ann. Probab. 18 (1990), 1483–1522.

3. Application commuting Markov operators to interlacing arrays is due
to A. Borodin and P. Ferrari, Anisotropic growth of random
surfaces in 2+1 dimensions, Comm. Math. Phys. 325 (2014),
603–684, arXiv:0804.3035 [math-ph]. See also section 2 in A.
Borodin and L. Petrov, Nearest neighbor Markov dynamics on
Macdonald processes, (2013), arXiv:1305.5501 [math.PR] for a
more general construction.

Problems
[[_Lecture 9, 3-3|Lecture 9]]

1
Recall the inner product

{ }

Show that the difference operator Dq is self-adjoint: ⟨Dqf, g⟩ = ⟨f, Dqg⟩.

Hint: Recall Dq = V −1 ◦
∑N

i=1 Tq,xi
◦ V . Therefore, in the inner product, under

the integral we can write

(Dqf) V V g =
(

N∑
i=1

Tq,xi(V f)
)

V g.

Therefore, it remains to show that Tq,xi is self-adjoint (for each i).

2
Justify that the integration and the summation can be swapped in the ap-
plication of orthogonality to Cauchy identity (see [[2 Continuous specializa-

19



tion#Proposition 2 0 1|Proposition 2.0.1]]).

3
Prove the version of the Cauchy identity for the Plancherel specialization:

{ }

20



[[Problems, 3-8|6 problems]], due 3/22

1 Setup
•

1.1 Schur polynomials - two key properties
There are two fundamental properties of the Schur polynomials: the branching
rule

Proposition 1.1.1 { }

Proposition 1.1.2 and the skew Cauchy identity

{ }

We proved both results in previous lectures
1.2 Commuting Markov operators
Recall that we employ the notation for the space of signatures:

GT +
N = {λ = (λ1 ≥ . . . ≥ λN ≥ 0) : λi ∈ Z} .

1



Definition 1.2.1 We defined two Markov operators:

{ }

Example 1.2.2 { }

Theorem 1.2.2 These operators form a commutative diagram:

{ }

2



We proved this result in the previous lecture
1.3 Markov dynamics Q on two levels
Definition 1.3.1 Using PN−1 and PN commuting with the Λ’s, we define:

{ }

{ }

3



This is a simultaneous one-step update of the pair (λ̄, λ) to (ν̄, ν), which is
compatible with the whole scheme of commuting Markov operators.

•

1.4 Multilevel dynamics
Definition 1.4.1 In a similar fashion to the two-level case, we can define the
multilevel update:

{ }

4



Here P1 is a rather simple object, it is a geometric random walk (see [[1.2
Commuting Markov operators#Example 1 2 2|here]]).

2 Action on Gibbs measures
•

2.1 Action on abstract Gibbs measures
Definition 2.1.1 Recall that an abstract Gibbs measure is defined as follows:

{ }

5



That is, we take an arbitrary probability distribution M on the N -th floor GT +
N ,

and attach to it a chain of Λ’s.

Theorem 2.1.2 The multilevel process Q preserves the class of abstract Gibbs
measures. Moreover, the action on a Gibbs measure as above changes M as

M 7→ M̃(ν) =
∑

λ∈GT +
N

M(λ)PN (λ, ν)

Proof 2.1.2 The key fact is the followin refinement of the commutation
relation:

{ }

6



We apply it repeatedly:

{ }

In the fist step, the sum over λ(1) involves only the highlighted terms, and they
produce P2(λ(2), ν(2))Λ(ν(2), ν(1)).

Similarly, on the next step, P2, U3, and Λ(λ(3), λ(2)) leads to P3 and Λ(ν(3), ν(2)).

This process goes in the same manner till λ(N). The final summation over λ(N)

involves M and PN , and produces the action M 7→ M̃ as in the claim. This
completes the proof.

•

2.2 Application to Schur processes
Theorem 2.2.1 { }

7



Here ỹ is the parameter which was denoted by y in PN .

Proof 2.2.1 { }

That is, let us now check the action only on the N -th level:

{ }

8



3 Continuous time limit
•

3.1 Continuous time limit of the push-block process
We claim that the continuous time limit of the multilevel dynamics as y = dt → 0
is the push-block process. Here we set xi ≡ 1, and need to replace the variable
ỹ which enters PN by the continuous specialization ρdt. By [[Problems, 3-
8#4|Problem 4]], this is the same as simply taking the expansion of all the
Markov operators into series in ỹ. Therefore, we can simply replace ỹ by the
specialization ρdt everywhere in the computations.

Example 3.1.1. Case N=1. { }

9



Proposition 3.1.2 In the general case, using [[Problems, 3-8|Problems]], we
can show that: { }

10



Theorem 3.1.3 In the limit dt → 0, the push-block component U(ν | λ, ν̄)
becomes:

1. If ν̄ ≺ λ:

U(ν | λ, ν̄) =


dt, |ν| = |λ| + 1, λ ≺ ν, ν̄ ≺ ν;
1 − O(dt), ν = λ;
O(dt2), else.

In the multilevel dynamics Q, this corresponds to an independent jump of
any unblocked particle at rate 1 if λ̄ = ν̄ (there were no jumps at lower
levels); or to no move if λ̄ = ν̄ and ν̄ ≺ λ (if there were moves at lower
levels). Note that the condition ν̄ ≺ ν corresponds to blocking: if a move
λ → ν would violate the interlacting, then this move is blocked.

2. If ν̄ ̸≺ λ, we have U(ν | λ, ν̄) = 1 for the unique ν which would restore the
interlacing ν ≻ λ, ν ≻ ν̄.

{ }

11



Proof 3.1.3 { }

For the first case, the denominator is of a constant order, and so in the numerator
we pick something of constant order and of order dt. We have

{ }

12



{ }

{ }

13



For the second case,

{ }

14



{ }

15



□

This implies our [[../Lecture 9, 3-3/3 Push-block dynamics and Schur pro-
cess#Theorem 3 0 1|main result]] from the previous lecture, and the [[../Lecture
9, 3-3/3 Push-block dynamics and Schur process#Corollary 3 0 2|corollary]]
about connection to TASEP.

In particular, the action of the push-block process on the Schur process
SP(1,...,1;ρt) for some other time t′ produces the Schur process SP(1,...,1;ρt+t′ ).

•

3.2 Continuous time version of P_N
Recall the operator of the marginal Markov process on GT +

N :

16



{ }

This is the marginal evolution of the N -th level, on Gibbs measures.

Theorem 3.2.1 For y = ρt, the Markov process PN becomes a Markov jump
process with the following jump rates:

{ }

This theorem follows from lemma:

Lemma 3.2.2 { }

17



Proof 3.2.2 { }

{ }

18



{ }

Example 3.2.3 So, PN becomes a particle system, in which particles jump to
the right by one, provided that the desination is not occupied. However, this
process is not the same as TASEP, and they have very different jump rates.
In TASEP, the jump rates are “local”, while in PN , the jump rates depend on

19



the whole configuration.

{ }

Notes and references
1. The idea of commuting Markov operators is originally due to P.

Diaconis and J.A. Fill, Strong stationary times via a new
form of duality, Ann. Probab. 18 (1990), 1483–1522.

2. Application commuting Markov operators to interlacing arrays is due
to A. Borodin and P. Ferrari, Anisotropic growth of random
surfaces in 2+1 dimensions, Comm. Math. Phys. 325 (2014),
603–684, arXiv:0804.3035 [math-ph]. See also section 2 in A.
Borodin and L. Petrov, Nearest neighbor Markov dynamics on
Macdonald processes, (2013), arXiv:1305.5501 [math.PR] for a
more general construction.
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Problems
[[_Lecture 10, 3-8|Lecture 10]]

1
Let λ, ν ∈ GT +

N . Show that if λ ≺ ν (interlace) and |λ| = |ν|, then λ = ν.

2
Establish the following contour integral formula for the skew Schur polynomials:

{ }

Hint: use the skew Cauchy identity and orthogonality as in [[../Lecture 9, 3-3/2
Continuous specialization#Proposition 2 0 1|here]].

3
Show that for the continuous specialization ρt we have

{ }

21



4
For the continuous specialization ρdt, as dt → 0, we have the following expansion:

sλ/µ(ρdt) =


1 + O(dt), λ = µ;
O(dt), |λ| = |µ| + 1;
O(dt2), else.

Hint: use the contour integral formula from the previous problem.

5
Prove [[3.1 Continuous time limit of the push-block process#Proposition 3 1
2|Proposition 3.1.2]].

6
Show that the Schur process SP(1,...,1);ρ0 with the continuous specialization ρt

at t = 0 is the delta measure at the densely packed configuration λ
(k)
j = 0 for all

k, j.

22



[[Problems, 3-10|3 problems]], due 3/24

1 TASEP and Schur measures
•

1 TASEP and Schur measures
Let us recall what was proven over the course of the past lectures.

Theorem 1.0.1. Schur measure { }

Theorem 1.0.2. Schur process Under the assumptions of the previous
theorem,

{ }

1



2 Density of a Schur measure
•

2.1 Expectation via q-difference operators
Now we use the q-difference operators D

(x)
q in the variables x1, . . . , xN , to extract

observables of Schur measures.

Recall:

{ }

2



Proposition 2.1.1 { }

Proof 2.1.1 This is straightforward - we can apply the operator under the
summation over λ. We assume that |q| < 1, so that the series with the q-
dependent prefactor converges.

3



Proposition 2.1.2 The action of the q-difference operator has a form of a
contour integral:

{ }

Proof 2.1.2 Let us take the integral and evaluate it as a sum of residues at
all z = xi. We have

{ }

4



The last product over 1 ≤ j ≤ M is

{ }

We see that this completely matches the action of D
(x)
q . □

Corollary 2.1.3. Expectation over a general Schur measure { }

5



Corollary 2.1.3. Expectation over a Schur measure with continuous
specialization { }

2.2 Density function
Now we can employ the second integration, now over q, to extract the coefficients
by any fixed power of q. This produces the density function:

6



Proposition 2.2.1 { }

This is a double integral:

{ }

Proof 2.2.1 This is straightforward, by interchanging integration over q and
expectation. Since the q integration contour is around 0, we can make |q| small,
so there are no convergence issues.

Example 2.2.2. Notation for density { }

7



We denote for any x ∈ Z≥0:

{ }

Claim 2.2.3 (to be proven) { }

8



3 Asymptotics of density
•

3.1 Change of variables
Recall the density

{ }

9



Via a simple change of variables q = w/z, dq = dw/z, where w is a new variable
around 0, we can write:

Proposition 3.1.1 { }

3.2 Oscillatory integrals
In the regime as x, t, N proportionally go to infinity, the three components under
the integral,

(z/w)x, ((w − 1)/(z − 1))N , et(w−z)

generically explode or decay to zero exponentially fast.

Indeed, as N → ∞, (
|z|eiφ

)N = |z|N eiNφ →

{
∞, |z| > 1;
0, |z| < 1,

and when |z| = 1, the behavior is purely oscillatory.

Therefore, for a nontrivial asymptotics we need to find the right balance between
all the components.

Let us consider a simpler case of a single integral.

10



Proposition 3.2.1. Stationary phase / Laplace method For f smooth,
bounded, C − valued, and with finitely many global maxima, we have the
following asymptotics as N → ∞:∫ +∞

−∞
eNf(x)dx ∼ Poly(N) · exp{N · max

x∈R
Re f(x)},

where Poly(N) is some factor which grows at most polynomially.

Proof 3.2.1 See [[Problems, 3-10#2|Problem 2]].

We will apply the idea of this result to double oscillating
integrals (like we see in the density function). This is usually
referred to as a saddle point / steepest descent method.
3.3 Double integrals and asymptotics of the density. Com-
plex conjugate case
Let us set t = Nτ , x = ⌊Nχ⌋, and let N → ∞. Here τ, χ ≥ 0 are the scaled
time and space, respectively.

Then, the integrand in rN,t(x) given by [[3.1 Change of variables#Proposition 3
1 1|Proposition 3.1.1]] takes the form

1
w(w − z) exp

[
N

{
⌊χN⌋

N
(log z − log w) + log(w − 1) − log(z − 1) + τ(w − z)

}]
.

The quantity ⌊χN⌋
N can be replaced by χ, as asymptotically this is irrelevant (on

the scale we’re working at).

Definition 3.3.1 Define the function

S(w) := −χ log w + log(w − 1) + τw.

Remark 3.3.2 Any branches of the logarithms work, as we’re taking their
exponents or will be working with their real parts and derivatives. All these
operations do not depend on the branch.

So, we have { }

11



Let us study the asymptotics of the integrand eN(S(w)−S(z)), which is dictated
by looking at maxima and minima of Re S(z), along the contours.

Here is an example of a surface Re S(z), for some particular τ, χ.

{ }

The w and z contours are drawn.

Clearly, for this configuration of the contours, we have Re S(w)−Re S(z) > 0 for
z, w on the contours, which suggests that the density might be going to infinity.

In fact, this is not the case. One reason for this is that the density is always
between zero and one. Another reason is that while the integral of the absolute
value might be large, the signs present in the integrand might lead to cancellation
of exponentially large terms.

So, our goal is to move the w contour to minimize Re S(w), and move the z
contour to maximize Re S(z). At the same time, the contours cannot cross 0
and 1 (but might cross each other; possibly at a cost of picking residues).

Let us show how to place the integration contours so that to see the asymptotics
of the integral. Let us look for saddle points of Re S(z), which are the same as
the critical points of S(z):

{ }

12



In the above picture D < 0, which corresponds to two complex conjugate saddles
zc, z̄c (where zc is in the upper half plane), and clearly Re S(zc) = Re S(z̄c).

In this piece we consider only the case D < 0.

Definition 3.3.3 Let the region L be the (τ, χ) region in which D < 0. This
is readily seen to be

(
√

τ − 1)2 < χ < (
√

τ + 1)2.

In L, the region where Re(S(z) − S(zc)) > 0 looks as follows:

Contour configuration 1

{ }
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Here the old contours z, w are also given.

Let us move the z, w contours to the new position as follows:

Contour configuration 2

{ }
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On the new contours we have Re (S(w) − S(z)) ≤ 0, and via a little careful
analysis one can show that the double contour integral over these new contours
goes to zero.

However, it is not true that rN,t(x) equals this double contour integral over the
new contours which goes to zero. Indeed, in the process of moving the contours,
we cross the pole at z = w, which leads to a residue:

{ }

15



The residue at w = z is simply equal to 1/z, see [[3.1 Change of vari-
ables#Proposition 3 1 1|Proposition 3.1.1]].

