
Colored Interacting Particle Systems on the Ring:

Stationary Measures from Yang–Baxter Equation

Amol Aggarwal, Matthew Nicoletti, Leonid Petrov

Abstract

Recently, there has been much progress in understanding stationary measures for colored
(also called multi-species or multi-type) interacting particle systems, motivated by asymptotic
phenomena and rich underlying algebraic and combinatorial structures (such as nonsymmetric
Macdonald polynomials).

In this paper, we present a unified approach to constructing stationary measures for most
of the known colored particle systems on the ring and the line, including (1) the Asym-
metric Simple Exclusion Process (multispecies ASEP, or mASEP); (2) the q-deformed To-
tally Asymmetric Zero Range Process (TAZRP) also known as the q-Boson particle system;
(3) the q-deformed Pushing Totally Asymmetric Simple Exclusion Process (q-PushTASEP).
Our method is based on integrable stochastic vertex models and the Yang–Baxter equation.
We express the stationary measures as partition functions of new “queue vertex models” on
the cylinder. The stationarity property is a direct consequence of the Yang–Baxter equation.

For the mASEP on the ring, a particular case of our vertex model is equivalent to the
multiline queues of Martin [Mar20]. For the colored q-Boson p rocess and the q-PushTASEP
on the ring, we recover and generalize known stationary measures constructed using multiline
queues or other methods by Ayyer–Mandelshtam–Martin [AMM22], [AMM23], and Bukh–
Cox [BC22]. Our proofs of stationarity use the Yang–Baxter equation and bypass the Matrix
Product Ansatz (used for the mASEP by Prolhac–Evans–Mallick [PEM09]).

On the line and in a quadrant, we use the Yang–Baxter equation to establish a general
colored Burke’s theorem, which implies that suitable specializations of our queue vertex models
produce stationary measures for particle systems on the line. We also compute the colored
particle currents in stationarity.
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1 Introduction

1.1 Background

This work connects stationary measures for colored (also referred to as multi-species or multi-
type) systems of interacting particles hopping on a one-dimensional lattice (the ring or the whole
line) to solvable lattice models. One of the particle systems we consider is the multi-species
Asymmetric Simple Exclusion Process (mASEP). On the ring with N sites, the n-colored mASEP
is a continuous time Markov process under which each pair of neighboring particles of colors
0 ≤ i ̸= j ≤ n and locations (k, k + 1) (mod N) swap with rate 1 if i < j, and rate q ∈ [0, 1)
if i > j (color 0 represents holes). See Figure 1 for an illustration.1 We also consider the multi-
species q-TAZRP (q-deformed Totally Asymmetric Zero Range Process, also known as the colored
stochastic q-Boson particle system), and the colored q-PushTASEP (q-deformed Pushing Totally
Asymmetric Simple Exclusion Process). We refer to Sections 5.1 and 6 for definitions of these
models on the ring.

1Throughout the paper, we say that an event occurs at rate α > 0 if the random time ζ till the occurrence is
exponentially distributed with parameter α, that is, P(ζ > t) = e−αt for t ≥ 0.
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Figure 1: Rates of all possible particle hops in the mASEP on the ring with N = 9 sites and
n = 4 colors. The mASEP preserves the number of particles of each type, and has a unique
stationary measure in each “sector” determined by fixing the number Nm of particles of each
color m = 1, . . . , n.

The stationary measures of these particle systems have been the subject of a systematic
investigation recently. On the one hand, their properties and asymptotic behavior highlight
interesting physical and probabilistic phenomena (for example, a particle of a different color may
follow a “microscopic characteristic”). On the other hand, they have a rich underlying algebraic
and combinatorial structure (in particular, deep connections to Macdonald symmetric functions
and their nonsymmetric counterparts).

The stationary measure for the single-color mASEP (simply called ASEP) on the ring with
a given number of particles is uniform among all possible arrangements of these particles. On
the line, translation invariant stationary measures are all product Bernoulli (that is, each site is
independently a particle or a hole with probability ρ); see Liggett [Lig05, Ch. VIII].

Prolhac–Evans–Mallick [PEM09] constructed stationary measures for mASEP with an arbi-
trary number of colors using the Matrix Product Ansatz, an algebraic formalism utilizing commu-
tation relations of a family of matrices. For previous partial Matrix Product Ansatz results see
the references in [PEM09]. We discuss the Matrix Product Ansatz approach in the beginning in
Section 4.4 in the text. Methods for sampling from the mASEP stationary measures using com-
binatorial structures known as multiline diagrams or multiline queues were developed by Angel
[Ang06], Ferrari–Martin [FM07], and Martin [Mar20].

Connections to Macdonald symmetric and nonsymmetric polynomials served as another in-
spiration for studying stationary measures of interacting particle systems on the ring. Macdonald
polynomials are a centerpiece of the symmetric functions theory and have wide applications to
representation theory and geometry; see Macdonald [Mac95, Ch. VI], [Mar99]. We do not fo-
cus on symmetric and nonsymmetric functions in this paper, but here we mention the necessary
background.

A relationship between the mASEP stationary measures and Macdonald polynomials is first
observed by Cantini–de Gier–Wheeler [CdGW15]. Nonsymmetric Macdonald polynomials are
constructed via multiline queues by Corteel–Mandelshtam–Williams [CMW22]. An integrable
vertex model for nonsymmetric Macdonald polynomials is given by Borodin–Wheeler [BW22b].
One can say that the vertex model construction unifies the two points of view.

The stochastic single-color q-Boson process (also referred to as the q-TAZRP) was introduced
by Sasamoto–Wadati [SW98]. Its dual process, the q-TASEP, was extensively studied on the
line by Borodin–Corwin [BC14], Borodin–Corwin–Sasamoto [BCS14], Borodin–Corwin–Petrov–
Sasamoto [BCPS15], Barraquand [Bar15], and others. On the ring, Wang–Waugh [WW16] and

3



Liu–Saenz–Wang [LSW20] obtained integral formulas for transition probabilities and other ob-
servables of the q-Boson process.

The multi-species generalization of the q-Boson process is due to Takeyama [Tak15] and
Kuniba–Maruyama–Okado [KMO16]. Stationary measures for this process on the ring were re-
cently connected to modified Macdonald polynomials by Ayyer–Mandelshtam–Martin [AMM22],
[AMM23] (see also the earlier work of Garbali–Wheeler [GW20] connecting modified Macdonald
polynoimals to vertex models). In contrast with the mASEP, the q-Boson process has spectral
parameters (rapidities) attached to the sites on the ring, and these parameters enter the modi-
fied Macdonald polynomials. Ayyer–Mandelshtam–Martin revealed symmetries of the stationary
measures in the parameters and utilized them to compute observables in the stationary model.

The colored q-PushTASEP on the ring is less studied. On the line, it was introduced by
Borodin–Wheeler [BW22a, Section 12.5] as a degeneration of the colored stochastic higher spin
six-vertex model. Like the q-Boson process, it contains spectral parameters, and also the capacity
parameter P ∈ Z≥1 which is the maximum number of particles allowed at each site. A discrete
time variant of the colored q-PushTASEP (with q = 0 and P = 1) on the ring was introduced
(under the name “frog model”) by Bukh–Cox [BC22] in connection with the problem of the
longest common subsequence of a random and a periodic word. In particular, Bukh–Cox [BC22]
constructed and investigated stationary measures of the frog model.

1.2 Main results and methods

We unify and generalize existing constructions of stationary measures of the multi-species ASEP,
the colored q-Boson process, and the colored q-PushTASEP on the ring and the line. We prove the
stationarity property graphically in all cases, using the Yang–Baxter equation (discussed below
in this subsection). We obtain the following results for the three particle systems:

• For mASEP, we present a vertex model interpretation of the multiline queues of Martin
[Mar20], which is very close to the Matrix Product Ansatz construction of Prolhac–Evans–
Mallick [PEM09]. Moreover, we recover the main ingredient of the Matrix Product Ansatz
proof of the stationarity (the “hat relation”) directly from the Yang–Baxter equation. On the
ring, we add extra parameters to our vertex model that do not affect the stationary measures.
We also connect our vertex models with extra parameters to other variants of multiline queues,
including the one considered by Martin [Mar20, Section 7].

• For the colored q-Boson process, we present a vertex model construction of stationary measures
on the ring and the line. On the ring, the vertex model has extra parameters that do not affect
the stationary measures, but they need to be specialized to zero on the line. In a particular case
of at most one particle of each color, our vertex model is equivalent to the multiline queues of
Ayyer–Mandelshtam–Martin [AMM22]. On the line, the parameters of the vertex model which
survive are in one-to-one correspondence with colored particle densities, and we compute the
colored currents in stationarity (as implicit functions of the densities of particles of each color).

• For the colored q-PushTASEP, we also construct vertex models for the stationary measures
on the ring and the line. On the ring, the vertex model carries extra parameters that do not
affect the stationary measures. On the line, some extra parameters are lost, and again the
remaining ones exactly parameterize colored particle densities. A particular P = 1 case of the
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q-PushTASEP has the same stationary measures as the mASEP and the colored stochastic
six-vertex model. On the line, we compute the colored currents for the stochastic six-vertex
model and the q-PushTASEP in stationarity.

To obtain all our results, we utilize integrable stochastic vertex models, that is, whose ver-
tex weights have a stochastic normalization and satisfy the Yang–Baxter equation. We start
from stochastic Uq(ŝln+1) vertex weights whose explicit form was first obtained by Kuniba–
Mangazeev–Maruyama–Okado [KMMO16] and which were studied in the stochastic context by
Bosnjak–Mangazeev [BM16], Garbali–de Gier–Wheeler [GdGW17], Kuan [Kua18]. The vertex
model foundation of our work was developed by Borodin–Wheeler [BW22a] who listed various
stochastic degenerations of the general Uq(ŝln+1) weights, leading to the mASEP, the colored
q-Boson process, and the colored q-PushTASEP.