Putting this all together, we have proven the following result:

Theorem 3.3.4 In the regime t = τN , x = ⌊χN⌋ and N → +∞, where
(τ, χ) ∈ L (i.e., (

√
τ − 1)2 < χ < (

√
τ + 1)2), the density function of the Schur

measure SM(1,...,1;ρt) converges to:

rτ (χ) = 1
2πi

∫ zc(τ,χ)

z̄c(τ,χ)

dz

z
,

where the integration contour from z̄c to zc crosses the real line to the right of 0.

This does not finish the proof of TASEP’s limit shape, which will be continued
in [[../Lecture 12, 3-15/_Lecture 12, 3-15|Lecture 12]]. There are two things
remaining: 1. Complete the analysis of the double contour integral in the case
when there are two real saddle points (instead of two complex conjugate) 2.
Recover the TASEP limit shape parabola from these computations.

Notes and references
1. The approach of Schur measure asymptotics via contour integrals is pio-

neered by Okounkov in Symmetric functions and random partitions
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(2003), arXiv:math/0309074 [math.CO], section 3.
2. Another approach to the same asymptotic analysis goes via orthogonal

polynomials and their associated difference operators, arXiv:math/0610240
[math.PR]

3. The use of difference operators to extract density follows the Macdonald
processes work (arXiv:1111.4408 [math.PR]), see also arXiv:1310.8007
[math.PR]

Problems
[[_Lecture 11, 3-10|Lecture 11]]

1
1. Show that the expectation { }

is finite for arbitrary q ∈ C.

2. When the above Schur measure is replaced by a general one SM(x⃗,y⃗), show
that the same expectaton exists for |q| < 1.

2
1. Prove [[3.2 Oscillatory integrals#Proposition 3 2 1|Proposition 3.2.1]].
2. Compute the polynomial factor Poly(N) in this proposition, assuming for

simplicity that f(x) has a unique global maximum. You will see that the
factor Poly(N) in fact goes to zero and does not even grow.

3
1. Justify the location of the contours Re S(z) = Re S(zc) separating the blue

and the white regions in [[3.3 Double integrals and asymptotics of the
density. Complex conjugate case#Contour configuration 1|this figure]], in
the case when (

√
τ − 1)2 < χ < (

√
τ + 1)2.

17

https://arxiv.org/abs/math/0309074
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2. Show that the contours z, w in the double integral can be moved, without
crossing any poles except w = z, to the new locations in [[3.3 Double
integrals and asymptotics of the density. Complex conjugate case#Contour
configuration 2|this figure]]
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[[Problems, 3-15|2 problems]], due 3/29

1 Schur / TASEP / density
•

1 Schur-TASEP-density function
Here we recall the main ingredients that we proved so far.

1.0.1 Schur and TASEP matching { }

1.0.2 Difference operators and contour integrals { }

1



1.0.3 Density function { }

2



Note that the integral has the following singularities:

• At infinity there are essential singularities
• Pole at w = 0
• Pole at z = 1
• Simple pole at w = z

There are no other singularities. In particular, we can drag the z contour through
0, and/or the w contour through 1.

2 Density asymptotics and the parabola
•

2.1 Formulation
Theorem 2.1.1 { }

3



Example 2.1.2 The limiting density tells us that the density of the point
configuration {λj + N − j} looks as follows in the two regimes:

{ }

4



2.1.3 From arc integral to the argument { }

5



•

2.2 TASEP parabola from density asymptotics
Let us leave contour integrals for a moment, and show how the parabola limit
shape of the TASEP height function is obtained from the result of [[2.1 Formula-
tion#Theorem 2 1 1|Theorem 2.1.1]].

2.2.1. Asymptotics of the N-th particle We have

{ }

6



(we assume that τ > 0, because for τ ≤ 1 the particle xN has not yet started
moving, and so its location is determined)

The theorem thus gives:

{ }
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2.2.2. Homogeneity trick { }

8



2.2.3 From particle to the density { }

{ }

9



We see that this gives the desired ρ(τ, χ), and the parabola height function.

2.2.4. Remark We have checked that ρ(τ, χ) satisfies the Burgers equation,
but to rigorously conclude that this is the TASEP limiting density we need local
invariance of the TASEP distributions, and also some PDE theory.

This proof of the formula for ρ(τ, χ) is more “elementary”
as it relies only on the analysis of the exact formula for the
density.
2.3 Density - last steps of the proof
Recall density:

{ }
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We will indicate the necessary transformations which bring the density to the
desired limit.

2.3.1. Case 1, complex conjugate critical points { }

11



We did this computation in detail last time.

2.3.2 Cases 2a, 2b, 2c leading to density 0 or 1 Let us define three
further regions:

• 2a: τ > 1, (
√

τ − 1)2 > χ;
• 2b: (

√
τ + 1)2 < χ;

• 2c: τ < 1, χ < (
√

τ − 1)2

Depending on these cases, there are three different locations of the real critical
points.

Lemma 2.3.3. 2a In the case 2a, two critical points z1, z2 satisfy

0 < z1 < z2 < 1, Re S(z1) < Re S(z2).

12



Lemma 2.3.4. 2b In the case 2b, two critical points z1, z2 satisfy

1 < z1 < z2, Re S(z1) > Re S(z2).

Lemma 2.3.5. 2c In the case 2c, two critical points z1, z2 satisfy

z1 < z2 < 0, Re S(z1) > Re S(z2).

Proofs of these lemmas involve an analysis of concrete functions, and we leave
them as exercises.

2.3.6. 2a - new contours and density asymptotics { }

2.3.7. 2b - new contours and density asymptotics { }

13



{ }
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2.3.8. 2c - new contours and density asymptotics { }
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After all these contour moves and asymptotics of the density, the proof of [[2.1
Formulation#Theorem 2 1 1|Theorem 2.1.1]] is completed. Thus, we have
established the parabola limit shape for the TASEP height function

□

•

2.4 A remark on the limit shape of Young diagrams
{ }
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It is enough to use [[2.1 Formulation#Theorem 2 1 1|Theorem 2.1.1]] together
with the remark on the arg(zc)/π asymptotics of the density. This (almost)
produces the result of Biane (2001). Here is a picture from that paper.

{ }
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3 Towards fluctuations in TASEP
•

3.1 Approach with single q
Let us now discuss the question of asymptotic fluctuations in TASEP

{ }
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{ }
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Let us indicate a possible approach using the fact that the single-q integral for
the expectation over the Schur measure has q as a free parameter.

{ }

This expectation should be a combination of 0, 1, and ∞
with some weights. Maybe there is a way of working this
approach towards at least the right order of the fluctuations
N1/3?
3.2 Multiple contour integral approach
{ }

20



{ }

{ }

21



{ }

In fact, there is hope, and it’s based on two “magic” steps:

22



First, the 2x-fold contour integral can be rewritten as x×x deteminant of double
integrals. This is still a deteminant of growing size, but. . . Second, there is a
certain structure of this growing determinant (it is in fact equal to a certain
Fredholm determinant), which allows to analyze it asymptotically.

Notes and references
1. Paper by Philippe Biane - https://arxiv.org/abs/math/0006111

• A determinantal point process approach to this setting -
https://arxiv.org/abs/math/0610240

2. Vershik-Kerov’s paper on the limit shape for τ ≪ 1 - http://www.mathnet.ru/eng/dan40430
3. Logan-Shepp’s paper on the limit shape for τ ≪ 1 - https://www.sciencedirect.com/science/article/pii/0001870877900305

Problems
[[_Lecture 12, 3-15]]

1
Prove Lemmas 2a, 2b, 2c in [[2.3 Density - last steps of the proof|here]] on the
locations of the critical points of S.

2
Using [[2.1 Formulation#Theorem 2 1 1|Theorem 2.1.1]], draw the curves for
the limit shapes of Young diagrams under the Schur measre SM(1,...,1;ρτN ) in
the limit regime N → ∞. This is a family of curves parametrized by τ .

T5
Think whether the approach using the single-q integral could be developed into
an asymptotic fluctuation result by somehow extracting the smallest power of q
in the expectation. See [[3.1 Approach with single q|this part]] for details.
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[[Problems, 3-17|2 problems]], due 3/31

1 Fluctuations
•

1 Fluctuations
Recall that we have shown the following for TASEP, started from the step initial
configuration:

x⌊cN⌋(τN) = N
(
τ − 2

√
τc

)
+ o(N).

Our next objective is to get a handle on the fluctuations o(N).

We recall that

xN (t) d= λN − N, λ = (λ1 ≥ . . . ≥ λN ≥ 0) ∼ SM(1,...,1;ρt).

The main property of the Schur measures which is of interest to us is their
determinantal structure. More precisely, we will show today that the random
subset of Z defined as

S = {λ1 + N − 1, λ2 + N − 2, . . . , λN−1 + 1, λN }

forms a determinantal point process.

2 Determinantal point processes on a discrete
space

•

2 Determinantal point processes
Let the space be Z≥0 or Z.

Definition 2.0.1 A random subset S ⊂ Z is called a determinantal point
process if for any m and any distinct points a1, . . ., am ∈ Z we have

Prob (S ⊃ {a1, . . . , am}) = det [K(ai, aj)]mi,j=1 ,

for some function K(a, b). The function K is called the determinantal corre-
lation kernel.

Remark 2.0.2 For m = 1 we have K(x, x) = Prob(S ⊃ {x}), which is the
density function we already worked with.

1



Remark 2.0.3. Repelling property Assume that K is Hermitean symmetric,
that is, K(x, y) = K(y, x). Then

Prob (S ⊃ {x, y}) = K(x, x)K(y, y) − |K(x, y)|2 ≤ K(x, x)K(y, y).

This signifies that particles in a determinantal point process repel each other.

Recall this example:

{ }

Example 2.0.4 Take the Bernoulli process on Z, where each location x ∈ Z is
included in S independently with probability p. Then

{ }

2



Remark 2.0.5 A kernel is not defined uniquely, f(x)
f(y) K(x, y) defines the same

process (where f is a nonvanishing function).

Example 2.0.6. Some other kernels Discrete sine:

{ }

3



See [[Problems, 3-17#1|Problem 1]].

Another correlation kernel, for example:

{ }

Example 2.0.7. Kernel for the process on the right figure here:

{ }

4



(here the process is in C). We have

K(z, w) = 1
π

ezw̄− 1
2 (|z|2+|w|2).

3 Determinantal structure of Schur measure
•

3.1 Operators
We’re going to work with Schur measures with general parameters x⃗, y⃗.

Recall that the application of a single operator Dq in the x⃗ variables produces:

{ }

5



Now we apply two such operators:

{ }
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We observe that before the application of the second operator we have the
dependence on the variables xi in a product form.

Let us observe a general fact:

Lemma 3.1.1 For nice f which is holomorphic inside the integration contour
and does not have any poles/zeros at xi, qxi, we have:

{ }
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Proof 3.1.1 The proof repeats [[../Lecture 11, 3-10/2.1 Expectation via q-
difference operators#Proof 2 1 2|Proof of L11 - Proposition 2.1.1]], almost
exactly.

Now let us use this lemma to apply the second operator. We get:

Lemma 3.1.2 { }

Note: The yellow boxed formula is something which did not appear in the density
function, but it comes from g(q2w)/g(w), for g(w) = q1z − w

z1 − w
.

Now let us generalize to many operators. The proof of that is straightforward:

Proposition 3.1.3 { }

8



3.2 Extracting coefficients
Integrating in qi’s raised to suitable powers, we can extract the correlation
functions:

{ }

9



{ }

We thus have:

Proposition 3.2.1 { }

10



3.3 Getting determinantal structure
{ }

11



Let us look at the previous formula. Everything not highlighted in red depends
on zα, wα in a product form! Moreover, in the highlighted part we can recognize
a determinant!

We employ the Cauchy determinant that we proved earlier ([[../Lecture 8, 3-1/4.2
Proof via determinants#Lemma 4 2 2 Cauchy determinant|here]]):

{ }

Theorem 3.3.1 For the general Schur measure we have determinantal correla-
tions:

{ }
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Proof 3.3.1 { }

Terms highlighted in light blue have product form:

13



{ }

So we can put them inside the determinant, and get:

det
[

fα(zα)gβ(wβ)
wβ − zα

]m

i,j=1
.

Then, one readily sees that the 2m-fold integral of a determinant is the same as
the determinant of double integrals. This completes the proof.

□

•

3.4 Determinantal structure for TASEP
{ }
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3.5 Other uses of Schur measures and processes
Beyond TASEP / push-block process, Schur measures and processes appear in a
number of settings:

Plane partitions { }

15



We put “boxes” in the corner, and the probability of a configuration is
qnumber of boxes

Domino tilings { }

16



We tile this figure by dominoes 1 × 2 or 2 × 1.

Products of random matrices In a limit, Schur measures describe the
eigenvalue distribution of a spectrum of a product of random matrices.

See, for example, Borodin, Gorin and Strahov ([[_Lecture 13, 3-17#Notes and
references|refs]]).

4 Edge points, gap probabilities
•

17



4.1 Which probability we need from Schur measure
For TASEP:

{ }

Therefore, we are now interested in a so-called gap proba-
bility in a Schur measure.
4.2 Complementation and gap probability
{ }

18



Proposition 4.2.1 { }

Proof 4.2.1 { }

19



Next, we express each term as a sum of determinants.

{ }

This is the determinant of Id − K:

{ }

Now, let us apply this to TASEP:

{ }

20



For the asymptotics of this quantity (a determinant of grow-
ing size), we need another techniue - Fredholm determinants
4.3 Fredholm determinants
Let us just give a definition of a Fredholm determinant of a “nice” (locally trace
class) kernel K(x, y), x, y ∈ R.

Let A be a subset of R of finite measure.

Definition 4.3.1. Fredholm determinant { }

21



(this is a convergent infinite series)

Notes and references
1. Correlation functions of Schur measures and processes via q-difference

operators is a somewhat later addition to the theory, due to Amol
Aggarwal. Correlation Functions of the Schur Process Through
Macdonald Difference Operators, https://arxiv.org/abs/1401.6979

2. Other approaches to correlation functions are:
• via fermionic operators in Okounkov’s papers https://arxiv.org/abs/math/9907127,

https://arxiv.org/abs/math/0107056
• via linear algebra (manipulations with determinants) in Borodin-Rains

https://arxiv.org/abs/math-ph/0409059
3. Surveys on determinantal processes:

• Alexander Soshnikov. Determinantal random point fields.
https://arxiv.org/abs/math/0002099

• J. Ben Hough, Manjunath Krishnapur, Yuval Peres, Bálint
Virág. Determinantal Processes and Independence. https://arxiv.org/abs/math/0503110

• Alexei Borodin. Determinantal point processes. https://arxiv.org/abs/0911.1153
4. Alexei Borodin, Vadim Gorin, Eugene Strahov. Product matrix

processes as limits of random plane partitions. https://arxiv.org/abs/1806.10855
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Problems
[[_Lecture 13, 3-17|Lecture]]

1
Show that the discrete sine kernel

{ }

could define a point process: 1. Show that it is positive definite, that is, all
diagonal minors det[K(xi, xj)]mi,j=1 are nonnegative. 2. Show that these minors
are at most one. Hint: here you can use the complementation principle and pass
from K to 1 − K.

2
Is the determinantal kernel K(a, b) for the Schur measure Hermitean symmetric?
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[[Lecture 14, 3-22/Problems, 3-22|4 problems]], due April 5

Here we finish the proof of the TASEP fluctuations, and discuss the results.

1 Recall the formulas we have for TASEP
•

1.1 Kernel
We proved the formula

{ }

One can check that K(a, b) = 0 for b < 0, so the Fredholm determinant
det (1 − K){0,1,...,x} can be replaced by the Fredholm determinant on Z∩(−∞, x].

•

1.2 Fredholm determinants, general discussion
Recall that the Fredholm determinant in general is defined as

{ }

1



It makes sense for locally trace class operators:

{ }

A useful estimate showing that the series for Fredholm determinants often
converges, is the Hadamard’s bound:

{ }

2



1.3 How to compute Fredholm asymptotics
{ }

2 Kernel asymptotics and Fredholm determinants
•

3



2.1 The part with the single critical point
Throughout the computations today we assume that τ > 1.

We have proved the following:

{ }

Exercise 2.1.1 { }

See [[Problems, 3-22#2|Problem 2]]

4



This discrete sine kernel determinantal process is a fundamental object, as it
appears in asymptotics of many models.

A continuous analogue of the discrete sine kernel process on R is useful in
describing spacings between zeroes of the Riemann zeta function ζ(s) on the
critical line Re(s) = 1

2 .

•

2.2 Edge and critical point behavior
{ }

Let us recall the notation:

{ }

At the boundary betwen “two complex conjugate” and “two real” regimes, the
critical points merge and become the double critical point.

5



{ }

We consider the behavior around only one double critical
point, χ∗ = (

√
τ − 1)2, τ > 1.

2.3 Expansion around the double critical point
{ }

6



{ }

Now we investigate local and global behavior of the sign of the real part of S to
determine how to move contours so that the contribution of everything outside
a neighborhood of the critical point goes to zero.

{ }

7



{ }

8



We see that we can move the contours in a desired way.
2.4 Asymptotics of the kernel
The expansion and manipulation with contours proves the following result

Theorem 2.4.1 The kernel

{ }

has the following asymptotics:

9



{ }

in the regime

{ }

Proof 2.4.1 { }

10



Move the contours like this, so only a small neighborhood of χ∗ matters.

{ }
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We have the following three expansions under the integral:

{ }

12



Putting this all together, we arrive at the desired asymp-
totics.
2.5 Airy kernel
{ }

13



We have proven the following asymptotics of the kernel:

Theorem 2.5.1 { }

•

2.6 Fredholm determinant asymptotics
Using the Fredholm determinants, asymptotics of the kernel, and some more

14



estimates, we have

Theorem 2.6.1 { }

Remark 2.6.2 Note that by the very nature of the Fredholm determinant
det

(
1 − KAi

)
(r,+∞), it is reasonable to guess that as r → ±∞, the Fredholm

determinant converges to 1 and 0, respectively. This is to be expected of a
cumulative distribution function.

Proof 2.6.1 { }

We also need to estimate the kernel K(x, y) for y away from the neighborhood

15



of ⌊χ∗N⌋. This may be done as follows:

|K(x, y)| < C(z∗)(r−s)N1/3 e−c1N1/3 + ec2N−1/3(y−⌊χ∗N⌋)

⌊χ∗N⌋ − y + 1 ,

if y − ⌊χ∗N⌋ < −sN1/3 for some s > 0.

This estimate may be proven by further analysis of the double contour integral
formula for the kernel.

3 Discussion of the asymptotics
•

3.1 Tracy-Widom distribution
Definition 3.1.1. Tracy-Widom GUE distribution { }

16



Let discuss one more formula for the kernel, and one more formula for F2(r).

Lemma 3.1.2 { }

Ai(x) is called the Airy function

Proof 3.1.2. Proof sketch { }

17



On the Airy function:

{ }

18



Theorem 3.1.3. Tracy-Widom distribution via Painleve II { }

(without proof; this is proven via differentiation of the logarithm of the Fredholm
determinant)

{ }
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3.2 KPZ universality
Most stochastic particle systems with strong dependence are believed (and
proven) to be in the so-called KPZ (Kardar-Parisi-Zhang) universality class.
The name for the class comes from a stochastic PDE introduced in the work of
Kardar-Parisi-Zhang in 1986.

There are several versions of fluctuation distribution (which are the GUE Tracy-
Widom distribution and its relatives):

{ }

20



(table from Corwin’s KPZ survey, see the [[_Lecture 14, 3-22#Notes and refer-
ences|refs]])

Notes and references
1. Asymptotics via contour integrals (in a simpler case): Andrei Okounkov.

Symmetric functions and random partitions. https://arxiv.org/abs/math/0309074
2. Survey on KPZ universality: Ivan Corwin. The Kardar-Parisi-Zhang

equation and universality class. https://arxiv.org/abs/1106.1596
3. A proof of the representation of the GUE Tracy-Widom dis-

21



tribution through the Painleve II equation may be found in
Craig A. Tracy, Harold Widom. Airy Kernel and Painleve II.
https://arxiv.org/abs/solv-int/9901004

Problems
[[_Lecture 14, 3-22|Lecture]]

1
Show that for a determinantal process on Z or R with correlation kernel K(x, y),
we have (for finite / bounded set A)

E(number of points of the point process belonging to A) =
∑
x∈A

K(x, x)

for Z, and

E(number of points of the point process belonging to A) =
∫

A

K(x, x)dx

for R.

2
Show that the kernel K(x, y) of the Schur measure given [[1.1 Kernel|here]]
converges to the discrete sine kernel:

As x = ⌊χN⌋, y = ⌊χN⌋ + ∆x, ∆x ∈ Z fixed, N → +∞, t = τN , and
(
√

τ − 1)2 < χ < (
√

τ + 1)2, we have

{ }
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3
In the analysis, we considered only the case of one double critical point, χ∗ =
(
√

τ − 1)2, τ > 1. There are two more regimes:

• 0 < τ < 1, χ = (
√

τ − 1)2

• τ > 0, χ + (
√

τ + 1)2.

Determine the asymptotics of the kernel in these two other cases.

4
Explain why the terms (z∗)(r−s)N1/3 (in red in [[2.4 Asymptotics of the ker-
nel#Theorem 2 4 1|this theorem]]) do not matter for the asymptotics of the
process, and can be ignored.
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[[Lecture 15, 3-24/Problems, 3-24|3 problems]], due April 7

{ }

This lecture motivates and introduces the six vertex model and the stochastic
six vertex model

1 Models in statistical mechanics
•

1.1 Lozenge tilings
{ }

{ }

1



See also [[Problems, 3-24#2|Problem 2]] for a particular case of the enumeration
of lozenge tilings.

For large lozenge tilings, we have many universal asymptotics - for example,
local behavior is given by the same distribution as for the push-block dynamics.

{ }

2



{ }

3



1.2 Square ice
We start by taking a bijection of lozenge tilings with nonintersecting lattice
paths.

{ }

4



There are five local configurations of paths at a vertex. We call them
a1, b1, c1, b2, c2.

{ }

Thus, we can generalize the lozenge model to a following stat-mech model with
Boltzmann weights:

{ }

5



Here Z is the partition function, which in the particular case reduces to the
MacMahon’s triple product:

{ }

Now we introduce a complication and allow for one more vertex type, a2.

{ }

6



This leads to pictures which are no longer interpretable as lozenge tilings.

{ }

This model is called the six vertex model

{ }

7



The six vertex model has a very interesting history in physics and mathematics.
I will not attempt to survey it, see the lecture notes mentioned in the [[_Lecture
15, 3-24#Notes and references|refs]].

One of the most important boundary conditions in the six vertex model is the
domain wall boundary condition:

{ }

There is a determinantal formula for the partition function. This formula is
much more complicated than the explicit products we saw for lozenge tilings.

There is a particular case when the determinant simplifies, a1 = a2 = b1 = b2 =

8



c1 = c2 = 1:

{ }

2 Stochastic six vertex model
•

2.1 Definition of the stochastic six vertex model
Within particle systems, a particular subfamily of six vertex models is much
easier to study. These are the stochastic six vertex models.

{ }

In this case, by making endpoints of our paths free, we can sample the stochastic
six vertex model by just running a Markov chain.

And the partition function becomes simply equal to 1.

{ }
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So, we consider the half-domain wall boundary condition:

{ }

10



•

2.2 Degenerations of the stochastic six vertex model
There are several degenerations of the stochastic six vertex model.

b2=0 { }

11



{ }

This is a discrete time PushTASEP

b2=0, and limit to continuous time { }

12



ASEP / TASEP near the diagonal { }

13



2.3 Stationary model
We can contruct a stationary version of the stochastic six vertex model.

Theorem 2.3.1 { }

14



As it is not too clear which arrow jumps first, we need to explain what is the
dynamics. In other words, we construct the stationary model.

Lemma 2.3.2 If (1 − b2)α(1 − β) = (1 − b1)β(1 − α), then having independent
Bernoulli inputs from below and from the left, the vertex model’s output produces
independent Bernoulli outputs with the same distributions.

{ }

Proof 2.3.2 { }

15



{ }

{ }
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Proof 2.3.1 Lemma proves that Bernoulli distributions at the horizontal and
vertical pieces lead to a compatible family of measures on quadrants which can
be made going to −∞.

{ }

{ }
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Notes and references
1. Some historical account on the six vertex model is in the introduction to N.

Reshetikhin. Lectures on the integrability of the 6-vertex
model. https://arxiv.org/abs/1010.5031

2. Some relevant wikipedia articles:
• https://en.wikipedia.org/wiki/Ice-type_model
• https://en.wikipedia.org/wiki/Lieb%27s_square_ice_constant
• https://en.wikipedia.org/wiki/Alternating_sign_matrix

3. Nature paper (2015) claiming to have discovered square ice in thin layers
between sheets of graphene: https://www.nature.com/articles/nature14295
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Problems
[[_Lecture 15, 3-24|Lecture]]

1
Show that the number of tilings of a figure like this

{ }

is given by sλ(1, 1, . . . , 1) for a suitable λ = (λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0).

2
{ }

19



3
Compute the current of the discrete time and the continuous time PushTASEP
in stationarity (see [[2.2 Degenerations of the stochastic six vertex model|this
part of the lecture]] for their definitions as degenerations of the stochastic six
vertex model).
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[[Lecture 16, 3-31/Problems, 3-31|4 problems]], due April 14

1 Recall stochastic six vertex model
•

1 Recall stochastic six vertex model
{ }

Recall that we discussed the stationary six vertex model last time:

{ }

1



This allows in principle to get the hydrodynamics for the model; however, we
will not spend time on this, but will get to the discussion of exact formulas.

2 How to solve the stochastic six vertex model
•

2.1 Height function of S6V
{ }

2



•

2.2 Goal for this lecture
{ }

3



3 Hall-Littlewood vertex model
Also called “the model of deformed bosons”

•

3.1 Vertex weights
First, let us explain how to translate our signatures λ into vertex model language.
We take vertex models where there can be arbitrary many arrows vertically, but
at most one horizontally at each edge.

{ }

4



Fix the parameter 0 ≤ t < 1. Let u be another parameter which may depend on
the vertex.

Definition 3.1.1. Red vertices { }

5



Proposition 3.1.2 { }

Proof 3.1.2

See [[Problems, 3-31#2|Problem 2]].
3.2 Hall-Littlewood polynomials
Definition 3.2.1 { }

6



Without normalization, we use the notation Fλ:

{ }

Proposition 3.2.2 { }

7



Note that we’re not yet proving that Pλ is symmetric in the variables.

Proof 3.2.2

1. The polynomiality is clear because all weights are polynomial, and the
partition function is of a finite sum

2. Homogeneity follows from the fact that the weight u is attached to a
horizontal outgoing arrow, so the total power of each monomial in ui is |λ|

3. The lexicographically maximal monomial corresponds to a unique path
configuration { }

Dividing by the normalizing factor, we get the desired result

8



See also the stability property of the Pλ’s, [[Problems, 3-31#1|Problem 1]].

•

3.3 Comparison between Schur and Hall-Littlewood
{ }

Today we’ll discuss symmetry and Cauchy identity. For the Cauchy identity, we
will introduce another, blue HL vertex model.

9



4 Consequences of Yang-Baxter equations
•

4.1 Symmetry
Definition 4.1.1 Define the red cross vertex weights Rz as follows:

{ }

Theorem 4.1.2. Yang-Baxter equation (YBE) We have the following
equality of partition functions:

{ }

Proof 4.1.2 The proof is a direct verification of an identity involving summing
over k1, k2, k3.

{ }

10



Here is code

{ }

See also:

Mathematica file • pdf

11

https://storage.lpetrov.cc/IUM-S21/L4_HL_vertex.nb
https://storage.lpetrov.cc/IUM-S21/L4_HL_vertex.pdf


Corollary 4.1.3 { }

Proof 4.1.3 Via YBE, we have the equality of two partition functions

{ }

12



This allows to swap ui and ui+1, resulting in the symmetry.
4.2 Blue HL vertex model
Definition 4.2.1. Blue HL vertex weights { }

13



Note that in the blue vertices, the paths go down and right. And in the red
vertices, the paths go up and right

Definition 4.2.2. Q_lambda { }

14



•

4.3 Red-blue YBE
Definition 4.3.1. Red-blue cross vertex weights We define the weights
R̃z:

{ }

15



Theorem 4.3.2. Red-blue YBE { }

Proof 4.3.2 { }

See also:

Mathematica file • pdf

16

https://storage.lpetrov.cc/IUM-S21/L4_HL_vertex.nb
https://storage.lpetrov.cc/IUM-S21/L4_HL_vertex.pdf


•

4.4 Cauchy identities
Lemma 4.4.1. Skew Cauchy identity For |xy| < 1, we have

{ }

{ }
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Proof 4.4.1 We also consider equality of two partition functions:

{ }

18



Add the empty cross vertex on the left:

{ }

Move it over, and get the other side of the skew Cauchy identity:

{ }
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Proposition 4.4.2. Full Cauchy identity We have two equivalent identities
(provided that |uivj | < 1 for all i, j):

{ }

Important notes about the function Q In L16 and L17 I made a mistake
in the definition of the function Qλ. The correct Qλ can be reconstructed as
follows, from the Cauchy identities:

20



{ }

I have edited all the notes so that the old function Qλ is now denoted by Q∗
λ.