In a limit when the number of particles (corresponding to vertical arrows in vertex models)
of a given color goes to infinity, the Uq(ŝln+1) stochastic weights degenerate into what we call
the queue vertex weights. Putting them on the cylinder, we obtain our main object — the queue
vertex model. Its normalized partition functions serve as stationary measures for our colored
stochastic particle systems on the ring. The stationarity of the normalized partition functions is
a direct consequence of the Yang–Baxter equation.

For each particle system, we perform the following sequence of steps:

1. We define a colored (higher spin) stochastic transfer matrix T on the cylinder. In a Poisson-
type limit when the discrete time becomes continuous, large powers of T converge to the
Markov semigroup (also called the propagator) of the given stochastic process living on con-
figurations of colored particles on the ring. Each of our processes (the mASEP, the colored
q-Boson process, and the colored q-PushTASEP) preserves the number of particles of each
color, while T before the Poisson-type limit may not.

2. We construct a multiparameter family of transfer matrices Q on the cylinder using our queue
vertex weights (see Figure 2 for an illustration), such that

(a) Their matrix elements ⟨∅|Q |V⟩ (which are, by definition, partition functions — the sums
of weights of all allowed arrow configurations) are nonzero for all terminal states V.
Here ⟨∅| is the empty state (no particles present on the ring), and V encodes a state with
prescribed particle locations and colors.

(b) The Yang–Baxter equation implies thatQT = TQ. In detail, we glue the cylinder with the
output V to a sequence of stochastic R matrices, as shown in Figure 3. Their composition
is the operator T. Together with the queue weights, these R matrices satisfy the Yang–
Baxter equation which allows to commute T through the queue weights Q.

Since ⟨∅|T = ⟨∅|, after a degeneration of the parameters of Q (corresponding to the Poisson-
type limit in T), the quantity ⟨∅|Q viewed as a row vector (or, equivalently, an unnormalized
probability distribution on the space of particle configurations on the ring) becomes stationary
under the Markov semigroup. By restricting ⟨∅|Q to particle configurations with fixed numbers
of particles of each color (a sector), we obtain a stationary measure for the corresponding
particle system. Note that part (a) above seems to violate the conservation of particles (the
higher spin analog of the ice rule), which holds for models of six-vertex type. It is the limit
to the queue vertex weights which allows this violation.
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3. For each of the particle systems on the ring, we compute the queue weights explicitly (after the
corresponding degeneration of the parameters of Q), and provide conditions on the remaining
complex parameters guaranteeing the positivity of the unnormalized weights. Note that the
normalized weights are automatically positive by the stationarity property and the Perron–
Frobenius theorem.

k ℓ

A

C

(−m, j)
k ℓ

A

C

−1−2−3

0

0

0

i3

i2

i1

Figure 2: Left: The queue vertex model partition function ⟨∅|Q |V⟩ on the cylinder with n = 3
colors and N = 3 sites (the dotted lines are identified). There are no arrows incoming from the
left, and the outgoing terminal state V = (i1, i2, i3) has i1, i2, i3 ∈ {0, 1, 2, 3}. Center: The queue

vertex weight W(−m)
parameters(m,j) (see Definition 2.6 below) is in column −m, 1 ≤ m ≤ N at position

j = 1, . . . , N in the transfer matrix Q. Right: An allowed path configuration at a queue vertex
with m = 1. Colors 1, 2, 3 are, respectively, blue, orange, and red. We have A = (∞, 0, 2), k = 2,
C = (∞, 1, 2), and ℓ = 1. Infinitely many blue arrows (not depicted) pass through vertically,
which allows a blue arrow to exit from the right even though none entered from the left.

We call the weights on the cylinder the queue vertex weights because each column (−m) of a
cylinder resembles a queueing system for which the “unused service times” are assigned the new
color m. Indeed, for the mASEP and (with certain restrictions) the q-Boson process, the output
of our vertex model is the same (in distribution) as that of the multiline queues of Martin [Mar20]
and Ayyer–Mandelshtam–Martin [AMM22], respectively.

For the mASEP, we explain how to set the parameters to exactly match a certain specialization
of our stationary measure with the matrix product stationary measure constructed by Prolhac–
Evans–Mallick [PEM09]. We also show how the underlying algebraic apparatus for the Matrix
Product Ansatz can be derived from the Yang–Baxter equation. Namely, we realize the product
ansatz matrices satisfying the so-called “hat relation” (identity (4.15) in the text) as vertex model
partition functions. This highlights the Yang–Baxter structure of the Matrix Product Ansatz
for the multispecies ASEP which was previously unknown, cf. Arita–Ayyer–Mallick–Prolhac
[AAMP12]. Furthermore, we describe how more general solutions A,D,E of the quadratic algebra
relations of the Matrix Product Ansatz (formula (4.13) in the text) can be derived from our queue
vertex weights.

In Section 7, we use similar vertex model techniques to construct stationary distributions
for the mASEP, the colored q-Boson process, and the colored q-PushTASEP on the line Z. In
this setting, we again use the Yang–Baxter equation to prove stationarity in a certain quarter
plane setting (a colored analog of Burke’s theorem, see Figure 4), and then we take a bulk limit
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Figure 3: The main commutation relation QT = TQ leading to stationarity. This configuration
of R matrices is specific to the mASEP. For small ϵ > 0, the arrows of all colors pass through
each R1−ϵ in a zigzag manner with probability 1 − O(ϵ) (that is R1−ϵ(i, j; j, i) is close to 1).
When ϵ → 0, the powers (T)⌊t/ϵ⌋ converge to PmASEP(t), the semigroup operators of the mASEP
on the ring (here t ∈ R≥0 is the continuous time). For the other systems, the colored q-Boson
process and the colored q-PushTASEP, we need a different configuration on the cylinder (given
in Figures 12 and 13 in the text) and a slightly different Poisson-type limit transition.

to obtain the stationarity on Z. The leftover parameters of the queue vertex weights on the
line correspond to the densities of particles of each color. Using our quarter plane construction,
we also obtain a general description of analogs of the Kardar–Parisi–Zhang (KPZ) pure phases
(translation invariant ergodic Gibbs measures) for the colored stochastic six-vertex model and
compute the corresponding slope relations. In the single-color case, this was done by Aggarwal
[Agg18] using the single-color queue vertex weights at the left boundary of the quadrant.

Our method of producing stationary distributions as partition functions is conceptually rem-
iniscent of the Bethe Ansatz. In Bethe Ansatz, eigenvectors of a transfer matrix of a quantum
integrable model are constructed by applying certain other transfer matrices (with specially cho-
sen parameters satisfying algebraic equations) to the vacuum vector ⟨∅|. For stationary measures
of our Markov processes, we only need the leading (Perron–Frobenius) eigenvector of T having
the eigenvalue 1. We do not investigate further connections of our constructions to the Bethe
Ansatz or the algebraic equations.

1.3 Related work in progress

While preparing the manuscript, we learned about two related works in progress. One by Corteel–
Keating [CK23] defines a new particle system with zero-range interactions on the ring. Its station-
ary distribution is expressed as a queue-like vertex model on the cylinder with fermionic weights
related to the algebra Uq(ŝl(1|n)). These weights were recently investigated by Corteel–Gitlin–
Keating–Meza [CGKM22] and Aggarwal–Borodin–Wheeler [ABW21]. In particular, instead of
the Macdonald polynomials, they are related to the Lascoux–Leclerc–Thibon (LLT) polynomials
[LLT97].

Another work in progress by Angel–Ayyer–Martin [AAM23] considers stationary measures for
the colored q-PushTASEP on the ring (with capacity P = 1), and connects them to the multiline
queues of Corteel–Mandelshtam–Williams [CMW22]. The approach to this proof is different
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(0, 0)

(m,n)

Figure 4: The construction of the stationary quarter plane configuration for the colored stochas-
tic six-vertex model. The arrow configuration entering the quadrant Z2

≥0 is generated by the
stochastic vertex model with thick colored lines along the boundary (the vertex weights here are
the queue vertex weights), and has the same distribution as the configuration of arrows cross-
ing the boundary of the (m,n)-shifted quadrant (the dotted line). The configuration of arrows
entering along the thick lines is sampled from a particular distribution (namely, the stationary
distribution of a Markov chain describing the evolution of “queues in tandem”). Stationarity can
be proved by repeated applications of the Yang–Baxter equation, shown on the right. Details of
this construction are in Section 7.

from ours, and it relies on properties of symmetric and nonsymmetric Macdonald polynomials
and related functions.

1.4 Outline

In Section 2, we recall the colored stochastic vertex weights (together with their fully fused
version) and the Yang–Baxter equations for them. We define the queue vertex weights, which
arise in the limit of the stochastic vertex weights when the number of vertical arrows of a given
color goes to infinity. Putting the queue vertex weights on the cylinder, we obtain our main
object — the queue vertex model.

In Section 3, we employ the Yang–Baxter equation to show that the measure on particle
configurations on the ring coming from the queue vertex model is stationary under the twisted
and the straight cylinder Markov transition operators. In full generality, these Markov operators
are formal (may have negative matrix elements).

In Section 4, we take a scaling limit under which the twisted cylinder Markov operator con-
verges to the infinitesimal generator of the mASEP (an actual, not formal, Markov operator).
The corresponding limit of the queue vertex model yields a stationary measure for the mASEP.
Under a specialization of the parameters, we identify our queue vertex model with the multiline
queue system of Martin [Mar20] and connect our constructions to the Matrix Product Ansatz of
Prolhac–Evans–Mallick [PEM09]. Moreover, a different parameter specialization presumably re-
lates our queue vertex model to the alternative multiline queue system considered also by Martin
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[Mar20, Section 7].
In Sections 5 and 6, we treat two other colored particle systems — the q-Boson process (also

known as the q-TAZRP) and the q-PushTASEP. For the q-Boson process, in a particular case of
at most one particle of each color, we identify our queue vertex model with the multiline queueing
system recently introduced by Ayyer–Mandelshtam–Martin [AMM22].