The function Qλ is, by definition, dual to Pλ in the sense of the Cauchy identity.

Proof 4.4.2 We will prove the identity with F . Again, this is an equality of
two partition functions.

{ }

21



{ }
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5 From HL vertex model to stochastic six vertex
model

•

5.1 Random step
The goal now is to use the skew Cauchy identity to upgrade the height function
random field to a random field of λ’s. This means that we need to come up with
a rule of randomly selecting ν given λ,κ, µ:

{ }

{ }
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By “compatible with skew Cauchy” we mean

{ }

This property, upon summing over ν, leads to the skew Cauchy:

{ }

24



5.2 Constructing random steps from couplings of YBE
{ }

We reduce the sampling of ν to a sequence of sampling of the νi’s using the YBE
on each step.

{ }
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A general principle
Any identity with nonnegative terms can be made into a Markov chain (in
multiple ways, in fact). This is known as “bijectivisation”, “coupling”, or
“probabilistic bijection”.

{ }

26



Example 5.2.1 { }

Example 5.2.2 { }

27



To conclude, a coupling exists; and if there is a singleton in the left-hand side,
then the coupling is unique.

This discussion proves the following result:

Theorem 5.2.1. Main theorem. The desired U(ν | λ,κ, µ) exists, on the
leftmost column 0 it is unique and looks like this:

{ }

{ }
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{ }

The probabilities α, β are

{ }
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{ }
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5.3 Finalizing the result
Now let us connect [[5.2 Constructing random steps from couplings of
YBE#Theorem 5 2 1 Main theorem|our theorem]] to the stochastic six vertex
model.

The signatures should be understood as if in the square

{ }

31



Then the 6 cases in [[5.2 Constructing random steps from couplings of
YBE#Theorem 5 2 1 Main theorem|the theorem]] correspond to the following
cases in the stochastic six vertex model.

{ }

32



{ }

{ }

Therefore, we get the following theorem

33



Theorem 5.3.1. S6V to HL coupling. Take the stochastic six vertex model,
with inhomogeneous parameters u1, u2, . . . along the vertical, and v1, v2, . . . along
the horizontal directions. The stochastic six vertex model updates the vertex at
(x, y) with probabilities

b1(uy, vx) = 1 − uyvx

1 − tuyvx
, b2(uy, vx) = t

1 − uyvx

1 − tuyvx
.

Then the height function of this stochastic six vertex model (with domain wall like
boundary conditions in Z2

≥0, i.e., paths enters at each site on the left boundary
and nothing enters from below) has the following equality in distribution:

h(x, y) d= m0(λ(x,y)) = y − ℓ(λ(x,y)),

where λ(x,y) is the random signature distributed according to the Hall-Littlewood
measure

Prob(λ) =
x∏

i=1

y∏
j=1

1 − ujvi

1 − tujvi
Pλ(u1, . . . , uy)Qλ(v1, . . . , vx).

Notes and references
1. Macdonald’s book: I.G.Macdonald. Symmetric Functions and Hall

Polynomials (Oxford Classic Texts in the Physical Sciences),
2nd ed. 1995.

2. The closest explanation of how Cauchy identity / YBE leads to Markov
chains is in Alexey Bufetov, Leonid Petrov. Yang-Baxter field
for spin Hall-Littlewood symmetric functions. https://arxiv.org/abs/1712.04584
(this is a more general setting, but the HL case is recovered by putting
s = 0 everywhere)

Problems
[[_Lecture 16, 3-31|Lecture]]

1
Show that the Hall–Littlewood polynomials defined as partition functions nor-
malized by

∏
1/(t; t)mi

(in the lecture) satisfy the stability property, where
λ = (λ1, λ2, . . . , λN−1, λN ):

P(λ1,...,λN−1,λN )(u1, u2, . . . , uN−1, 0) =
{

P(λ1,...,λN−1)(u1, u2, . . . , uN−1), λN = 0,

0, otherwise.
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2
Show that the partition function for the Hall–Littlewood polynomial Pλ reduces
to the Schur polynomial sλ for t = 0. For that, present a weight-preserving
bijection between path configurations on the red lattice, and interlacing arrays
(which are the model for Schur polynomials).

3
Let Q∗

λ be the partition function on the blue lattice, as defined in the lecture.
Show that

1. Q∗
λ(v1, . . . , vM ) is symmetric in v1, . . . , vM .

2. We have
Q∗

λ(v1, . . . , vM ) = bλPλ(v1, . . . , vM ),

where the constant bλ does not depend on v1, . . . , vM .

4
Consider the HL vertex model on the cylinder:

{ }
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Show that the partition function is symmetric in the variables ui.

Hint. Use the fact that the red cross weights satisfy the following cancellation
property:

{ }
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[[Problems, 4-5|2 problems]], due April 19

1 Recall definitions and results
•

1.1 Stochastic six vertex model
{ }

1.2 Hall-Littlewood polynomials
P Pλ Hall-Littlewood polynomials, functions Fλ

{ }

1



Q Q∗
λ polynomials

{ }

2



Cauchy identity { }

3



1.3 Coupling between S6V and HL measures
The coupling between S6V and HL measures goes through the height function

{ }

We consider an inhomogeneous model with parameters u1, u2, . . . in the horizontal,
and v1, v2, . . . in the vertical direction.

4



Here is an example simulation:

{ }

Theorem 1.3.1 (proved in L16) { }

5



Remark 1.3.2 Since Qλ = bλPλ, we may as well have written
1
Z Pλ(u1, . . . , ux)Qλ(v1, . . . , vy).

Remark 1.3.3 Joint distributions of the height function h(x, y) are also
available through Hall–Littlewood processes. Well, not all joint distributions, but
only those along down-right paths. Since asymptotic analysis of Hall–Littlewood
processes (and of these joint distributions) is much more involved, we do not
focus on this more general coupling.

Recall the proof { }

6



{ }

{ }

7



2 Hall-Littlewood polynomials
•

2.1 Formulation and easy case
Recall the HL polynomials defined as partition functions:

{ }

8



Theorem 2.1.1 { }

9



Proof 2.1.1. Easy case Identities 2, 4 follow from definitions of Pλ and Qλ

through Fλ and Q∗
λ, respectively.

Let us establish 3.

{ }

10



That is, the red and the blue weights are related in this way. Checking this
relation:

{ }

11



{ }

{ }

12



•

2.2 Proof part 1
Step 0 Consider the space V and define 4 operators A, B, C, D in it:

{ }

13



Vertically attaching vertices means product of operators, and horizontally at-
taching vertices means tensor product.

{ }

Step 1. Express F via operators { }

14



Step 2. Action of B on a tensor product { }

Step 3. Yang-Baxter equation for products Here and below we use
notation Ai = A(ui), Bi = B(ui), Ci = C(ui), Di = D(ui).

{ }

15



{ }

•

2.3 Proof part 2
Step 4. Action of B on a tensor product of two spaces YBE and tensor
action implies that the product of the Bi’s expresses as

{ }

16



We will show that I ∩ K = ∅, which would imply that I = L and K = J .

{ }

17



{ }

18



Step 5. Computation of the coefficients { }

Step 6. Computation of the coefficients { }

19



{ }

Step 7. Final expression for the action on two tensor factors { }

20



2.4 Proof part 3
Step 8. Splitting into many tensor factors { }

21



Now we will express this sum as a sum over permutations

Step 9 { }

22



{ }

Example

23



{ }

Step 10. Finalizing the proof { }

24



{ }

For the proof of this identity, see [[Problems, 4-5#1|Problem 1]] and [[Problems,
4-5#2|Problem 2]].

Notes and references
1. Macdonald’s book: I.G.Macdonald. Symmetric Functions and Hall

Polynomials (Oxford Classic Texts in the Physical Sciences),
2nd ed. 1995.

• Chapter III contains most formulas on Hall-Littlewood polynomials
and symmetric functions

• Chapter III.3,5 develops a proof of the symmetrization formula
through the Hall algebra (involved in the study of abelian p-groups)

• A potential another proof of the symmetrization formula might be
developed by looking at identity III.(2.14), if one manages to prove
the same identity at the vertex model level.

25



2. A verification style proof of the symmetrization formula (in a more gen-
eral fashion) may be found in A. Borodin. On a family of symmetric
rational functions, https://arxiv.org/abs/1410.0976, Theorem 5.1.

3. The proof presented here follows Algebraic Bethe ansatz ideol-
ogy, and follows the one in A. Borodin, L. Petrov. Higher
spin six vertex model and symmetric rational functions,
https://arxiv.org/abs/1601.05770, Theorem 4.14.1.

4. On Algebraic Bethe ansatz see, e.g., Korepin, V. and Bogoliubov,
N. and Izergin, A. Quantum inverse scattering method and
correlation functions, 1993. In particular, see formula VII.(5.9) and
Appendix VII.2

Problems
[[_Lecture 17, 4-5|Lecture]]

1
Show that

N∑
i=1

∏
j ̸=i

txi − xj

xi − xj
= 1 − tN

1 − t
.

Hint. Express the left-hand side as a contour integral over a contour containing
the poles xi, and then compute it in another manner.

2
Show that ∑

σ∈SN

σ

 ∏
1≤i<j≤N

xi − txj

xi − xj

 = (t; t)N

(1 − t)N
.
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[[Lecture 18, 4-7/Problems, 4-7|3 problems]], due April 21

1 Reminders
Recall the following two results which we proved in the previous lectures.

Theorem 1.0.1 Consider the stochastic six vertex model with inhomogeneous
parameters u1, u2 . . . along the horizontal direction, and v1, v2, . . . along the
vertical direction. Assume that |uivj | < 1 for all i, j. Recall that the parameter
t ∈ [0, 1) is assumed fixed once and for all. In the stochastic vertex model, the
probabilities at (x, y) are

b1(ux, vy) := 1 − uxvy

1 − tuxvy
, b2(ux, vy) := tb1(ux, vy) = t(1 − uxvy)

1 − tuxvy
.

Then the height function h(x, y) in this model has the same distribution as
m0(λ(x,y)) = y − ℓ(λ(x,y)), where λ(x,y) is a random partition distributed accord-
ing to the Hall–Littlewood measure

Prob(λ) =
x∏

i=1

y∏
j=1

1 − tuivj

1 − uivj
Pλ(v1, . . . , vy)Qλ(u1, . . . , ux).

Theorem 1.0.2 The Hall–Littlewood polynomials possess the following explicit
formula:

Fλ(u1, . . . , uN ) =
∏
i≥0

(t; t)mi(λ)Pλ(u1, . . . , uN ),

and

Fλ(u1, . . . , uN ) = (1 − t)N
∑

σ∈SN

σ

uλ1
1 . . . uλN

N

∏
1≤i<j≤N

ui − tuj

ui − uj

 ,

where σ acts by permutations of the uj ’s.

2 Eigenoperators
•

2 Eigenoperators
2.0.1 Recall the Schur case { }

1



Definition 2.0.2. First Macdonald operator { }

This operator is a member of a whole family of N commuting operators, which
form a “quantum integrable system”

Theorem 2.0.3. Eigenrelation { }

2



The same eigenrelation holds for the other polynomials Fλ, Qλ, Q∗
λ, since they are

all proportional to each other, and the multiplicative constants are independent
of the variables xj .

Proof 2.0.3. Step 1. { }

3



See also [[../Lecture 17, 4-5/Problems, 4-5#1|Problem 1]] from the previous
lecture.

Proof 2.0.3. Step 2. { }

{ }

4



In words, we have split the Fλ polynomial into three pieces. In the first piece, the
operator T0,xi eliminates all the variables. The third piece is a constant thanks
to the symmetrization identity ([[../Lecture 17, 4-5/Problems, 4-5#2|Problem 2]]
from the previous lecture). In the second piece, the action of D(t, 0) removes one
of the factors and then restores it back. So we see that the overall action of D(t, 0)
on Fλ is diagonal and produces the same eigenvalue as if we applied D(t, 0) in
N − ℓ variables to a constant. This produces the eigenvalue (1 − tN−ℓ)/(1 − t).

3 Contour integral formulas
•

3.1 Contour integral for D(0,t)
Lemma 3.1.1 { }

5



Here the integration contour is around all xi and no other poles of the integrand.

For q = 0, we get a contour integral for the action of D(t, 0)
on product functions.
3.2 Expectation
We repeat the technology used for Schur measures (see [[../Lecture 11, 3-10/2.1
Expectation via q-difference operators|this part]]), and compute the expectation
of the eigenvalue through Cauchy identity.

We have:

{ }

6



Now we apply contour integrals, and also recall that h(M, N) has the same
distribution as N − ℓ(λ), to write:

Proposition 3.2.1 { }

Here the integration contour is around all the xi’s.

7



We have proven this result above.

Note on notation Here I silently switched from ui, vj variables to xi, yj ones,
and the lattice coordinates are M, N . This notation with xi, yj will persist till
the end of the lecture.

Proposition 3.2.2 Integration over a different contour corresponds to a simpler
quantity that we take expectation of. Namely,

{ }

There are two changes: different contour, and the lack of (t − 1) in the denomi-
nator.

Proof 3.2.2

This follows from the fact that the residue of the integrand
at zero is equal to 1/(t − 1), which is immediate since 0 is a
simple pole.
3.3 Multiple t-moments
To address multiple t-moments, consider a slightly different operator

{ }

8



Proposition 3.3.1 { }

This follows from the expression for D(t, 0).

Next:

{ }

Using the relation between the stochastic six vertex model and Hall-Littlewood
measures, we have:

Corollary 3.3.2 { }

9



Now let us express this in integrals. Start with the case k = 2.

{ }

Here, however, we need to respect algebra, and not pick the residue at w = zt.

10



This is achieved by a careful selection of contours.

Take these (I call z1 = z, z2 = w for easier matching with the next contour
picture):

{ }

By continuing for larger k, we get the following k-fold contour integral formulas:

Theorem 3.3.3 { }

{ }

11



Corollary 3.3.4 For the stochastic six vertex model:

{ }

Contours are the same as in [[#Theorem 3 3 3|the previous
theorem]].
3.4 Moment problem
The expectations Etkh(M,N) for all k ≥ 1 determine the distribution of h(M, N).

Indeed, since th(M,N) ∈ (0, 1], this follows from the compact moment problem:

12



Theorem 3.4.1 Let ν be a probability measure supported on a compact
segment [a, b]. Then its moments αk =

∫ b

a
xkν(dx) completely determine ν.

This statement follows from Weierstrass theorem on approximation of continuous
functions by polynomials.

4 Idea of the asymptotic analysis
•

4.1 q-binomial theorem
Let us step back and consider possible generating functions associated with our
t-moments of the height function.

Theorem 4.1.1. q-binomial theorem This is usually called the q-binomial
theorem, however, our t plays the role of q.

If |t| < 1, |ζ| < 1, then

{ }

Proof 4.1.1 This would follow from a more general identity as N → ∞.

{ }

13



We will write down a recurrence for the series coefficients cN,n.

{ }

{ }

14



This shows the more general identity depending on N . Finally, the limit as
N → ∞ looks as

{ }

4.2 Asymptotic fluctuations via t-Laplace transforms
Let us apply the t-binomial theorem to t-moments:

15



Theorem 4.2.1 We have

{ }

Proof 4.2.1 This is allowed: we can interchange expectation with summation
because the random variable th(M,N) is bounded.

Note that the right-hand side is called “t-Laplace transform”, because

{ }

16



The t-Laplace transform is helpful for asymptotic analysis:

{ }

Here η should be the Tracy-Widom random variable, as in TASEP.

Take

{ }

17



Then:

{ }

We believe that the probability in the right-hand side is expressed as (1 minus
the) Fredholm determinant of the Airy kernel. This determinantal structure is
quite special, and we don’t see it yet before the limit.

To see the Fredholm determinant in the limit, it is actually possible to first
obtain this structure before the limit. We will do this next time.

18



Notes and references
There are several papers on the method of t- (or q-) moments in the analysis of
interacting particle systems. Here are the main references:

1. Alexei Borodin, Ivan Corwin. Macdonald processes. https://arxiv.org/abs/1111.4408;
Proposition 3.2.1 onwards

2. Alexei Borodin, Ivan Corwin, Tomohiro Sasamoto. From duality to deter-
minants for q-TASEP and ASEP. https://arxiv.org/abs/1207.5035. Section
3

3. Alexei Borodin, Ivan Corwin, Leonid Petrov, Tomohiro Sasamoto. Spectral
theory for the q-Boson particle system. https://arxiv.org/abs/1308.3475.
Appendix 7.2 has the proof of the contour shift argument.

4. Alexey Bufetov, Matteo Mucciconi, Leonid Petrov. Yang-Baxter random
fields and stochastic vertex models. https://arxiv.org/abs/1905.06815. Sec-
tion 9.1 discusses operator approach to getting t-moments of the stochastic
six vertex model, and the corresponding Fredholm determinants.

Problems

1
Show the following t-binomial identity:

(−ζ; t)N =
N∑

k=0
tk(k−1)/2 (t; t)N

(t; t)N−k(t; t)k
ζk

2
The binomial coefficient

(
n
k

)
is, for example, the number of up-right lattice

paths from (0, 0) to (k, n − k). Find a similar interpretation for the t-binomial
coefficient

(t; t)n

(t; t)k(t; t)n−k
.

More precisely, find a statistic ft(π) on up-right paths such that the partition
function ∑

π up-right paths
ft(π)

is the t-binomial coefficient (t;t)n

(t;t)k(t;t)n−k
.

3
Show that the Macdonald operator D(t, q)

19



{ }

preserves the ring of symmetric polynomials in N variables x1, . . . , xN .
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[[Problems, 4-12|2 problems]], due May 6

1 Reminder
•

1 What we have and what we need
We have the t-Laplace transform for the height function of the (inhomogeneous)
stochastic six vertex model:

{ }

1



We expect the t-Laplace transform to converge to a Fredholm determinant (which
expresses the Tracy-Widom distribution).

{ }

We would like to rewrite the t-Laplace transform as a Fredholm determinant.
We have k-fold nested contour integral expressions for the k-th moment:

{ }

2



{ }

3



We would like to have a determinant under the non-nested k-fold integral. How
about getting the determinant?

{ }

4



2 Contour shift theorem
•

2.1 Contour shifting
There are the following contours in our k-fold contour integrals

{ }

5



This is what we’re going to do to make the contours the same:

{ }

{ }

6



2.2 Warm up for k=2
Let us perform the contour shifts for k = 2.

{ }

7



{ }

In general we see that f is evaluated at one of the integration
variables, or at tj times the integration variable. This is
called a string specialization
2.3 Sting specializations
{ }

8



{ }

2.4 k=3, more warm up
Let us check how this works for k = 3:

{ }

9



Here we have contributions from all partitions λ with |λ| = λ1 + . . . + λℓ = 3.
The number ℓ = ℓ(λ) of nonzero parts is precisely the number of the “free”
integration variables.

•

2.5 Theorem formulation
Theorem 2.5.1. Contour shift theorem { }

10



2.6 Theorem proof
2.5.1. Proof. The proof proceeds by a careful bookkeeping of residues and
substitutions occurring during contour deformations.

{ }

Each time we pick either a residue, or an integral.

[[../img/Pasted image 20210426211752.png] ]

We regard this as a function of the remaining free variables ziλ1
, zjλ2

, and so on.

11



Step 1. { }

Step 2. { }

12



That is, instead of calling the free variables ziλ1
, zjλ2

, . . ., which remembers the
structure of the original integral, we will define a “canonical” way to encode
residues.

{ }

{ }

13



Therefore, for a fixed λ the sum over I:

{ }

equals

{ }

14



Step 3. Now we can separate the part of the formula which needs a residue,
and part which is symmetrized.

{ }

For symmetrization we have

{ }

15



See [[../Lecture 17, 4-5/Problems, 4-5#2|this problem]].

Step 4. For the residue, one can explicitly compute it:

{ }

We’re now checking that the powers of t agree:

{ }

16



This completes the proof of the theorem.

3 Two Fredholm determinants
•

3.1 Fredholm 1
From the contour shift theorem we get our first Fredholm determinantal expres-
sion for the t-Laplace transform.

Theorem 3.1.1 { }

17



Proof 3.1.1 One can reorganize the sum over partitions into the sum over
independent indices, and there are determinants inside the integrals which
produces the Fredholm determinant:

{ }

18



{ }

19



3.2 Mellin-Barnes summation
There is another way to write the Fredholm determinant which is more convenient
for asmyptotics. A helpful fact is the Mellin-Barnes summation:

Lemma 3.2.1 { }

Proof 3.2.1 { }

20



3.3 Fredholm 2 with kernel as a contour integral
Theorem 3.3.1 { }

21



Proof 3.3.1 { }

22



Notes and references
There are several papers on the method of t- (or q-) moments in the analysis of
interacting particle systems. Here are the main references:

1. Alexei Borodin, Ivan Corwin. Macdonald processes. https://arxiv.org/abs/1111.4408;
Proposition 3.2.1 onwards

2. Alexei Borodin, Ivan Corwin, Tomohiro Sasamoto. From duality to deter-
minants for q-TASEP and ASEP. https://arxiv.org/abs/1207.5035. Section
3

3. Alexei Borodin, Ivan Corwin, Leonid Petrov, Tomohiro Sasamoto. Spectral
theory for the q-Boson particle system. https://arxiv.org/abs/1308.3475.
Appendix 7.2 has the proof of the contour shift argument.
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4. Alexey Bufetov, Matteo Mucciconi, Leonid Petrov. Yang-Baxter random
fields and stochastic vertex models. https://arxiv.org/abs/1905.06815. Sec-
tion 9.1 discusses operator approach to getting t-moments of the stochastic
six vertex model, and the corresponding Fredholm determinants.

Problems

1
Compute the residue in [[2.6 Theorem proof#Step 4|step 4]] of the proof.

2
Compute the residue of the Gamma function Γ(x) =

∫ ∞
0 tx−1e−tdt at nonpositive

integers −n, n = 0, 1, 2 . . .. The Gamma function is not defined there by this
formula, but rather one could use the reflection formula for the Gamma function:

Γ(x)Γ(1 − x) = π

sin(πx) , x /∈ Z.

24



[[Problems, 4-14|1 problem]], due May 6

1 Asymptotics of Fredholm determinants
Throughout this section we perform a critical point analysis of the Fredholm
determinant for the t-Laplace transform of the height function in the stochastic
six vertex model.

•

1.1 Recall what we work with
{ }

1



{ }

2



{ }

3



{ }

4



•

1.2 Expansion we work with
{ }

5



•

1.3 Homogeneous parameters in the model
{ }

6



{ }

{ }

7



So, let us summarize how the asymptotics analysis would look like.

{ }

8



{ }

9



{ }

10



{ }

11



{ }

{ }

12



{ }

{ }

1.4 Summary of the strategy
{ }

13



{ }

14



{ }

•

1.5 Double critical point
{ }

15



{ }

16



{ }

17



{ }

18



1.6 Heuristics of the cone in the limit shape
{ }

19



{ }

20



So the limit shape looks like this and it tangent to two planes:

{ }

{ }

21



•

1.7 Moving the contours
{ }

{ }

22



We now need to move the contours so that the exponent in the integrals has
negative real part. This is possible:

{ }

23



{ }

24



Note that in the “wrong zone” when wc > 0 we cannot move the contours as
desired, due to poles:

{ }

1.8 Expansion around the critical point and asymptotics
{ }

25



{ }

Let us now collect the asymptotic contributions of all the terms in the integrals:

{ }

26



{ }

{ }

27



We see that the scaling limit of the Fredholm determinant looks like:

{ }

This is our final result for this lecture, and next time we will identify this formula

28



with the Fredholm determinant of the Airy kernel.

Notes and references
There are several papers on the method of t- (or q-) moments in the analysis of
interacting particle systems. Here are the main references:

1. Alexei Borodin, Ivan Corwin. Macdonald processes. https://arxiv.org/abs/1111.4408;
Proposition 3.2.1 onwards

2. Alexei Borodin, Ivan Corwin, Tomohiro Sasamoto. From duality to deter-
minants for q-TASEP and ASEP. https://arxiv.org/abs/1207.5035. Section
3

3. Alexei Borodin, Ivan Corwin, Leonid Petrov, Tomohiro Sasamoto. Spectral
theory for the q-Boson particle system. https://arxiv.org/abs/1308.3475.
Appendix 7.2 has the proof of the contour shift argument.

4. Alexey Bufetov, Matteo Mucciconi, Leonid Petrov. Yang-Baxter random
fields and stochastic vertex models. https://arxiv.org/abs/1905.06815. Sec-
tion 9.1 discusses operator approach to getting t-moments of the stochastic
six vertex model, and the corresponding Fredholm determinants.

Problems

1
Show (heuristically) that the slope of the other side of the cone in the limit
shape of the stochastic six vertex model is equal to 1/v (see [[1.6 Heuristics of
the cone in the limit shape|this part]] about the lower boundary of slope v).
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[[Problems, 4-19|1 problem]], due May 6

1 Summary of the results
•

1 Recall main points
Here is roughly the path we had towards the asymptotic results:

{ }

{ }

1



{ }

2



Then we performed the asymptotic analysis:

{ }

{ }

3



{ }

4



{ }

{ }

5



{ }

6



2 Identification with the Tracy-Widom distribu-
tion

•

2.1 Limiting result
We have shown that the asymptitcs

E
1

(−th(Lx,Ly)+LH(x,y)+rL1/3 ; t)∞

gives (1 + O(L−1/3)) times the Fredholm determinant

{ }

7



Indeed, to see that this is the desired Fredholm determinant, we take the
integrations and put them inside the determinants, using the so-called Andreief’s
identity (there is in fact ℓ! in the right-hand side):

{ }

See also [[Problems, 4-19#1|Problem 1]].
2.2 Airy kernel recall
Recall the Airy2 kernel

{ }

8



{ }

Remark. In the “Gaussian” case, the normal distribution cdf can also be written
as a Fredholm determinant:

{ }

9



2.3 Identification
We can identify two Fredholm determinants:

Theorem 2.3.1 { }

Proof 2.3.1 { }

10



{ }

11



{ }

12



In the end we get the following result:

{ }

13



Summarizing, we have proved the following theorem:

{ }

14



3 Large deviations
•

3.1 Simple random walk
Let us now talk briefly about large deviations in the stochastic six vertex model.
We start from the simple random walk, as a warm up.

For it, we have the following law of large numbers and central limit theorem:

{ }

15



Large deviations are statements of the following form:

{ }

More rigorously,

{ }

16



Sometimes, for more complicated models, even lim inf or lim sup type estimates
are good enough. For the random walk we can compute everything explicitly:

{ }

17



3.2 Stochastic six vertex model
For interacing particle systems, the large deviations are different on two sides of
the law of large numbers.

Consider TASEP:

{ }

18



We have c = t/4.

{ }

Then large deviations take the form:

{ }

19



Let us now look at large deviations for the stochastic six vertex model, using
our formulas.

In the “too slow” regime, the convergence should be as

{ }

20



In the Fredholm determinant, we have 1 as the first term, and the rest would be
a correction of exponentially small size.

Remark. In the “too fast” regime, the Fredholm determinant should converge
to zero, which means that all integrals of all orders would nontrivially contribute.
This is much harder to analyze.

{ }

21



{ }

22



When α < 0 (“too fast” regime), the two roots are complex conjugate. For the
“too slow” regime,

{ }

23



However, in the “too fast” case,

{ }

and it is not clear what would be the end contribution.

Notes and references
There are several papers on the method of t- (or q-) moments in the analysis of
interacting particle systems. Here are the main references:

1. Alexei Borodin, Ivan Corwin. Macdonald processes. https://arxiv.org/abs/1111.4408;
Proposition 3.2.1 onwards

2. Alexei Borodin, Ivan Corwin, Tomohiro Sasamoto. From duality to deter-
minants for q-TASEP and ASEP. https://arxiv.org/abs/1207.5035. Section
3

3. Alexei Borodin, Ivan Corwin, Leonid Petrov, Tomohiro Sasamoto. Spectral
theory for the q-Boson particle system. https://arxiv.org/abs/1308.3475.
Appendix 7.2 has the proof of the contour shift argument.

4. Alexey Bufetov, Matteo Mucciconi, Leonid Petrov. Yang-Baxter random
fields and stochastic vertex models. https://arxiv.org/abs/1905.06815. Sec-
tion 9.1 discusses operator approach to getting t-moments of the stochastic
six vertex model, and the corresponding Fredholm determinants.