In Section 7, we consider colored stochastic vertex models in the quadrant and use the Yang–
Baxter equation to prove a new colored generalization of Burke’s theorem. It implies that when
put on the infinite vertical strip instead of the cylinder, our queue vertex models produce sta-
tionary distributions for the interacting particle systems (mASEP, colored q-Boson process, and
q-PushTASEP) on the line. In Appendix A, we show that the stationary measures for our colored
particle systems on the line respect the operations of color merging (when two or more colors are
declared the same). The proof also relies on applying the Yang–Baxter equation to a stochastic
vertex model in the quadrant.
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2 Colored vertex weights and Yang–Baxter equation

In this section, we collect the necessary formulas for the vertex weights of the colored stochastic
vertex model from [BW22a]. Algebraically, this model is powered by the quantum affine Lie
algebra Uq(ŝln+1), where n is the number of colors. A stochastic normalization of the Uq(ŝln+1)
vertex weights first appeared in [KMMO16]; see also [BM16], [GdGW17], [Kua18]. In certain
degenerations, which we recall in Sections 4 and 5 below, the colored stochastic vertex model turns
into multi-species interacting particle systems. We start with the vertex weights and the Yang–
Baxter equation; then, we proceed to the fused weights and define their new queue specialization.

2.1 Vertex weights

Fix the number of colors n ≥ 1. The higher spin Uq(ŝln+1) stochastic vertex weights Ls,x(A, k;B, ℓ)
are indexed by the following data:

• The quantum parameter q ∈ [0, 1), which is fixed throughout this section;

• The spectral parameter x and the spin parameter s, which may depend on the vertex;

• The configurations of incoming and outgoing arrows (A, k;B, ℓ), where k, ℓ ∈ {0, 1, . . . , n}, and
A,B are n-tuples (A1, . . . , An), (B1, . . . , Bn), where Ai, Bj ∈ Z≥0. Here k ≥ 1 represents an
arrow of color k entering from the left, and k = 0 corresponds to no arrows entering from the
left; similarly, ℓ encodes the exiting arrows to the right. Each Ai is the number of arrows of
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color i entering from the bottom, and Bj is the number of arrows of color j exiting from the
top.

The arrow counts (A, k;B, ℓ) must satisfy the arrow conservation property (a higher spin analog
of the ice rule), with the understanding that all arrows go in the up or right direction. Let
e1, . . . , en be the standard basis in Zn, then, the arrow conservation is

A+ ek1k≥1 = B+ eℓ1ℓ≥1.

Here and throughout the paper, 1E denotes the indicator of the event or condition E. For
1 ≤ k, ℓ ≤ n, define

A+
k := A+ ek, A−

k := A− ek, A+−
kℓ := A+ ek − eℓ, |A| :=

∑n

k=1
Ak, A[k,ℓ] :=

∑ℓ

i=k
Ak.

The values of all the vertex weights Ls,x(A, k;B, ℓ) are listed in the table in Figure 5. In [BW22a,
Section 2], they are denoted by L̃s,x(A, k;B, ℓ), and they differ from [BW22a, (2.2.2)] by the factor
(−s)1ℓ>0 . However, in this paper, we work with stochastic weights from the beginning, and remove
the tilde from the notation.

0 0

A

A

k k

A

A

0 k

A

A−
k

1− sxq|A|

1− sx

(−sx+ s2qAk)qA[k+1,n]

1− sx

−sx(1− qAk)qA[k+1,n]

1− sx

k 0

A

A+
k

k ℓ

A

A+−
kℓ

ℓ k

A

A+−
ℓk

1− s2q|A|

1− sx

−sx(1− qAℓ)qA[ℓ+1,n]

1− sx

−s2 (1− qAk)qA[k+1,n]

1− sx

Figure 5: Colored stochastic higher spin vertex weights Ls,x. Here 1 ≤ k < ℓ ≤ n, and all other
values of Ls,x are zero.

Proposition 2.1. The vertex weights Ls,x satisfy the sum-to-one property

∑

B∈Zn
≥0

n∑

ℓ=0

Ls,x(A, k;B, ℓ) = 1 (2.1)

for any fixed A, k. Moreover, if q ∈ [0, 1),

−sx > 0, −s2 ≥ 0, −sx+ s2 ≥ 0, (2.2)

then all the vertex weights Ls,x(A, k;B, ℓ) are nonnegative.
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Proof. The sum-to-one property is [BW22a, Proposition 2.5.1]. The nonnegativity under condi-
tions (2.2) is straightforward.

Conditions (2.2) mean that s and x must be purely imaginary numbers. Observe that the
weights Ls,x contain s2 and −sx as two independent parameters, and they are more convenient
to formulate the nonnegativity.

A natural point of view is to interpret the vertex weights Ls,x(A, k;B, ℓ) as matrix elements
of a linear operator Cn+1 ⊗ V → Cn+1 ⊗ V , where Cn+1 has the standard basis {|j⟩}nj=0, and V
has the basis {|A⟩}A∈Zn

≥0
. For either space, we denote vectors of the dual basis by ⟨v|, and for

tensor products of vectors (or dual vectors), we use the notation |v,A⟩ := |v⟩ ⊗ |A⟩. For the
tensor product Cn+1 ⊗ V we use the basis {|j,A⟩}j∈{0,...,n},A∈Zn

≥0
, and for its dual we use the

basis {⟨j,A|}j∈{0,...,n},A∈Zn
≥0
. In these bases the operator Ls,x corresponding to Ls,x acts as

⟨k,A|Ls,x |ℓ,B⟩ = Ls,x(A, k;B, ℓ). (2.3)

In this way, pairs of dual and primal basis vectors of Cn+1 ⊗ V with nonzero Ls,x matrix entries
correspond precisely to the allowed local configurations of paths at a vertex, displayed in Figure 5.

Remark 2.2 (Finite-spin reduction). For generic s ∈ C, the operator Ls,x has infinitely many
nonzero matrix entries, so any number of paths can occupy the vertical edges. If, on the other

hand, s = q−
M
2 for some M ∈ Z≥1, then let us set by definition Ls,x(A, k;B, ℓ) = 0 un-

less |A|, |B| ≤ M. Note that Ls,x(A, k;A+
k , 0) vanishes automatically if |A| = M, so vertices

with |A| > M or |B| > M cannot be created from the stochastic evolution started from a config-
uration where all |A| ≤ M. We see that for s = q−M/2, at most M vertical paths may occupy the
vertical edges. In this case, Ls,x acts in the finite-dimensional subspace Cn+1⊗VM, with VM ⊂ V
spanned by {|A⟩}|A|≤M.

2.2 Yang–Baxter equation

Let us define the following cross vertex weights Rz(i, j; k, ℓ), originally due to [Jim86] and [Baz85]:

Rz(i, i; i, i) := 1, i ∈ {0, 1, . . . , n},

Rz(j, i; j, i) :=
q(1− z)

1− qz
, Rz(i, j; i, j) :=

1− z

1− qz

Rz(j, i; i, j) :=
1− q

1− qz
, Rz(i, j; j, i) :=

(1− q)z

1− qz





i, j ∈ {0, 1, . . . , n}, i < j.
(2.4)

These weights also satisfy the sum-to-one property:
∑n

k,ℓ=0
Rz(i, j; k, ℓ) = 1 for any i, j. They

are nonnegative if 0 ≤ z ≤ 1.
The vertex weights Rz(i, j; k, ℓ) can also be regarded as matrix elements of an operator Rz

acting in Cn+1 ⊗ Cn+1, namely, ⟨j, i|Rz|ℓ, k⟩ = Rz(i, j; k, ℓ).
One can check that Rz is the spin-12 reduction of Ls,x (as in Remark 2.2):

Rz(i, j; k, ℓ) = Lq−1/2, z−1q−1/2(ei1i≥1, j; ek1k≥1, ℓ), i, j, k, ℓ ∈ {0, 1, . . . , n} . (2.5)
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In the right-hand side, if i = 0, then ei1i≥1 = (0, . . . , 0) (n zeroes), which corresponds to no
arrows at an edge.

The weights Ls,x and Rz satisfy the following Yang–Baxter equation:

Proposition 2.3 ([BW22a, (2.3.1) and Corollary B.4.3]). For any fixed i1, i2, j1, j2 ∈ {0, 1, . . . , n}
and A,B ∈ Zn

≥0, we have

∑

K∈Zn
≥0

n∑

k1,k2=0

Ls,y(A, i2;K, k2)Ls,x(K, i1;B, k1)Ry/x(k2, k1; j2, j1)

=
∑

K∈Zn
≥0

n∑

k1,k2=0

Ry/x(i2, i1; k2, k1)Ls,y(K, k2;B, j2)Ls,x(A, k1;K, j1).

(2.6)

See Figure 6 for an illustration. Note that the summations in both sides of (2.6) are actually
finite.

∑
i2 j1

i1

k2

k1
j2

K

A

B

Ls,y

Ls,x

Ry/x =
∑

i2 j1

i1 j2

k1

k2

K

A

B

Ls,x

Ls,y

Ry/x

Figure 6: An illustration of the Yang–Baxter equation (2.6) in Proposition 2.3, where the sums
in both sides are taken over all k1, k2 ∈ {0, 1, . . . , n} and K ∈ Zn

≥0.