24



Large deviations of particle systems have a long history, starting from
TASEP in the 1990s: 1. Seppalainen, “Coupling the Totally Asym-
metric Simple Exclusion Process with a Moving Interface” http://math-
mprf.org/journal/articles/id830/. 2. Johansson, “Shape Fluctuations and
Random Matrices” https://arxiv.org/abs/math/9903134. 3. For an approach ex-
plained in the lecture, but for ASEP, see also https://arxiv.org/abs/1708.05806,
section 3.

Problems

1
Show the Andreief’s identity:∫

A

dx1 . . .

∫
A

dxN det[fi(xj)]N×N det[gi(xj)]N×N = N ! det
[∫

A

fi(x)gj(x) dx

]
N×N

.
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In this lecture we give an overview of coloured vertex models. There is a
motivation coming from quantum groups / R matrices, and after briefly discussing
it I introduced a number of concrete examples.

{ }

1 Some quantum group ramblings
•

1 On quantum groups
{ }

1



{ }

{ }

2



{ }

{ }

3



{ }

{ }

4



{ }

{ }

5



The 6V model comes from the quantum sl2 universal R matrix, specialized at two
two-dimensional representations. Possible generalizations come from changing
the representations, or changing the underlying quantum group.

6



2 Higher spin models
•

2.1 Six vertex model from sl2
{ }

{ }

7



{ }

8



•

2.2 Higher spin sl2 examples
{ }

9



{ }

10



One can also take both representations to be arbitrary higher spin, this leads to
the following model:

{ }

11



3 Higher rank / coloured model
•

3 Coloured models
{ }

{ }

12



{ }

13



{ }

14



{ }

15



Notes and references
1. Coloured stochastic vertex models are discussed in many recent works,

starting from Borodin-Wheeler, https://arxiv.org/abs/1808.01866
2. Connections of R matrices to quantum groups is a rich subject which we only

briefly mentioned. For example, an accessible introduction (by Ivan Loseu)
may be found here: https://gauss.math.yale.edu/~il282/RT/RT13.pdf,
available also at this link: [[../img/RT13.pdf]]

3. Higher spin stochastic vertex models are discussed, for example, in papers
https://arxiv.org/abs/1601.05770, https://arxiv.org/abs/1905.06815

Problems
No problems at this lecture

16



[[Problems, 4-26|2 problems]], due May 6

This lecture discusses colour-position symmetry, and a Hecke algebra approach
to vertex models

1 Coloured stochastic six vertex model
•

1.1 Recall the definition of the model
{ }

1



{ }

2



1.2 Degeneration to ASEP and TASEP
{ }

3



{ }

Coloured TASEP

{ }

4



{ }

5



Note: one can define a discrete time ASEP, which is more general:

{ }

2 Colour-position symmetry
•

2.1 Formulation of symmetry
{ }

6



Define two probabilities, the uncoloured one P6V and the coloured one Pcol

Definition 2.1.1 { }

7



Definition 2.1.2 { }

Theorem 2.1.3 { }

Let us discuss some corollaries:

Corollary 2.1.4 { }

8



(this is just a consistency check)

Corollary 2.1.5 { }

9



2.2 Application to TASEP second class particle
Theorem 2.2.1 { }

10



TASEP with a single second-class particle { }

How one could compute the limit for the uncoloured TASEP?

Via Schur measures / processes:

{ }

11



However, from the hydrodynamics / density arguments it follows that:

{ }

{ }

12



3 Hecke algebras
•

3.1 Definition and involution
We begin the discussion of the Hecke algebra from the Coxeter presentation of
the symmetric group:

{ }

13



{ }

Definition 3.1.1 { }

14



Equivalently, here is the multiplication table of the Hecke algebra:

{ }

15



{ }

16



Here is the main result about the Hecke algebra we need:

Theorem 3.1.2 { }

17



The proof is left as an exercise: [[Problems, 4-26#2|see here]].

•

3.2 Probability measures and random walks on Hecke
algebras

{ }

18



{ }

Notes and references
1. References on Matt Walker’s presentation about the Mpemba effect:

• https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.021060
• https://meetings.aps.org/Meeting/MAR21/Session/F18.3

2. Coloured stochastic vertex models are discussed in many recent works,
starting from Borodin-Wheeler, https://arxiv.org/abs/1808.01866

3. The connection to Hecke algegras is discussed in https://arxiv.org/abs/2003.02730

Problems

1
For an elementary permutation s = (i, i + 1), compute the inverse of the Hecke
element T −1

s .

2
Prove the main property of the involution I:

19



{ }

Hint: use induction on ℓ(w), the length of the permutation.

See [[3.1 Definition and involution#Theorem 3 1 2|Theorem 3.1.2]].

20



[[Lecture 24, 4-28/Problems, 4-28|2 problems]], due May 6

1 Hecke algebra and involution
•

1 Hecke algebra and involution
Recall the main algebraic object and the main involution result

{ }

{ }

Example 1.0.1. Reduced vs non-reduced { }

1



Theorem 1.0.2. Involution { }

2 Coloured ASEP via Hecke algebra
•

2.1 ASEP on Hecke algebra
Definition 2.1.1. Coloured ASEP on 1,..,N { }

2



Realization of ASEP as a random walk on the Hecke algebra { }

Condition on the event that the current configuration is w, so the current Hecke
element is Tw. And multiply it by Tsidt + (1 − dt). There are two cases

{ }

3



{ }

See [[Problems, 4-28#1|Problem 1]].

Therefore, we have proven:

Proposition 2.1.2 { }

4



2.2 Remark on discrete time ASEP
{ }

{ }

5



We arrive at the following swap rules:

{ }

Remark 2.2.1 The elements Ysi,x may be also taken with different parameters
Ysi,xi

. Then the parameters xi are attached to bonds in the ASEP. This particle
system is not (yet?) integrable, in the sense that we don’t know of reasonable
formulas which allow for an asymptotic analysis. However, the color-position
symmetry is still present even in this system.

Remark 2.2.2 In matching coloured systems with Hecke algebras, sometimes
we may identify color j with element j, and sometimes identify color j with
element N + 1 − j. This is not an essential difference, and the importance here
is that the swapping rules are different and depend on the order of the elements.

3 Stochastic six vertex model via Hecke algebra
•

3.1 R matrix as a Hecke element
In the stochastic six vertex model, R matrices (which are stochastic operators in
V ⊗ V , dim V = n + 1 for the n-colored model) behave “like” elements of the
Hecke algebra.

{ }

6



It is very natural to ask whether they satisfy some quadratic relation similar to
the one satisfied by the Ts’s. In fact, the Ys,x also satisfy a certain quadratic
relation.

We will give an example for 2 colors, when R is an 9 × 9 matrix.

Recall the weights in the stochastic six vertex model.

{ }

7



Let the R matrix be the one with a swap in the target space V ⊗ V (which
interchanges the tensor factors). That is, the following matrix is made up of the
weights w(i1, j1; j2, i2):

{ }

8



One can check:

Proposition 3.1.1 The twisted R matrix satisfies the following quadratic
relation

{ }

(where Id is the identity matrix)

This is shown for 2 colors. See [[Problems, 4-28#2|Problem 2]] for a hint in the
general case.

Therefore,

Proposition 3.1.2 We may identify the R matrix with the Hecke element
R = Ys,x = xTs + (1 − x), for a suitable x.

So, we can build the stochastic coloured six vertex model as a result of an
application of a product of the Y elements to the identity permutation.

Define

9



{ }

Then

Lemma 3.1.3 { }

This application produces a vertex model in the (k + 1) × (b − a + 1) box.

Examples:

{ }

{ }

10



3.2 Color-position symmetry
We have the following pictures for the coloured vertex model:

{ }

11



We can apply involution, and reorder the application of the operators Ys,x. We
get the following result:

Theorem 3.2.1, in the form with crosses For each σ ∈ SN :

{ }

12



Theorem 3.2.1, in the grid form { }

13



3.3 Example for a second class particle
Let us apply [[3.2 Color-position symmetry#Theorem 3 2 1 in the grid form|the
previous theorem]] to the second class particle

Remark 3.3.1 Most computations are done in the 3×4 grid, but the statements
and the corresponding proofs are fully general.

Example 3.3.2 { }

14



•

3.4 Matching of probabilities
Here we use [[3.2 Color-position symmetry#Theorem 3 2 1 in the grid form|the
previous theorem]] to prove a part of Borodin-Wheeler’s colour matching result.
Recall the result

Distribution matching The probability in the coloured model

{ }

15



Is equal to the following probability in the uncoloured model:

{ }

Proof of the distribution matching for empty I Turns out that the Hecke
approach allows to easily prove the above equality of probabilities, but for the
particular case I = ∅. Note that this was the case we used for the second class
particles.

16



{ }

{ }

Now we can apply the involution, and get

{ }

17



4 Coloured height functions
•

4 Matching of joint distributions of coloured height
functions

Let us now begin discussing height functions in coloured models

In the usual uncoloured case, recall that we have

{ }

18



Let us add colours, and define

Definition 4.0.1 Let Hk(M, N) be the height function for colours ≥ k, that
is, the number of paths of colour ≤ k that exit through the right boundary.

Lemma 4.0.2 + proof We have an easy matching between (single-point)
distributions of coloured and uncoloured height functions:

{ }

Let us prove that this extends to multiple colours.

Theorem 4.0.3 { }

19



Proof 4.0.3 { }

We have

{ }

20



Now apply the involution:

{ }

This discusion readily extends to the general case.

Notes and references
1. Borodin-Wheeler, original distributional matching result. https://arxiv.org/abs/1808.01866
2. Borodin-Bufetov, color-position symmetry. https://arxiv.org/abs/1905.04692
3. Bufetov, Hecke algebra paper. https://arxiv.org/abs/2003.02730
4. Work on another symmetry, the shift invariance. https://arxiv.org/abs/1912.02957
5. Galashin, more discussion of symmetries via Hecke algebras.

https://arxiv.org/abs/2003.06330

21



Problems

1
Show that if s is an elementary transposition (i, i + 1) and w ∈ SN , such that
ℓ(sw) = ℓ(w) − 1, then we can represent w = sw′ for some w′ ∈ SN .

2
Show that the twisted R matrix composed of the stochastic coloured vertex
weights satisfies the quardatic relation

{ }

for an arbitrary number of colours n.

Hint: represent the operator R in the tensor product V ⊗ V as

{ }

22



Then squaring this expression is straightforward using the matrix units Eij .

23



[[Problems, 5-3|4 problems]], due May 6

1 Joint distribution at a single point, recall
•

1 Joint distribution in the coloured model at a single
point

Recall that we’re working with the coloured stochastic six vertex model:

{ }

1



In the previous lecture we proved the following theorem, based on the involution
in the Hecke algebra:

Theorem 1.0.1 { }

Here the probability of the same permutation σ ∈ SN is the same for the vertex
model on both sides.

This theorem implies the following interpretation of the joint distribution of the
coloured height function values at a single point (M, N). Recall the definition:

Definition 1.0.2 The coloured height function is defined as

{ }

Corollary 1.0.3 There is the following equality in distribution between the
coloured and the uncoloured models:

{ }

2



Pictorially:

{ }

and

{ }

2 Computing the single-point observables
Here we prove a formula for the joint distribution of the coloured height functions
at a single point, which is a slight extension of our analysis of the uncoloured
stochastic six vertex model by means of difference operators.

•

3



2.1 Mapping to Hall-Littlewood processes
Recall that the distribution of the height function of the usual uncoloured
stochastic six vertex model is mapped to the Hall-Littlewood measure:

{ }

In fact, one can extend this to joint distributions along down-right paths:

{ }

We don’t need all down-right paths, but rather a single down line:

4



{ }

5



Here’s the key lemma:

Lemma 2.1.1 { }

{ }

6



This is left as [[Problems, 5-3#2|Problem 2]].

In particular, the joint distribution of µ, ν after summing over λ is given by the
Hall-Littlewood process

{ }

This discussion leads to:

Corollary 2.1.2 { }

7



Corollary 2.1.3 { }

Remark about the Schur case In the case t = 0, the joint distribution of
the height function along down-right paths is given by the Schur process, instead
of the Hall-Littlewood process.

The Schur process is determinantal, which means that the joint distribution

8



may be expressed as a certain Fredholm determinant. In this case, multipoint
asymptotic analysis is accessible (in the Kardar-Parisi-Zhang regime).

For the case t ̸= 0, similar multipoint asymptotic analysis
is much harder (and we omit this). However, some other
asymptotics may be performed; they lead to correlated
Gaussian fields.
2.2 Contour integral via difference operators
We begin by recalling the eigenoperators for the Hall-Littlewood polynomials.

{ }

{ }

9



The action of D̃ on product functions takes a contour integral form

{ }

Our objective now is to compute Hall-Littlewood process expectations

{ }

or, equivalently,

10



{ }

Lemma 2.2.1 Let D̃n be the operator applied in the variables u1, . . . , un.
Then, expectations

{ }

are computed by applying

{ }

11



Proof 2.2.1 We display the proof in the particular case, but the general case
is analogous.

{ }

12



These forms of the partition function Z are useful for applications of various
operators. In particular, we have

{ }

13



{ }

14



Therefore, the operator application leads to the following result. (We omit the
contour integral manipulations that are the same as we did in the single-point
case.)

Theorem 2.2.2 { }

15



{ }

Note:

{ }

16



Corollary 2.2.3 { }

{ }

17



3 Multipoint observables in the coloured model
Here we switch the notation to that of the Bufetov-Korotkikh paper, instead
of rewriting their results for our notation. This leads to equivalent results. In
particular, the “quantum parameter” t is replaced everywhere by q.

•

3.1 Action of the Hecke algebra on functions
{ }

18



Proposition 3.1.1 { }

19



This is left as an exercise, see [[Problems, 5-3#1|Problem 1]].

{ }

20



3.2 General formula for the joint distributions
Let us now specify which data is required for multipoint observables of the
coloured stochastic six vertex model.

{ }

21



The domain is between two down-right paths.

The incoming colour configuration must be increasing, but colours can repeat.

Definition 3.2.1 The initial data (down-right path Q and incoming colours)
is encoded as follows:

{ }

22



Definition 3.2.2 { }

Definition 3.2.3 The outgoing data is encoded by arbitrary points (along the
down-right path P):

{ }

23



Also we specify, which coloured height functions are taken at these points. This
is done by picking colours 0 ≤ c1 ≤ c2 ≤ . . . ≤ ck. Moreover, the assignment
of colours to the points is arbitrary, so we need also to specify a permutation
π ∈ Sk.

Definition 3.2.4. Observable Consider the following random variable

{ }

Theorem 3.2.5 (Bufetov-Korotkikh) { }

24



Corollary 3.2.6 There are two easy cases:

{ }

See also [[Problems, 5-3#4|Problem 4]].
3.3 On the proof of the general multipoint formula
Let us say a little about the proof of the Bufetov-Korotkikh formula. The proof
is by induction, in a direct “verification style”. The inductive step is based on
local relations.

25



Local relation for the uncoloured model
{ }

Lemma 3.3.1 { }

The proof is left as an exercise, see [[Problems, 5-3#4|Problem 4]].

26



Local relation for the coloured model
{ }

{ }

Notes and references
1. Reference on the diffusion limit for the push-block process: https://arxiv.org/abs/1206.3817
2. Bufetov-Korotkikh paper with the proof of the multipoint formula for the

coloured stochastic model: https://arxiv.org/abs/2011.11426

27



Problems

1
Prove that the Demazure-Lusztig operators give rise to a representation of the
Hecke algebra of SN in the space of rational functions in w1, . . . , wN , in which
the quadratic relation has the form

(Ti − q)(Ti + 1) = 0, i = 1, . . . , N.

{ }

2
Prove [[2.1 Mapping to Hall-Littlewood processes#Lemma 2 1 1|Lemma 2.1.1]].

3
Write down the two “easy” particular cases of the general q-moment formula
(see [[3.2 General formula for the joint distributions#Corollary 3 2 6|Corollary
3.2.6]]). Match these formulas together, and deduce from this the flip invariance:

{ }

28



4
Prove the local relation ([[3.3 On the proof of the general multipoint for-
mula#Lemma 3 3 1|Lemma 3.3.1]]).

29



No problems after this lecture

1 On various Gaussian asymptotics
•

1.1 Finitely many particles
When there are finitely many particles in a system, we expect (correlated)
Gaussian type behavior, or something similar and explicit (like a spectrum of a
Gaussian random matrix). In the TASEP / Push-block case, the system is a
deterministic transform of a collection of independent random walks.

{ }

•

1.2 Gaussian Free Field
{ }

1



In the case of large systems, determinantal structure (and sometimes more
general structure) gives rise to Gaussian Free Field asymptotics. This is a 2d
analogue of a Brownian bridge.

{ }

2



1.3 Symmetric systems
In symmetric systems, we also expect more classical Gaussian fluctuations, since
they model “short-time” behaviour.

Consider the symmetric versions of ASEP and stochastic 6V model (i.e., with
t = 1).

{ }

3



{ }

4



{ }

5



{ }

6



{ }

That is, we did not put t = 1 in the beginning, as that system would be harder to
analyze. Rather, a limit t → 1 simultaneously with b1 → 1 produces a Gaussian
behaviour, which can be seen in particular using our t-moments.

7



A random sample of the model with b1, b2 close to 1 looks like this:

{ }

2 Gaussian asymptotics via t-moments
•

2.1 Useful contour transformation
{ }

8



We have the contours with parts around 0:

{ }

Lemma 2.1.1 { }

9



Proof 2.1.1 { }

{ }

10



{ }

11



{ }

12



{ }

{ }

This identity can be proven by induction

{ }

13



•

2.2 Limit shape
{ }

{ }

14



{ }

15



For the covariance, the scaling should be

{ }

16



2.3 Covariance
Now let us get a formula for the covariance. This is not yet proving the Gaussian
asymptotics, as for the Gaussian asymptotics one would have to show that all
multipoint expectations / observables are expressed through the covariance in a
certain specific form. We will omit the corresponding argument, and refer to the
paper on stochastic telegraph equation for details.

First, we make the contours avoid the poles at zi = zj . This is possible for t
sufficiently close to 1:

{ }

17



The extra transformation is possible because:

{ }

With the other contours, we can now take asymptotics:

18



{ }

{ }

19



{ }

{ }

20



This shows an explicit covariance.

•

2.4 Getting the six vertex model cone
Let us take the limit τ → 0. This limit in fact recovers the stochastic six vertex’s
cone limit shape. That follows from (formal, non-rigorous) interchange of the
limits. If

t = τ1/L,

then for a fixed t we must have

t = τ1/L = (tL)1/L,

so τ = tL should be very small. It is nice that this formal interchange of the
limits works, and we recover the fixed-t limit shape.

This asymptotic analysis is performed via steepest descent:

{ }

21



{ }

22



3 Shift invariance and Brownian bridges
•

3.1 Shift invariance
Let us mention one more Gaussian instance of asymptotics in the coloured vertex
model.

First, a shift-invariance result:

{ }

(Borodin-Gorin-Wheeler 2019)

This should in principle follow from our flip-invariance:

{ }

•

23



3.2 Connection to invariance for Brownian motion local
times

In a certain limit, the stochastic coloured model leads to a Gaussian model,
the additive coloured stochastic heat equation. Its correlations are expressed
through expectations of certain Brownian bridge local times. The Brownian
bridge local times are themselves shift invariant.

{ }

{ }

24



Notes and references
1. Gorin-Shkolnikov on diffusion limit of TASEP: https://arxiv.org/abs/1206.3817
2. Gaussian Free Field in random tilings: https://arxiv.org/abs/1206.5123
3. Borodin-Gorin’s paper on the Gaussian limit of the stochastic six vertex

model: https://arxiv.org/abs/1803.09137
4. Shift-invariance, with connection to local times of Brownian bridge:

https://arxiv.org/abs/1912.02957
5. Galashin on how shift-invariance follows from Hecke algebra:

https://arxiv.org/abs/2003.06330

Problems
No problems after this lecture
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TASEP Totally Asymmetric
Simple Exclusion Proces
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https:"//wt.iam.uni-bonn.de/ferrari/research/jsanimationtasep



1.3 Lf Erb

pacckaxlute o eeEe

le thorite k CTE

Объяснить, как «решается» TASEP и его многочисленные 
«родственники»: явные формулы и асимптотическое поведение в 
разных режимах



Предполагается некоторое знакомство с:

Анализом / теорией меры (очень желательно)
•
Теорией вероятностей (тоже очень желательно)
•
Плюс, если видели симметрические функции (не обязательно) •
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 - анализ по существу ограничен точными формулами (за 
исключением случайных матриц и некоторых совсем новых 
результатов)



- в случае TASEP / детерминантных процессов есть 
многоточечная асимптотика (KPZ fixed point, Airy sheet, 
directed landscape)



- в случае стохастической шестивершинной модели и других 
недетерминантных ситуаций многоточечный анализ очень 
затруднен


































































































































2 Ypabrielnue kPZ u raycadfecto
XEIR

fzh.lt D Effihttix 1 htt tythx

h
reruns ugm b 1122

E y O

Eyttix WtfxD Ix x Slt t

eeauEupoyecc2ayceoloh

npegeuAOSEPlS6

npn.aq
ecumueopmu got
moons


































































































































rerun

hlax holx

1 no htt TASEP1S6Vjearoiuwou

peeeennhlt.xthy
a Fz

c t 3

Asg.tt Is6V

t so htt x rayceobekuiunyn.ge


































































































































z Tayecobenue rpegenol pacupegevening
442

d fix ta e xelR

Z NK D

X ZZ 1M X Nlp 27
EX M
var x 22

hp e type Eeitx etta t

047
Xa Xd royce beaoop

ecru

Eddi Xi zayac gus nosoro de Ad

3alouent of Ft Var

Var EME Edivarxit 2 did Cov Xp Xj


































































































































colon p e zabw.cat toedko of

cplfreezo U Wbap untpnyb
d

µ Cov XiiXj i j

hp e pupae Ee
ofhazayccobac.ee

I Tayecobenue rpegenol
Hsn

412T Si n neg og teacup Ee
EG _O Var at

fY

4t No t n or

Epoynobanoe gout telR

Jst e Sent Jst e Smt
ft Wt


































































































































Wt Mo't
U At treezalene rayetnpupavyenusfheeupepuibuu

tphlktofheu.tl
thrift

wt ft Mon

MO colouecrhoe

pacup e we take

Kak FENLON

1
re


































































































































I TASEP royce npegen

t k puke

Xi lok f

F Xslt t I

vaorx.lt t

We tuyace e b

Ep.geentenne

xikf I tweets

other Eremble Opghoux


































































































































T be colon p sb
plymale nom bp.eu

www

gaius
S

hhprwypwhfM.mw.LA
qyrtnyuonaeahmmthfhnhw.ee

imma emE

cdezb co eight exatpuyame

Gaussian

GUE hffiatuaffe X mapusa
c reegalene

bees

GUE It cfrgland knew Nlant ENKI

NIOD arenemrance

t
ii i

Tweet
















































































































































































E Qazobble nepexogbi tuna BBP
Baek Ben Arons Perche

a TASER c wegnerumour reacruged unayayyus

htt xL htt x
Fz 43 rage

I L13
BBP pacup e

Fa a
egpoo Airy

Fa goosaana

 

https:>//wt.iam.uni-bonn.de/ferrari/research/jsanimationtasep



8 Crye narpuybi

a How
on

f O
Kyrie turmoil3D

gryuryayun
Xamax M n Fa Hs2

Fz 121 2

Raya 12122
n gppoe
epegreee



I hayce cboogreoe none
Gff Gaussian Free Field

telkx.tw

lleooguyugeouezankpeuntih.no5

ergyrun

f EIR

GFFCX.ly
ciyzadreaerayccobc.org

ooosigEterhag

gymrying

Gfftx y me weleer Ciencia



no Cov Gfftx y GFFCX.gg

w t goes'm 4g fr O dj c C
K

ff log ix y Gfflx y dxely
j

zayec bebop Tt O

a

paemonymeo

crya gamy

24 anisotropi
KP't growth

6

I 3 i

2 a hexyl
0

Ih Kenyon 172012



hllx.ly EU Loc Lg fix y

wtf Coff E 2 Edt bepxnessmym

talos IE Gfflz coff w fw kput i talk
to

z w GAETA
Clt

10,112

Ex

mangooperas unleap to GFF



Hermoso o cucobugx c q
1

A SEP SSEP

heft nt.at q
L

A
O 0 O O O I l l l l

http n TEY t t 4 luaycc

Te ke u guy SGV

ft bz T
p

Hamel opopuyuel

Ef
m

q
L He uneer evener



imn



2 t I npegen Ftt br F.fr
bae t

t it be.bz I 1 tr

be e ft but by e th
pe paso

fare'll pitfzy

log L ps 132 cueirene co

ounce V pyp
1 1 eraser acumuerpueces
1 tbs KAZ name lepers

Heybettease

SGV
gene



It
3h54 Ethllx ly Thx y a

4171

th cha p

hllx.ly Ah Lx Ly
Yereopupoleannoo

TT
layer meee
b 1123,0

o y7

Varied Hexi.yD3F s

ray Cc leektop Lff 0

T e 250 He lean GFS

FM om mene

f
eeye beuerumen

cregger ng pacamorpacies
lov Ith th



w bae crapunee womenour

wage Beeipaguro Mpeg
ft Cov Tite ragecobocoo



II gopuyea

EL Ming
he 3hr31

At f god
Wi

U f Zou

at eE tzrsl iff tEnIj

boppysostzilettzif

i
i

gewgaw bupommense pay cueonogone apoy XD



I hpegeu.ms gonna th rest

up
L go v t Tek

Eth d
f ltz MEET

tt H 5

It tan.o
d T dz

I

puxy
Mpeg gopue



HA ftp.yz ptlx.y

ygebreob i ypabreemuro Teierpopa
Klein Gordon

oxy f t d dy ft p 0 1
0

gus nogxefengux d p
Jabreusyrex A T v

Onayubaeras qnyhtyayvuygobe.com

yphlereermwoteiezpagmcxyftdogftpdxf

vfx.yylx.gr

ideas
g guy Jeune

Jake Kym
or

Xcx y



1 2 Koryo b Glo nosem

µ
t quae noxexie nee

T th O

ptt N I
o

d T
F

dz

I
aerog

T EP
p

a
repebara

d e Iz te zepomesena
Z

sin s IE
as

fees yeps



Z Varig F or m

et
Sk

ep
size

T.ir
tfE

se v

gegen g
leucoon

upu queue
t

heavyqui Korey
ca



12 Bbl curve inheritor

boppysostzilettziT

Utz 3hr31

helming Kah l

Et et f
d s

2mi RT Zk

BE D n ta

Tweet
xop.ws upger

I g mo zoo

reemphlexueno



4in guano Ihoguguyupobaro gropingly

III thank ft

THE d

2 I 1 y
RT Zk

I t Z V

a.at eE tz.l ift tEj

omelet regreacredbouapyro
J

Fritzi

f n 101 1



D I A

no I _11 KI

Zi 2 4 I whoop leaupys O

f hit a sie
2µL 40k e

Fok e n 32 Zp crewbaen k O

f
2Capp

sa.io i t si.IT
1 L

K
IpwIIw.at tniiwd



hyun Xj
thlminj

Targa Es Cyrus E nournouole or

Xs Yu

Bei Targa Cregger up reunbi

Neues

e.EEelt7Ykexik
I

olxii HMxiilt.tk txie EieeY

XsXz Xk

Ynp tYuayanuemm



Nfs Maximo beefier kotoypeer beer Tak

t.fi lthtnmhtit

THE
Tae

fo
d

2mi K Zk

I t.i t 1 t Ziv

femme te og
v tr 1

Deleo ages

f mph
lemmecammu nonrypek
gouonn levelled yxo fret



I

22 tZs Torga

itit t
II

T e lawyer 2 I yxefur O



II kobapueyu.is
gow bo npo lenience vomerow ryroycrum

arlt
t
T's the T

th e't th It

Lfetttixth't E Ith E Ith't

L f f

HEI.DE YltIE'It
n m

I r k 11 E Y
from Zilt V v 722

z t 22

Fto yxe exefuras



EEE 2 22

xp Is x Etz y EE x'III I

horwyrol beorpyr O ZA breyopee Zz

E Ith Deth't E Ith E Ith't

fifthth tht t ft that t Eth tEt

Gu th th t i Eth t Eth

Cov fth th t t Eth 1

nougraem qopuyiy gus

covets
a



stochastic telegraph eqn
Ber din Gorth

become enacuso

17


	1. Introduction
	1.1 Links
	1.2 Some reminders
	1.3 Please introduce yourself
	1.4 Preview
	1.5 Goal

	2 Background in measure theory and probability
	2.1 Measure spaces
	
	2.2 Random variables
	Random variables
	Independence
	2.3 Poisson random variable
	# 3 Poisson Process
	3 Poisson Process I
	3.1 General definition
	3.2 Uniformity and independence in a Poisson process
	3.3 Using homogeneous Poisson process in 1d to model arrivals