2.3 Fused weights

The vertex weights Ls,x(A, k;B, ℓ) are higher spin (that is, they allow multiple arrows per edge)
in the vertical direction. For s = q−1/2, they reduce to the fundamental R-matrix Rz(a, k; b, ℓ),
where a, k, b, ℓ ∈ {0, 1, . . . , n}; see (2.5). The inverse procedure for constructing Ls,x from Rz

is called fusion and dates back to [KRS81]. In the uncolored case, it was put into probabilistic
context in [CP16], [BP18a]. The colored fusion is described in, e.g., [BW22a, Appendix B]. The
formula for the fully fused stochastic colored vertex weights Wx,L,M(A,B;C,D) coming from

Uq(ŝln+1) is obtained in [BM16]; see also [BW22a, Appendix C]. Here we recall the stochastic
vertex weights fused in both the horizontal and vertical directions.

We need the standard q-Pochhammer symbols notation:

(a; q)k := (1− a)(1− aq) . . . (1− aqk−1), k ∈ Z≥0,

and (z; q)∞ :=
∏∞

i=0

(
1− zqi

)
is a convergent infinite product because q ∈ [0, 1).
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For A,B ∈ Zn
≥0 such that Ai ≤ Bi for all i, define

Φ(A,B;x, y) :=
(x; q)|A|(y/x; q)|B−A|

(y; q)|B|
(y/x)|A| q

∑
1≤i<j≤n(Bi−Ai)Aj

n∏

i=1

(q; q)Bi

(q; q)Ai(q; q)Bi−Ai

. (2.7)

For any fixed B ∈ Zn
≥0, we have

∑
A∈Zn

≥0 : Ai≤Bi for all i
Φ(A,B;x, y) = 1. (2.8)

With this notation, if A,B,C,D ∈ Zn
≥0, we define the vertex weights

Wx,L,M(A,B;C,D) := 1A+B=C+D · x|D−B| (qL)|A| (qM)−|D|

×
∑

P
Φ(C−P,C+D−P; qL−Mx, q−Mx)Φ(P,B; q−L/x, q−L).

(2.9)

The sum in (2.9) is finite and is taken over all P ∈ Zn
≥0 such that 0 ≤ Pi ≤ min (Bi, Ci) for all i.

Remark 2.4. The parameters L,M enter the vertex weights (2.9) only through the powers
qL, qM. Moreover, the weights depend on qL and qM in a rational manner. Specializing L,M,
or both to positive integers leads to finite-spin reduction as in Remark 2.2. The integers L
and M correspond to the horizontal and the vertical edge capacities, respectively. Outside of the
finite-spin specializations, we may view qL, qM as independent complex parameters of the weights.

The weights Wx,L,M (2.9) satisfy a version of the Yang–Baxter equation, see formulas (C.1.2)–
(C.1.3) in [BW22a]. Graphically, this equation is similar to the one illustrated in Figure 6, but
the weights Ls,x, Ls,y, and Ry/x must be replaced with, respectively, Wx

z
,L,N, W y

z
,M,N, and Wx

y
,L,M.

The summation in the Yang–Baxter equation for the W ’s goes over triples of elements from Zn
≥0.

The weights (2.9) sum to one [BW22a, (C.1.5)],

∑
C,D∈Zn

≥0

Wx,L,M(A,B;C,D) = 1, A,B ∈ Zn
≥0, (2.10)

and reduce to the weights Ls,x (spin-12 in the horizontal direction and higher spin in the vertical
direction) and Rz (spin-

1
2 in both directions) from Sections 2.1 and 2.2 as follows [BW22a, Propo-

sition C.1.4 and formula (C.2.2)]:

Rz(i, j; k, ℓ) = Wz−1,1,1(ei1i≥1, ej1j≥1; ek1k≥1, eℓ1ℓ≥1),

Ls,x(A, b;C, d) = Wx/s,1,N(A, eb1b≥1;C, ed1d≥1)
∣∣
qN=s−2 ,

(2.11)

where i, j, k, ℓ, b, d ∈ {0, 1, . . . , n} and A,C ∈ Zn
≥0. In the second line in (2.11), the parameter

s = q−N/2 is real for q ∈ [0, 1) and N ∈ Z≥1. However, for the parameters (s, x) to satisfy (2.2),
we let N not to be an integer, and treating qN as a generic complex parameter, see Remark 2.4.

2.4 Queue specialization

Here we define a procedure which we call the queue specialization of the fully fused stochastic
colored vertex weights (2.9). This specialization depends on an integer 1 ≤ m ≤ n and on three
parameters u, s1, s2, and proceeds in the following manner:
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• First, encode the parameters L and M through s1, s2 ∈ C as q−L = s21, q
−M = s22, and let the

spectral parameter be x = s1s
−1
2 u. This is just a change of variables which will be useful in

subsequent computations.

• After that, take the limit of Ws1s
−1
2 u,L,M(A,B;C,D) as Am, Cm → +∞ such that all other

coordinates of A,C, as well as the whole tuples B,D are fixed, and Am − Cm = Dm − Bm is
also fixed.2 The latter condition follows from the arrow conservation.

Lemma 2.5. The limit of the vertex weights Ws1s
−1
2 u,L,M(A,B;C,D) described above exists. It

is given by

lim
Am,Cm→+∞

Ws1s
−1
2 u,L,M(A,B;C,D) = 1A+B=C+D · 1D1=...=Dm−1=0 ·

(s−1
1 s2u; q)∞

(s1s2u; q)∞

×
∑

P

(s1s2/u; q)|P|(s1u/s2; q)|B−P|

(s21; q)|B|
q
∑

1≤i<j≤n(Bi−Pi)Pj

n∏

i=1

(q; q)Bi

(q; q)Pi(q; q)Bi−Pi

×
(s1s2

u

)|B|−|P|(us2
s1

)|D|
q
∑

m≤i<j≤n Di(Cj−Pj)
(s21; q)|D|

(q; q)Dm

n∏

i=m+1

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

,

(2.12)

where the sum is over P ∈ Zn
≥0 with 0 ≤ Pi ≤ min(Bi, Ci) for all i.

Proof. Set x = s1s
−1
2 u. Since B stays fixed, the second factor

Φ(P,B; q−L/x, q−L) = Φ(P,B; s1s2/u, s
2
1)

in the sum in (2.9) is also fixed. Moreover, the summation multi-index P belongs to a fixed finite
set where Pi ≤ Bi for all i. Thus, it remains to consider the limit of

(qL)|A|Φ(C−P,C+D−P; qL−Mx, q−Mx)

= (qL)|A| (q
L−Mx; q)|C−P|(q

−L; q)|D|

(q−Mx; q)|C−P+D|
(q−L)|C−P|q

∑
1≤i<j≤n Di(Cj−Pj)

n∏

i=1

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

.

= s
−2|D−B+P|
1

(s−1
1 s2u; q)|C−P|(s

2
1; q)|D|

(s1s2u; q)|C−P+D|
q
∑

1≤i<j≤n Di(Cj−Pj)
n∏

i=1

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

.

(2.13)

We have Cm − Pm → +∞, so (2.13) converges to zero unless Di = 0 for all i < m (as q ∈ [0, 1)).
This leads to the indicator 1D1=...=Dm−1=0 in (2.12). Next, if Di = 0 for all i < m, then all other
factors in (2.13) behave well, and the desired limit of the whole vertex weight exists. Taking the
limit as Cm → +∞, we immediately obtain (2.12). This completes the proof.

Definition 2.6 (Queue specialization of the vertex weights). Let 1 ≤ m ≤ n and u, s1, s2 ∈ C.
We denote the limiting vertex weights (2.12) in Lemma 2.5 by W(−m)

s1,s2,u(A,B;C,D), and call
them the queue specialization of the fully fused stochastic colored vertex weights.

2Throughout this limit, we assume that 0 < q < 1, and later we will specialize the limit to q = 0 where needed.
In other words, q0 should be treated as 1 before and after the limit.
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The term “queue specialization” comes from connections with multiline queues described (in
two different degenerations) in Sections 4.3 and 5.3 below. The label (−m) will be useful when

we later place the vertices W(−m)
s1,s2,u on a lattice.

Remark 2.7. In the queue vertex weights W(−m)
s1,s2,u(A,B;C,D), we abuse the notation of the

tuples A,C ∈ Zn
≥0 by setting Am, Cm = +∞. That is, the tuples with infinitely many arrows of

color m are not elements of Zn
≥0. However, for the uniformity of notation, we will still sometimes

treat A,C as elements of Zn
≥0, while explicitly stating that Am, Cm = +∞.

Remark 2.8. From (2.12) we see that for fixedB1, . . . , Bm−1 ≥ 0, the weightsW(−m)
s1,s2,u(A,B;C,D)

are independent of A1, . . . , Am−1, C1, . . . , Cm−1 provided that Ci = Ai + Bi for all i < m. For
example, we can set Ai = 0 and Ci = Bi for all i < m. Note also that since Am, Cm = +∞, we
may have Dm > 0 even if Bm = 0. The latter property is essential for our constructions.

The next lemma states the independence of the queue vertex weights under Bm, too, provided
that no lower colors are present:

Lemma 2.9. Let B1 = . . . = Bm−1 = 0. Then the queue vertex weight W(−m)
s1,s2,u(A,B;C,D) is

independent of Bm.

Proof. By Remark 2.8, we may set Ai = Ci = Di = 0 for all i < m. Set, for simplicity, Bm = b,
Bm+1+ . . .+Bn = b′, Pm = p, Pm+1+ . . .+Pn = p′, and Dm = d. Then the part of (2.12) which
depends only on b and p has the form

b∑

p=0

(s1s2/u; q)p+p′(s1u/s2; q)b+b′−p−p′

(s21; q)b+b′

(q; q)b
(q; q)p(q; q)b−p

(s1s2/u)
b−pq(b−p)p′

=
(s1s2/u; q)p′(s1u/s2; q)b′−p′

(s21; q)b′

b∑

p=0

(qp
′
s1s2/u; q)p(q

b′−p′s1u/s2; q)b−p

(qb′s21; q)b

(q; q)b
(q; q)p(q; q)b−p

(qp
′
s1s2/u)

b−p

=
(s1s2/u; q)p′(s1u/s2; q)b′−p′

(s21; q)b′
.

In the last equality we used the sum-to-one property (2.8) for the single-color case n = 1 (with x =
qb

′−p′s1u/s2, y = qb
′
s21, and B = b). We see that the resulting expression does not depend on b,

as desired.

Proposition 2.10. For any m ∈ {1, . . . , n}, the queue vertex weights W(−m)

s1,s0,
u1
u0

, W(−m)

s2,s0,
u2
u0

(2.12),

and the fused cross vertex weight W s1u1
s2u2

,L,M (2.9), where q−L = s21 and q−M = s22, satisfy the Yang–

Baxter equation given in Figure 7. In symbols, for all fixed A, I1, I2,B,J1,J2 with Am, Bm = +∞,
we have

∑

K1,K2,K3

W(−m)

s2,s0,
u2
u0

(A, I2;K3,K2)W
(−m)

s1,s0,
u1
u0

(K3, I1;B,K1)W s1u1
s2u2

,L,M(K2,K1;J2,J1)

=
∑

K1,K2,K3

W s1u1
s2u2

,L,M(I2, I1;K2,K1)W
(−m)

s1,s0,
u1
u0

(A,K1;K3,J1)W
(−m)

s2,s0,
u2
u0

(K3,K2;B,J2).
(2.14)
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Proof. This is the queue specialization of the Yang–Baxter equation [BW22a, (C.1.2)] for the
fully fused stochastic weights. The queue specialization is taken along the vertical line carrying
the parameters z = s0u0 and N with q−N = s20.

∑
K1,K2,K3 I2 J1

I1

K2

K1
J2

K3

A

B

W(−m)

s2,s0,
u2
u0

W(−m)

s1,s0,
u1
u0

W s1u1
s2u2

,L,M

=
∑

K1,K2,K3 I2 J1

I1 J2

K1

K2

K3

A

B W(−m)

s2,s0,
u2
u0

W(−m)

s1,s0,
u1
u0

W s1u1
s2u2

,L,M

Figure 7: Yang–Baxter equation for the queue specialization. The sums in both sides are taken
over all K1,K2,K3 ∈ Zn

≥0, and the inputs and outputs I1, I2,J1,J2,A,B ∈ Zn
≥0 are fixed.

Recall that 0 ≤ q < 1. Let us define the following two subsets of the parameters (s1, s2, u) in
the queue vertex weights:

• (higher horizontal spin) s1, s2 ∈ [−1, 1] such that 0 ≤ s1s2 < u < min( s1s2 ,
s2
s1
, 1
s1s2

);

• (finite horizontal spin) s1 = q−
L
2 for some L ∈ Z≥1 and u = q

L
2u′, with purely

imaginary u′, s2 satisfying s2u
′ ≤ s22 ≤ 0 and s2/u

′ ≥ qL.

(2.15)

These subsets present convenient sufficient nonnegativity conditions:

Proposition 2.11. Under (2.15), the queue vertex weights W(−m)
s1,s2,u (2.12) are nonnegative, and

∞∑

Cm+1,Cm+2,...,Cn,Dm,Dm+1,...,Dn=0

W(−m)
s1,s2,u(A,B;C,D) = 1, (2.16)

where A,B are fixed, Am, Cm = +∞, and Ci = Ai +Bi, Di = 0 for all i < m.

Proof. Let us first consider the higher horizontal spin case of (2.15). One can check that all
arguments of the q-Pochhammer symbols in (2.12) are in [0, 1). Moreover, the total sign coming

from the powers s
|B|−|D|−|P|
1 s

|B|+|D|−|P|
2 u|D|−|B|+|P| is always nonnegative. Thus, we get the

nonnegativity of the queue vertex weights.
To see that they sum to one, we need to take the limit of the sum-to-one identity (2.10) for the

fully fused weights Wx,L,M as Am, Cm → +∞. One can check that under our conditions (2.15), the
weight Wx,L,M(A,B;C,D) (with x = s1u/s2, q

−L = s21, q
−M = s22) decays exponentially fast when

|D| → +∞ due to the presence of the power (us2/s1)
|D|. Thus, since our queue specialization

requires |D| to stay fixed, this decay ensures that identity (2.10) yields (2.16).
Let us now consider the finite horizontal spin case of (2.15). In this case, |D| must stay finite

(cf. Remarks 2.2 and 2.4), so the sum-to-one property (2.16) is automatic from (2.10). To see
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the nonnegativity, observe that since s1 = q−
L
2 ≥ 1, the term (s21; q)|D| produces the sign (−1)|D|,

which is compensated by (us2/s1)
|D|. The other combined powers (s1s2/u)

|B|−|P| are always
nonnegative. Next, we have

(s−1
1 s2u; q)∞

(s1s2u; q)∞
=

1

(s2u′; q)L
≥ 0.

In the remaining q-Pochhammer symbols, we have

s1s2/u = q−Ls2/u
′ ≥ 1, s1u/s2 = u′/s2 ≥ 1, s21 = q−L ≥ 1.

Thus, the quantities (s1s2/u; q)|P|(s1u/s2; q)|B−P|(s
2
1; q)

−1
|B| are nonnegative for all P provided

that |B| ≤ L. This completes the proof.

2.5 Queue vertex model on the cylinder

Let us fix the number n of colors, and another integer N ≥ 1 which is the size of the cylinder.
In this subsection we define a linear operator Q whose matrix elements ⟨∅|Q|V⟩ are partition
functions coming from the queue vertex weights on the cylinder {−n, . . . ,−1} × Z/NZ. The
vertices on the cylinder are indexed by (−m, j), m = 1, . . . , n, j = 1, . . . , N , see Figure 8 for
an illustration. No paths enter from the left. The paths exiting horizontally from the right are
encoded by the integer tuples V(1), . . . ,V(N) ∈ Zn

≥0. Define the vector space for the states on
the cylinder,

V ⊗N := Span
(
{
∣∣V
〉
=
∣∣(V(1), . . . ,V(N))

〉
: V(j) ∈ Zn

≥0 ∀j = 1, . . . , N}
)
, (2.17)

and similarly let ⟨V| denote the dual basis in V ⊗N . We also need the subspace V ⊗N
full of V ⊗N

spanned by the vectors |V⟩ satisfying
∑N

j=1
V(j)k > 0 for all k = 1, . . . , n

(above, V(j)k denotes the k-th coordinate of V(j)). In words, each state |V⟩ ∈ V ⊗N
full must

contain at least one arrow of each of the n colors.

Definition 2.12. Fix complex parameters

u = (u1, . . . , uN ) ∈ CN , s(h) = (s
(h)
1 , . . . , s

(h)
N ), v = (v1, . . . , vn), s(v) = (s

(v)
1 , . . . , s(v)n ),

(2.18)
The linear operator Q = Q(u; s(h);v; s(v)) on V ⊗N , called the queue transfer matrix, is defined via
its matrix elements ⟨V′|Q|V⟩ as follows. First, if |V⟩ /∈ V ⊗N

full , we set ⟨V′|Q|V⟩ = 0. Otherwise,
⟨V′|Q|V⟩ is the partition function of the queue vertex weights on the cylinder {−n, . . . ,−1} ×
Z/NZ with the following data:

• The entering arrow configurations V′(j) along the left horizontal edges (−n− 1, j) → (−n, j),
j = 1, . . . , N .

• The terminal arrow configurations V(j) along the right horizontal edges (−1, j) → (0, j),
j = 1, . . . , N .
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• Queue vertex weightsW(−m)

s
(h)
j ,s

(v)
m ,uj/vm

at each vertex (−m, j) in the cylinder, where j = 1, . . . , N ,

m = 1, . . . , n, and uj , s
(h)
j and vm, s

(v)
m are the horizontal and the vertical parameters, respec-

tively.

In detail, the partition function ⟨V′|Q|V⟩ is equal to the sum

∑

M

∑

C∈PM,V′,M,V

n∏

m=1

N∏

j=1

W(−m)

s
(h)
j ,s

(v)
m ,uj/vm

(A(m, j),B(m, j);C(m, j),D(m, j)),

where M = (M(−n), . . . ,M(−1)) encodes the paths winding around the cylinder. The sum
over M, by definition, has

M(−m)m = +∞ and M(−m)i = 0, i < m, for all m = 1, . . . , n. (2.19)

For each M, the sum over C runs over all path configurations in the rectangle with the boundary
conditions M,V′,M,V at the bottom, left, top, and right, respectively. The tuples A(m, j),
B(m, j), C(m, j), and D(m, j) encode the arrow configurations at each vertex (−m, j) of the
rectangle.

See Figure 8 for an example when V′ = (0, . . . ,0).

M(−n) M(−1)

M(−n) M(−1)

0

...

0

0

0

(uN , s
(h)
N )

(u3, s
(h)
3 )

(u2, s
(h)
2 )

(u1, s
(h)
1 )

. . .

. . .
V(N)

...

V(3)

V(2)

V(1)

Figure 8: A vertex model on the cylinder whose partition function (indexed by the tuples
V(1), . . . ,V(N)) is equal to ⟨∅|Q|V⟩. We identify the top and the bottom boundaries (dashed
lines), and sum over all possible tuples M(−n), . . . ,M(−1) ∈ Zn

≥0 encoding the paths which wind
around the cylinder an arbitrary number of times. The left vector ⟨∅| is empty, which corresponds
to no paths entering from the left.

Observe that the partition function ⟨V′|Q|V⟩ in Definition 2.12 involving the sum over
M(−n), . . . ,M(−1) cannot be interpreted as a probability in a stochastic vertex model because
we are summing over input path configurations at vertices, as well as over the output ones.
Moreover, this sum may even be divergent. Therefore, we need to make sure that the quantities
⟨V′|Q|V⟩ are well-defined:
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Lemma 2.13. For any |V⟩ ∈ V ⊗N
full , the sum over M(−n), . . . ,M(−1) in Definition 2.12 is

convergent for any |q| < 1.

Proof. By Lemma 2.5, paths of colors i < m cannot leave the column (−m). The fact that the
configuration |V⟩ ∈ V ⊗N

full contains at least one arrow of each color implies that each column (−m)
must horizontally emit at least one path of color m. Recall again that after we fix the entering
horizontal arrows B at a lattice site, the summation multi-index P in each vertex weight belongs
to a fixed finite set where Pi ≤ Bi for all i. Furthermore, with V fixed, the size of tuples B,D
at each vertex is bounded from above. Thus, the factor q−DiPj in each vertex weight is bounded
from above. Therefore, the presence of the factors q

∑
m≤i<j≤n DiCj in the vertex weights (2.12)

implies that the weight of the whole column (−m) with fixed winding path counts M(−m)i,
i > m, contains the factor qd

∑n
i=m+1 M(−m)i for some d ≥ 1. This implies that for any fixed m,

the sum over the quantities M(−m)i, i > m, is finite. This completes the proof.

Remark 2.14. The condition that |V⟩ ∈ V ⊗N
full is essential for Lemma 2.13. Indeed, for n = 3,

we have

W(−2)
s1,s2,u(A,B;C,D) =

(s2u/s1; q)∞
(s1s2u; q)∞

,

where A = C = (0,∞, k) and B = D = (0, 0, 0). This expression is independent of k. For N = 1,
we need to sum it over all k, which leads to divergence. However, if D = (0, d, 0), the weight

W(−2)
s1,s2,u(A,B;C,D) contains the power qkd, eliminating this problem of divergence.

The partition functions ⟨V′|Q|V⟩ are essentially independent of the entrance state ⟨V′|:

Proposition 2.15. Let |V⟩ ∈ V ⊗N
full . If the entering configuration V′ contains at least one path

of color strictly less than n, then ⟨V′|Q|V⟩ = 0. Otherwise, if V′ contains only paths of color n,
then we have ⟨V′|Q|V⟩ = ⟨∅|Q|V⟩.

Proof. Lemma 2.5 guarantees that no paths of color strictly less than n leave column (−n). Since
we cannot have paths of color not equal to n infinitely wind in the column (−n), the partition
function ⟨V′|Q|V⟩ must vanish if V′ contains at least one path of color strictly less than n. This
establishes the first claim. The second claim immediately follows from Lemma 2.9.

Remark 2.16 (Trace formula for queue partition functions). The queue vertex model partition
function can be interpreted through a product of the following N operators, where N is the size
of the ring in the cross-section of the cylinder:

⟨∅|Q|V⟩ = Trace•
(
XV(1)(u1, s

(h)
1 ) · · ·XV(N)(uN , s

(h)
N )
)
. (2.20)

Here each XV(u, s), V ∈ Zn
≥0, acts in the n-fold tensor product V−n ⊗ . . .⊗ V−1, where V−m has

basis |M(−m)⟩, M(−m) ∈ Zn
≥0, m = 1, . . . , n. The matrix elements of XV(u, s) are partition

functions of the queue weights on the lattice {1}×{−n, . . . ,−1}. See Figure 9 for an illustration.
The operation Trace• in (2.20) means that we restrict the summation to the tuples M satisfying
(2.19). One can turn Trace• into a genuine trace by suitably modifying the definition of the
spaces V−m.
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M(−n) M(−1)

M′(−n) M′(−1)

0(u, s)

. . .
V

Figure 9: The matrix element ⟨M(−n), . . . ,M(−1)|XV(u, s) |M′(−n), . . . ,M′(−1)⟩ of one of the
operators XV(u, s) entering the trace formula (2.20). At the vertex indexed by −m, m = 1, . . . , n,

we have the queue vertex weight W(−m)

s,s
(v)
m ,u/vm

.

3 Stationarity of the queue vertex model

In this section, we establish two general stationarity properties of the queue vertex model on the
cylinder. Specifically, we construct two Markov operators which, when applied to the empty state
⟨∅| on the cylinder, commute with the queue transfer matrix Q from Definition 2.12. Both of
these commutation relations follow directly from the Yang–Baxter equation.

In this section we work with formal Markov operators, that is, we do not assume that their
matrix elements are nonnegative. The matrix elements only need to satisfy the corresponding
sum-to-one properties. In the future sections we specify the ranges of parameters making the
matrix elements nonnegative.

3.1 Twisted cylinder Markov operator

Recall that n is the number of colors, and N is the size of the ring in the vertical cross-section of
the cylinder {−n, . . . ,−1} × Z/NZ carrying the queue transfer matrix Q = Q(u; s(h);v; s(v)) of
Definition 2.12. For our first relation, we take the spin-12 specialization in the horizontal direction.

That is, the horizontal spin parameters in (2.18) are all equal to q−1/2:

s(h) = (s
(h)
1 , . . . , s

(h)
N ) = s

(h)
1
2

:= (q−1/2, . . . , q−1/2).

We can take each tensor component in the space V ⊗N (2.17) to be V = Cn+1.
We need some extra notation. Let Rz be the R-matrix (2.4), and denote by Řz the operator

in V ⊗ V with matrix elements (see the end of Section 2.1 for basis vector notations)

⟨i, j|Řz |ℓ, k⟩ := Rz(i, j; k, ℓ). (3.1)

When Řz acts on the k-th and the ℓ-th tensor components of V ⊗N , we denote it by Ř
(kℓ)
z .

Definition 3.1. Fix two spectral parameters u, u1. Let the twisted cylinder Markov operator
T(u, u1) be the linear operator on V ⊗N defined as

T(u, u1) := Ř
(12)
u1u−1 Ř

(23)
u1u−1 · · · Ř(N,1)

u1u−1 , (3.2)

Pictorially, T(u, u1) is given in Figure 10. The product in (3.2) is interpreted as a product of

Markov operators, that is, we first apply Ř
(12)
u1u−1 to a fixed configuration of arrows on the cylinder,

get a random configuration, then apply Ř
(23)
u1u−1 to the new configuration, and so on.
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Ru1u−1

Ru1u−1

Ru1u−1

i1

i2

i3

i′1

i′2

i′3

u1

u

u

T(u, u1)

Figure 10: The configuration of vertices whose partition function is the matrix element of the
twisted cylinder Markov operator ⟨V′|T(u, u1)|V⟩, where V = (i1, i2, i3), V

′ = (i′1, i
′
2, i

′
3), and

ik, i
′
k ∈ {0, . . . , n}. The size of the ring isN = 3. After all theN crossings, the spectral parameters

attached to the strands on the right are the same as on the left. Note that at each crossing, we
use the vertex weights Ru1u−1 in the same way as in the Yang–Baxter equation in Figure 6; see
also Remark 3.2 for a discussion of the notation.

Remark 3.2. The swapping of the indices in the operator Řz compared to the R-matrix Rz (see
(3.1)) is purely notational. We employ it for the following convenience. When Figure 10 is read
from left to right, the space V ⊗N encoding configurations on the ring stays the same after every
single crossing of the strands. In particular, passing to Řz does not affect the random mechanism:
the crosses act in Figure 10 in the same way as in the diagram of the Yang–Baxter equation in
Figure 7.

Iterating the sum-to-one property of the R-matrix (2.4), we see that for any initial configu-
ration V′ = (i1, . . . , iN ), where ik ∈ {0, . . . , n}, we have

∑

V=(i′1,...,i
′
N )∈{0,1,...,n}N

⟨V′|T(u, u1)|V⟩ = 1. (3.3)

If the matrix elements of T(u, u1) are nonnegative, then it is a Markov operator. However,
considering T(u, u1) as a formal Markov operator with the sum-to-one property suffices for this
section.

We have the following stationarity of the queue vertex model under the action of the twisted
cylinder Markov operator:

Theorem 3.3. Let the parameters u, u1 of the twisted cylinder Markov operator T (3.2), as well

as the parameters v = (v1, . . . , vn) and s(v) = (s
(v)
1 , . . . , s

(v)
n ) in the queue transfer matrix Q of

Definition 2.12 be arbitrary. Denote u := (u1, u, . . . , u). Then we have

〈
∅
∣∣Q(u; s

(h)
1
2

;v; s(v))T(u, u1) =
〈
∅
∣∣Q(u; s

(h)
1
2

;v; s(v)). (3.4)
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. . .

u

u

u1

0

0

0

i3

i2

i1

. . .

0

0

0

u

u

u1

i3

i2

i1

=

. . .

0

0

0

u

u

u1

i3

i2

i1

=

Figure 11: The commutation in the proof of Theorem 3.3 for N = 3. Here i1, i2, i3 ∈ {0, 1, . . . , n}
are arbitrary.

Proof. We apply the Yang–Baxter equation specialized to the queue vertex weights; see Propo-
sition 2.10. In this equation, the cross vertex weights have the form W u

u1
,1,1, which are encoded

by the operator Řu1u−1 ; see (2.11). We illustrate the argument diagrammatically for N = 3 in
Figure 11.

Applying the Yang–Baxter equation successively at columns −n,−n + 1, . . . ,−2,−1 of the
queue vertex model, we get the intertwining relation

Q((u1, u, . . . , u); s
(h)
1
2

;v; s(v))Ř
(12)
u1u−1 = Ř

(12)
u1u−1Q((u, u1, . . . , u); s

(h)
1
2

;v; s(v)) (3.5)

Continuing inductively with Ř
(23)
u1u−1 , . . . , Ř

(N−1,N)
u1u−1 turns the horizontal spectral parameter se-

quence in Q into (u, . . . , u, u1). Finally, after applying the last operator Ř
(N,1)
u1u−1 , we get back to

the original sequence. Here we used the periodicity in the vertical direction of the vertex model
defining Q, which is crucial to complete the commutation. Therefore,

Q(u; s
(h)
1
2

;v; s(v))T(u, u1) = T(u, u1)Q(u; s
(h)
1
2

;v; s(v)).

It remains to observe that ⟨∅|Ř(i,j)
u1u−1 = ⟨∅| for all i, j. This completes the proof.

3.2 Straight cylinder Markov operator

Here we define another Markov operator on the cylinder of size N + 1 which commutes with
the queue transfer matrix on this cylinder when applied to the empty configuration ∅ at the left
boundary of the cylinder. It acts in the space Cn+1 ⊗ V ⊗N , where the first factor Cn+1 is an
auxiliary space which we identify with the index 0 in the superscripts. The tensor components of
the space V ⊗N are indexed by j = 1, 2, . . . , N , and have basis vectors |V(j)⟩, where V(j) ∈ Zn

≥0

encodes the arrow configuration on site j. That is, in contrast with Section 3.1, we return to the
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x

uN

u3

u2

u1

...

k

U(N)

U(3)

U(2)

U(1)

...

ℓ

V(N)

V(3)

V(2)

V(1)

Figure 12: The straight cylinder Markov operator S = S(x,u; s(h)), applied three times. The

line with spectral parameter x has spin parameter q−
1
2 , so edges along this line can only be

occupied by at most one path (hence k, ℓ ∈ {0, 1, . . . , n} ). The partition function of the displayed
configuration is the matrix element

〈
k,U

∣∣S3
∣∣ℓ,V

〉
.

higher spin setting. Later in Sections 5 and 6 we will take limits in which the marginal process
corresponding to the factor V ⊗N will lead to the colored q-Boson or the colored q-PushTASEP
on the ring of size N .

Recall the Markov operator Ls,z acting in Cn+1 ⊗ V ; see (2.3).

Definition 3.4. Fix spectral parameters (x,u) = (x, u1, u2, . . . , uN ) ∈ CN+1 and horizontal

spin parameters s(h) = (s
(h)
1 , . . . , s

(h)
N ) ∈ CN . The straight cylinder Markov operator denoted by

S = S(x,u; s(h)) acts in Cn+1 ⊗ V ⊗N as follows:

S(x,u; s(h)) := L
(0N)

s
(h)
N ,xu−1

N

L
(0,N−1)

s
(h)
N−1,xu

−1
N−1

. . .L
(01)

s
(h)
1 ,xu−1

1

. (3.6)

Here by L
(0,j)
s,z we denote the operator Ls,z acting on Cn+1 ⊗ V ⊗N in the auxiliary space Cn+1

and the j-th tensor component of V ⊗N . The operator S is illustrated in Figure 12.

Remark 3.5. In Definition 3.4 and throughout this subsection, we index the tensor factors of
the space Cn+1 ⊗ V ⊗N by 0, 1, . . . , N , but put the horizontal strand corresponding to the 0-th
factor on top of the cylinder in Figures 12 and 13. This way of indexing is consistent with the
action of the operators Ls,z in Cn+1 ⊗ V in (3.6), while the location of the 0-th strand on top
just below the cylinder’s cut is convenient for illustrations.

The operator S(x,u; s(h)) satisfies the sum-to-one property similarly to (3.3), and thus is a
formal Markov operator. We have the following stationarity of the queue vertex model under S:

Theorem 3.6. Let us take the parameters u, s(h),v, s(v) as in (2.18), and consider the queue
vertex transfer matrix on the ring of size N + 1 with the parameters

Q = Q
(
(xq

1
2 ,u); (q−

1
2 , s(h));v; s(v)

)
.

Then we have 〈
∅
∣∣QS =

〈
∅
∣∣Q,

where S = S(x,u; s(h)) has parameters compatible with those in Q.
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. . .

0

0

0

0

0

(q−
1
2 , xq

1
2 )

(s
(h)
N , uN )

(s
(h)
3 , u3)

(s
(h)
2 , u2)

(s
(h)
1 , u1)

...

ℓ

V(N)

V(3)

V(2)

V(1)

. . .

0

0

0

0

0

=

...

ℓ

V(N)

V(3)

V(2)

V(1)

. . .

0

0

0

0

0

=

...

...

ℓ

V(N)

V(3)

V(2)

V(1)

. . .

0

0

0

0

0

...

ℓ

V(N)

V(3)

V(2)

V(1)

=

Figure 13: An illustration of the proof of Theorem 3.6. Each move is justified by the Yang–
Baxter equation (Proposition 2.10). As usual, the equality of pictures means the equality of the
corresponding partition functions with the fixed boundary conditions.

Proof. We employ the Yang–Baxter equation of Proposition 2.10. Let us match our parameters
to this equation. The queue vertex model at rows 0 and j has vertex weights

W(−m)

q−1/2,s
(v)
m ,xq

1/2

vm

, W(−m)

s
(h)
j ,s

(v)
m ,

uj
vm

,

respectively. The operator S has the vertex weight L
s
(h)
j ,xu−1

j

, which, by (2.11), is the same as the

fused weight W
xu−1

j /s
(h)
j ,1,M

, where q−M/2 = s
(h)
j . We see that these three weights indeed satisfy

the Yang–Baxter equation illustrated in Figure 7.

Applying this Yang–Baxter equation with parameters (v1, s
(v)
1 ), . . . , (vn, s

(v)
n ) (that is, at the

columns −1, . . . ,−n of the queue vertex model), we obtain the following relation between opera-
tors acting in the space Cn+1 ⊗ V ⊗N , applied to the empty configuration ∅ at the left boundary
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of the cylinder:

〈
∅
∣∣Q
(
(xq

1
2 , u1, . . . , uN ); (q−

1
2 , s

(h)
1 , . . . , s

(h)
N );v; s(v)

)
L
(0N)

s
(h)
N ,xu−1

N

=
〈
∅
∣∣P (0,N)Q

(
(uN , u1, . . . , uN−1, xq

1
2 ); (s

(h)
N , s

(h)
1 , . . . , s

(h)
N−1, q

− 1
2 );v; s(v)

)
P (0,N).

(3.7)

Here the permutation operator P (0,N) swaps the 0-th and the N -th tensor components in the
space Cn+1 ⊗ V ⊗ . . . ⊗ V , and is required since the operator Q in the right-hand side acts in
V ⊗ . . .⊗ V ⊗ Cn+1. Identity (3.7) represents the first step of the transformations illustrated in

Figure 13. In the next step, the action of L
(0,N−1)

s
(h)
N−1,xu

−1
N−1

results in the following identity:

〈
∅
∣∣P (0,N)Q

(
(uN , u1, . . . , uN−1, xq

1
2 ); (s

(h)
N , s

(h)
1 , . . . , s

(h)
N−1, q

− 1
2 );v; s(v)

)
P (0,N)L

(0,N−1)

s
(h)
N−1,xu

−1
N−1

=
〈
∅
∣∣P (N,N−1)P (0,N)Q

(
(uN , u1, . . . , uN−2, xq

1
2 , uN−1); (s

(h)
N , s

(h)
1 , . . . , s

(h)
N−2, q

− 1
2 , s

(h)
N−1);v; s

(v)
)

× P (0,N)P (N,N−1).

Iterating the action of the other operators L, after N total steps the horizontal parameter se-
quences u and s(h) return back to their original states (xq

1
2 ,u); (q−

1
2 , s(h)). Here we employed

the periodicity of the vertex model defining Q to complete the commutation. This establishes
the desired stationarity relation.

4 Multi-species ASEP from twisted cylinder

In this section we take a continuous time limit of the twisted cylinder Markov operator T defined in
Section 3.1, and recover the known descriptions of the stationary distribution of the multi-species
TASEP and ASEP on the ring from [FM05], [PEM09], and [Mar20].

4.1 Multi-species ASEP on the ring

Recall that n is the number of particle species (also called “types” or “colors”), and N is the size
of the ring Z/NZ. The state space of the multi-species ASEP consists of particle configurations
η = (η1, . . . , ηN ) on the ring, where ηk ∈ {0, 1, . . . , n} encodes the type of the particle at site k.
The type 0 corresponds to the empty site.

For a configuration η and each pair of neighboring sites (k, k+1) (including (N, 1) for k = N),
denote by ηk,k+1 the configuration (η1, . . . , ηk+1, ηk, . . . , ηN ). That is, ηk,k+1 is obtained from η
by swapping the types at sites k and k + 1.

Definition 4.1. The multi-species ASEP (mASEP) is a continuous time Markov chain on the
space of particle configurations on the ring, with the following transition rates:

Rate(η → ηk,k+1) =

{
q, ηk > ηk+1;

1, ηk < ηk+1,
(4.1)

where k runs over 1, 2, . . . , N , and in (4.1) we assume that ηk ̸= ηk+1. The multi-species ASEP
depends on a single parameter q ∈ [0, 1).
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Remark 4.2. We use the ordering of colors in which color n has the highest priority (to move
from site j+1 to site j on the ring), and color 1 has the lowest priority. Often in the literature on
multi-type interacting particle systems, e.g., in [Mar20], a reverse convention is used, in which type
1 has the highest priority. In Section 4.3 below, when this distinction becomes relevant, we recast
all the necessary definitions from the existing literature using our color ordering conventions.

Observe that mASEP preserves the number of particles of each type. We denote these type
counts by

Nm :=
∑N

j=1
1ηj=m, m = 1, . . . , n. (4.2)

We have N1 + . . . +Nn ≤ N . In addition, throughout this section, we assume that Nm ≥ 1 for
all m = 1, . . . , n. This assumption is very natural since if there are no particles of a given type,
then the evolution of the n-type mASEP is the same as that of a (n− 1)-type mASEP, where the
missing type is removed entirely. Note also that at the level of queue vertex models, a violation
of the assumption that Nm ≥ 1 for all m leads to problems; see Lemma 2.13 and Remark 2.14.

Definition 4.3 (mASEP stationary distribution). When restricted to a sector (namely, the
subset of the state space) with fixed type counts (N1, . . . , Nn), mASEP becomes an irreducible
continuous time Markov chain on a finite state space. Therefore, it admits a unique stationary
distribution in each sector. We denote this distribution by ProbmASEP

N1,...,Nn
(η).

It is natural to encode the states η as basis vectors in (Cn+1)⊗N :

|η⟩ = |η1, . . . , ηN ⟩ = |η1⟩ ⊗ . . .⊗ |ηN ⟩.

Since all jumps under mASEP are nearest neighbor, the infinitesimal generator of mASEP
written as a sum of local rate matrices as follows. Consider two possible configurations of parti-
cles ii′, jj′ at adjacent lattice sites, say, k and k + 1. Define an operator Mloc in (Cn+1)⊗2 such
that

⟨i, i′|Mloc|j, j′⟩ =
(
Mloc

)
ii′,jj′ := 1(i,i′)=(j′,j)

(
jump rate ii′ → jj′

)

− 1(i,i′)=(j,j′)
(
jump rate ii′ → j′j

)
. (4.3)

The matrix element (4.3) is nonzero if and only if (i, i′) = (j, j′) or (i, i′) = (j′, j). The infinitesimal
Markov generator of mASEP then has the form

MmASEP =
N∑

l=1

(
Mloc

)l,l+1
, (4.4)

where
(
Mloc

)l,l+1
acts as Mloc on tensor factors of sites l, l + 1, and as the identity on all other

factors. Denote by {PmASEP(t)}t∈R≥0
, the continuous time Markov semigroup generated by (4.4).

The passage from the infinitesimal generator to this semigroup is straightforward, as the process
lives on a finite state space. See the left side of Figure 14 for an illustration of the process.

The next statement identifies mASEP as a Poisson-type limit of the twisted cylinder Markov
operators.
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Proposition 4.4. For any u ∈ R, we have the convergence of Markov operators in (Cn+1)⊗N :

lim
ϵ→0

T(u, u(1− ϵ))⌊(1−q)t/ϵ⌋ = PmASEP(t), t ∈ R≥0. (4.5)

Here T is the twisted cylinder Markov operator (3.2). See the right side of Figure 14 for an
illustration of the limiting jump rates.

Recall that q ∈ [0, 1). One readily sees that for any u ∈ R and ϵ ∈ (0, 1), both sides of the
limiting relation (4.5) are Markov operators with nonnegative matrix elements.

Proof outline of Proposition 4.4. This is a standard limit of the stochastic six-vertex model lead-
ing to the ASEP, see [BCG16], [Agg17] and also [BW22a, Section 12.3] for its colored version.
In short, in the regime ϵ → 0, all paths want to follow a “staircase” motion, with occasional
deviations that occur in continuous time according to independent exponential clocks. Because
of how the cross vertices are organized to form the twisted cylinder Markov operator (Figure 10),
the staircase motion corresponds to particles staying in place. For convenience, let us reproduce
the main computation.

First, consider the limit of the local operators Řz (3.1), where z = u1u
−1 = 1 − ϵ because

u1 = u(1− ϵ). We have for the matrix elements (2.4):

1− z

1− qz
=

ϵ

1− q
+O(ϵ2), 1− 1− z

1− qz
= 1− ϵ

1− q
+O(ϵ2),

and similarly for q 1−z
1−qz and 1−q 1−z

1−qz . Therefore, the local infinitesimal generator (4.3) of mASEP
has the following form:

Mloc = (1− q)
∂

∂ϵ

∣∣∣∣
ϵ=0

Ř1−ϵ. (4.6)

See Figure 14, right, for an illustration of how we interpret the operators Ř1−ϵ in terms of the
hopping rates.

In the ϵ → 0 limit, the product of the operators Ř1−ϵ over all pairs of neighboring lattice sites
(which is equal to the twisted cylinder operator (3.2)) behaves as Id+ 1

1−q ϵ MmASEP, where Id is
the identity matrix, and MmASEP is defined in (4.4). This leads to the desired statement about
the convergence to the mASEP Markov semigroup.

4.2 Vertex model for the mASEP stationary distribution

Let us now apply Theorem 3.3 to mASEP. Recall that by ⟨∅|Q |V⟩ we denote the partition
function of the queue vertex model on the cylinder introduced in Definition 2.12. For mASEP,

the queue transfer matrix Q = Q(u; s
(h)
1
2

;v; s(v)) has the parameters

u = (u, . . . , u), s
(h)
1
2

= (q−1/2, . . . , q−1/2),

where v, s(v) ∈ Cn are arbitrary. The N -tuple V = Vη := (eη11η1≥1, . . . , eηN1ηN≥1) encodes
the same information as the mASEP state η = (η1, . . . , ηN ). Indeed, this is because each of the
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ϵ
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Figure 14: Left: An illustration of a state in mASEP on a ring of size N = 9, with all possible
jump rates indicated. Right: The interpretation of the mASEP hopping rates as limits of the
operators Ř1−ϵ.

subsets Vη(j) ⊂ Zn
≥0, j = 1, . . . , N , must have at most one element thanks to the spin-12 reduction

coming from s
(h)
1
2

.

We split this subsection into two parts. First, we show in Proposition 4.5 that the normalized
partition functions of the queue vertex model produce the mASEP stationary distribution. Then
we present in Proposition 4.9 a slightly modified vertex model for which all partition functions
on the cylinder with right boundary η are positive without normalization.

Proposition 4.5. With the above notation and for generic complex parameters u,v, s(v), the

queue vertex model partition function with boundary η and vertex weights W(−m)

q−1/2,s
(v)
m ,u/vm

is pro-

portional to the stationary probability for the multi-species ASEP on the ring:

ProbmASEP
N1,...,Nn

(η) =
1

ZmASEP
N1,...,Nn

(u;v; s(v))
⟨∅|Q(u; s

(h)
1
2

;v; s(v)) |Vη⟩. (4.7)

The normalizing constant ZmASEP
N1,...,Nn

(u;v; s(v)) may depend on the type counts (N1, . . . , Nn) (4.2),
but not on the state η within the sector determined by (N1, . . . , Nn).

In Proposition 4.5, by “generic” we mean that the parameters must ensure that ⟨∅|Q |Vη⟩
is finite and nonzero for all η with type counts Nm ≥ 1, m = 1, . . . , n. For fixed N and n,
genericity is ensured by excluding zero sets of finitely many polynomials in u,v, and s(v) from
the parameter space. Later in Proposition 4.9, we present concrete conditions on the parameters
producing stationary measures for all N and n.
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Proof of Proposition 4.5. Iterating Theorem 3.3, we have

〈
∅
∣∣Q
(
(u1, u, . . . , u); s

(h)
1
2

;v; s(v)
)
T(u, u1)

⌊(1−q)t/ϵ⌋ =
〈
∅
∣∣Q
(
(u1, u, . . . , u); s

(h)
1
2

;v; s(v)
)
.

Setting u1 = u(1− ϵ) and sending ϵ → 0 turns the power of the twisted cylinder Markov operator
in the left-hand side into PmASEP(t); see Proposition 4.4. The vertex weights in the queue
vertex model with horizontal spin 1

2 are given in Figure 15 (recall that Q involves the weights

W(−m)

q−1/2,s
(v)
m ,u/vm

). These vertex weights are continuous in the spectral parameter u for generic

parameters. Therefore, we can simply take the limit u1 → u in the queue transfer matrix, which

implies that
〈
∅
∣∣Q
(
(u, u, . . . , u); s

(h)
1
2

;v; s(v)
)
is the left (row) eigenvector of the Markov semigroup

PmASEP(t) with eigenvalue 1 (where here the exchange of the limit and the implicit summation
in both sides of the above equation is justified by the fact that the summation defining each
partition function is uniformly bounded by a geometric series, and the sum over Vη on the left
hand side has a bounded number of terms, independently of ϵ). Thus, it is proportional to the
row vector representing the stationary distribution of mASEP, as desired.
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Figure 15: Weights W(−m)

q−1/2,s,uq1/2
(A, k;C, ℓ) entering the spin-12 queue vertex model which repre-

sents the stationary distribution of mASEP. Here m < k < ℓ ≤ n, and it suffices to consider only
vertices with no colors ≤ m entering from the left. Recall that Am = +∞, so the vertices in the
last column also satisfy the arrow conservation property.

Remark 4.6. Proposition 4.5 expresses the stationary probabilities of mASEP, a system depend-
ing on a single parameter q ∈ [0, 1), as normalized partition functions ⟨∅|Q |Vη⟩/ZmASEP

N1,...,Nn
of the

queue vertex model. The latter in addition depends on the parameters u,v, and s(v). However,
by (4.7), we see that while u,v, s(v) enter the weights of the queue vertex model, these parameters
do not affect the normalized partition functions.
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Definition 4.7. For s ̸= 0 let us define the mASEP gauge transformation of the queue vertex
weights:

W(−m),mASEP+

q−1/2,s,uq1/2
(A, k;C, ℓ) := (−1/s)1ℓ≥1W(−m)

q−1/2,s,uq1/2
(A, k;C, ℓ). (4.8)

That is, we remove the factor (−s) from the weights in the right three columns in Figure 15. The
resulting weights make sense for s = 0, too. The notation “+” in (4.8) indicates that we will
impose conditions on the parameters under which these weights are nonnegative.

Also, denote by
⟨∅|QmASEP+ |Vη⟩

Z
mASEP+

N1,...,Nn

(4.9)

the corresponding normalized partition function of the queue vertex model on the cylinder with
the right boundary η.

Remark 4.8. The weights (4.8) are the queue limits (as in Section 2.4) of the non-stochastic
higher spin colored vertex weights defined in [BW22a, (2.2.2)].

Proposition 4.9. Fix the type counts (N1, . . . , Nn) with Nm ≥ 1 for all m. Let the parameters
satisfy

0 ≤