	4 Notes and references
	Problems
	1
	4
	5
	6
	Solutions
	1
	2
	3
	4
	5
	6
	1 Poisson process
	1 Poisson Process II
	1.1 Recall
	1.2 Poisson process in 1d

	2 TASEP. Definition and existence
	2.1 Definition of TASEP
	
	2.2 Existence of TASEP
	2.3 Markov property
	2.4 Some other particle systems
	ASEP
	Coloured TASEP
	2 Colours
	Many colours

	PushASEP
	q-TASEP

	Notes and references
	Problems
	1
	2
	3
	?
	Solutions
	1
	2
	3
	1 Leftovers from the previous lecture
	2 TASEP and Last Passage Percolation
	2.1 Height function
	
	2.2 Random interface growth
	
	2.3 Percolation times
	2.4 Point-to-point directed LPP
	2.5 Other environment weights

	3 Subadditive ergodic theory and limit shape
	3.1 Subadditivity in LPP
	3.2 Limit in expectation
	
	3.3 Subadditive ergodic theorem

	Notes and references
	Problems
	1
	2
	3
	4
	5
	6
	T1
	Solutions
	1
	2
	3
	4
	5
	6
	1 Remark / correction
	1 Remark correction in LPP

	2 Subadditive ergodic theorem
	2.1 Measure preserving transformations
	
	2.2 Ergodic theorem

	3 Application to limit shapes
	3.1 Setup
	
	3.2 Limit shape
	
	3.3 Properties of the limit shape function
	It is concave, continuous, and may contain straight or curved pieces.
	3.4 Explicit limit shapes
	The case of any other iid weights is wide open. Namely, we don’t know any other explicit limit shapes in the last passage percolation model.
	3.5 From LPP to TASEP limiting density

	4 Heuristic hydrodynamics of TASEP
	4 Heuristic hydrodynamics of TASEP

	Notes and references
	Problems
	1
	2
	Solutions
	1
	2
	Parts 1 and 3
	Part 2

	1 Hydrodynamics of TASEP
	1.1 Burgers equation
	1.2 Stationarity of Bernoulli product measures
	1.3 Stationarity of geometric LPP

	2 Liggett’s characterization of invariant measures
	2.1 Coupled process
	The proof is straightforward.
	2.2 Properties of the coupled process
	
	2.3 Ordering of measures
	2.4 Liggett’s theorem

	Notes and references
	Problems
	1
	2
	4
	3
	T2
	T3
	Solutions
	1
	2
	3
	1 Push-block process
	1.1 Interlacing arrays
	1.2 Push-block process

	2 TASEP and push-block
	2.1 TASEP as a marginal
	
	2.2 PushTASEP

	3 Gibbs measures
	3.1 Definition of Gibbs measures
	See [[Problems, 2-22#4|Problem 4]].
	3.2 Harmonic functions
	3.3 Classification (answer)

	Notes and references
	Problems
	1
	2
	3
	4
	5
	Solutions
	1
	2
	3
	4
	5
	1 Gibbs measures on interlacing arrays
	1 Gibbs measures on interlacing arrays

	2 Translation invariant Gibbs measures
	2 Translation invariant Gibbs measures

	3 Hydrodynamics of the push-block process
	3.1 Push-block and Gibbs measures
	3.2 Hydrodynamics

	4 Schur polynomials
	4.1 Two definitions of Schur polynomials
	
	4.2 Eigenoperators

	Notes and references
	Problems
	1. Vandermonde determinant
	2
	3
	4
	Solutions
	1
	2
	3
	4
	1 Schur polynomials
	1 Schur polynomials

	2 Basic properties of Schur polynomials
	2 Basic properties of Schur polynomials

	3 Skew Schur polynomials
	3 Skew Schur polynomials

	4 Cauchy identities
	4.1 Formulation, examples
	4.2 Proof via determinants
	[[#Lemma 4 2 1 Cauchy-Binet identity|First]] and [[#Lemma 4 2 2 Cauchy determinant|second]] lemma imply the [[4.1 Formulation, examples#Theorem 4 1 1 Cauchy identity|Cauchy identity]]. \qquad \square
	4.3 Skew Cauchy identity and a bijective proof
	# 5 Schur measures and processes
	5 Schur measures and processes

	Notes and references
	Problems
	1
	2
	3
	4
	5
	6
	T4
	Solutions
	1
	2, 3
	4
	5
	6
	1 Orthogonality of Schur polynomials
	1 Orthogonality of Schur polynomials

	2 Continuous specialization
	2 Continuous specialization

	3 Push-block dynamics and Schur process - formulation
	3 Push-block dynamics and Schur process

	4 Commuting Markov operators
	4.1 Commuting operators from Schur polynomials
	
	4.2 From commuting operators to dynamics on interlacing arrays
	Two layers
	Multiple layers

	Notes and references
	Problems
	1
	2
	3
	1 Setup
	1.1 Schur polynomials - two key properties
	We proved both results in previous lectures
	1.2 Commuting Markov operators
	We proved this result in the previous lecture
	1.3 Markov dynamics Q on two levels
	1.4 Multilevel dynamics

	2 Action on Gibbs measures
	2.1 Action on abstract Gibbs measures
	2.2 Application to Schur processes

	3 Continuous time limit
	3.1 Continuous time limit of the push-block process
	3.2 Continuous time version of P_N

	Notes and references
	Problems
	1
	2
	3
	4
	5
	6
	1 TASEP and Schur measures
	1 TASEP and Schur measures

	2 Density of a Schur measure
	2.1 Expectation via q-difference operators
	
	2.2 Density function

	3 Asymptotics of density
	3.1 Change of variables
	
	3.2 Oscillatory integrals
	We will apply the idea of this result to double oscillating integrals (like we see in the density function). This is usually referred to as a saddle point / steepest descent method.
	3.3 Double integrals and asymptotics of the density. Complex conjugate case

	Notes and references
	Problems
	1
	2
	3
	1 Schur / TASEP / density
	1 Schur-TASEP-density function

	2 Density asymptotics and the parabola
	2.1 Formulation
	2.2 TASEP parabola from density asymptotics
	This proof of the formula for \rho(\tau,\chi) is more “elementary” as it relies only on the analysis of the exact formula for the density.
	2.3 Density - last steps of the proof
	2.4 A remark on the limit shape of Young diagrams

	3 Towards fluctuations in TASEP
	3.1 Approach with single q
	This expectation should be a combination of 0,1, and \infty with some weights. Maybe there is a way of working this approach towards at least the right order of the fluctuations N^{1/3}?
	3.2 Multiple contour integral approach

	Notes and references
	Problems
	1
	2
	T5
	1 Fluctuations
	1 Fluctuations

	2 Determinantal point processes on a discrete space
	2 Determinantal point processes

	3 Determinantal structure of Schur measure
	3.1 Operators
	
	3.2 Extracting coefficients
	
	3.3 Getting determinantal structure
	3.4 Determinantal structure for TASEP
	
	3.5 Other uses of Schur measures and processes

	4 Edge points, gap probabilities
	4.1 Which probability we need from Schur measure
	Therefore, we are now interested in a so-called gap probability in a Schur measure.
	4.2 Complementation and gap probability
	For the asymptotics of this quantity (a determinant of growing size), we need another techniue - Fredholm determinants
	4.3 Fredholm determinants

	Notes and references
	Problems
	1
	2
	1 Recall the formulas we have for TASEP
	1.1 Kernel
	1.2 Fredholm determinants, general discussion
	
	1.3 How to compute Fredholm asymptotics

	2 Kernel asymptotics and Fredholm determinants
	2.1 The part with the single critical point
	2.2 Edge and critical point behavior
	We consider the behavior around only one double critical point, \chi^*=(\sqrt{\tau}-1)^2, \tau>1.
	2.3 Expansion around the double critical point
	We see that we can move the contours in a desired way.
	2.4 Asymptotics of the kernel
	Putting this all together, we arrive at the desired asymptotics.
	2.5 Airy kernel
	2.6 Fredholm determinant asymptotics

	3 Discussion of the asymptotics
	3.1 Tracy-Widom distribution
	
	3.2 KPZ universality

	Notes and references
	Problems
	1
	2
	3
	4
	1 Models in statistical mechanics
	1.1 Lozenge tilings
	
	1.2 Square ice

	2 Stochastic six vertex model
	2.1 Definition of the stochastic six vertex model
	2.2 Degenerations of the stochastic six vertex model
	
	2.3 Stationary model

	Notes and references
	Problems
	1
	2
	3
	1 Recall stochastic six vertex model
	1 Recall stochastic six vertex model

	2 How to solve the stochastic six vertex model
	2.1 Height function of S6V
	2.2 Goal for this lecture

	3 Hall-Littlewood vertex model
	3.1 Vertex weights
	See [[Problems, 3-31#2|Problem 2]].
	3.2 Hall-Littlewood polynomials
	3.3 Comparison between Schur and Hall-Littlewood

	4 Consequences of Yang-Baxter equations
	4.1 Symmetry
	This allows to swap u_i and u_{i+1}, resulting in the symmetry.
	4.2 Blue HL vertex model
	4.3 Red-blue YBE
	4.4 Cauchy identities

	5 From HL vertex model to stochastic six vertex model
	5.1 Random step
	
	5.2 Constructing random steps from couplings of YBE
	A general principle
	
	5.3 Finalizing the result

	Notes and references
	Problems
	1
	2
	3
	4
	1 Recall definitions and results
	1.1 Stochastic six vertex model
	
	1.2 Hall-Littlewood polynomials
	
	1.3 Coupling between S6V and HL measures

	2 Hall-Littlewood polynomials
	2.1 Formulation and easy case
	2.2 Proof part 1
	2.3 Proof part 2
	
	2.4 Proof part 3

	Notes and references
	Problems
	1
	2
	1 Reminders
	2 Eigenoperators
	2 Eigenoperators

	3 Contour integral formulas
	3.1 Contour integral for D(0,t)
	For q=0, we get a contour integral for the action of D(t,0) on product functions.
	3.2 Expectation
	This follows from the fact that the residue of the integrand at zero is equal to 1/(t-1), which is immediate since 0 is a simple pole.
	3.3 Multiple t-moments
	Contours are the same as in [[#Theorem 3 3 3|the previous theorem]].
	3.4 Moment problem

	4 Idea of the asymptotic analysis
	4.1 q-binomial theorem
	
	4.2 Asymptotic fluctuations via t-Laplace transforms

	Notes and references
	Problems
	1
	2
	3
	1 Reminder
	1 What we have and what we need

	2 Contour shift theorem
	2.1 Contour shifting
	
	2.2 Warm up for k=2
	In general we see that f is evaluated at one of the integration variables, or at t^j times the integration variable. This is called a string specialization
	2.3 Sting specializations
	
	2.4 k=3, more warm up
	2.5 Theorem formulation
	
	2.6 Theorem proof

	3 Two Fredholm determinants
	3.1 Fredholm 1
	
	3.2 Mellin-Barnes summation
	
	3.3 Fredholm 2 with kernel as a contour integral

	Notes and references
	Problems
	1
	2
	1 Asymptotics of Fredholm determinants
	1.1 Recall what we work with
	1.2 Expansion we work with
	1.3 Homogeneous parameters in the model
	
	1.4 Summary of the strategy
	1.5 Double critical point
	
	1.6 Heuristics of the cone in the limit shape
	1.7 Moving the contours
	
	1.8 Expansion around the critical point and asymptotics

	Notes and references
	Problems
	1
	1 Summary of the results
	1 Recall main points

	2 Identification with the Tracy-Widom distribution
	2.1 Limiting result
	See also [[Problems, 4-19#1|Problem 1]].
	2.2 Airy kernel recall
	
	2.3 Identification

	3 Large deviations
	3.1 Simple random walk
	
	3.2 Stochastic six vertex model

	Notes and references
	Problems
	1
	1 Some quantum group ramblings
	1 On quantum groups

	2 Higher spin models
	2.1 Six vertex model from sl2
	2.2 Higher spin sl2 examples

	3 Higher rank / coloured model
	3 Coloured models

	Notes and references
	Problems
	1 Coloured stochastic six vertex model
	1.1 Recall the definition of the model
	
	1.2 Degeneration to ASEP and TASEP

	2 Colour-position symmetry
	2.1 Formulation of symmetry
	
	2.2 Application to TASEP second class particle

	3 Hecke algebras
	3.1 Definition and involution
	3.2 Probability measures and random walks on Hecke algebras

	Notes and references
	Problems
	1
	2
	1 Hecke algebra and involution
	1 Hecke algebra and involution

	2 Coloured ASEP via Hecke algebra
	2.1 ASEP on Hecke algebra
	
	2.2 Remark on discrete time ASEP

	3 Stochastic six vertex model via Hecke algebra
	3.1 R matrix as a Hecke element
	
	3.2 Color-position symmetry
	
	3.3 Example for a second class particle
	3.4 Matching of probabilities

	4 Coloured height functions
	4 Matching of joint distributions of coloured height functions

	Notes and references
	Problems
	1
	2
	1 Joint distribution at a single point, recall
	1 Joint distribution in the coloured model at a single point

	2 Computing the single-point observables
	2.1 Mapping to Hall-Littlewood processes
	For the case t\ne 0, similar multipoint asymptotic analysis is much harder (and we omit this). However, some other asymptotics may be performed; they lead to correlated Gaussian fields.
	2.2 Contour integral via difference operators

	3 Multipoint observables in the coloured model
	3.1 Action of the Hecke algebra on functions
	
	3.2 General formula for the joint distributions
	See also [[Problems, 5-3#4|Problem 4]].
	3.3 On the proof of the general multipoint formula
	Local relation for the uncoloured model
	Local relation for the coloured model

	Notes and references
	Problems
	1
	2
	3
	4
	1 On various Gaussian asymptotics
	1.1 Finitely many particles
	1.2 Gaussian Free Field
	
	1.3 Symmetric systems

	2 Gaussian asymptotics via t-moments
	2.1 Useful contour transformation
	2.2 Limit shape
	
	2.3 Covariance
	2.4 Getting the six vertex model cone

	3 Shift invariance and Brownian bridges
	3.1 Shift invariance
	3.2 Connection to invariance for Brownian motion local times

	Notes and references
	Problems

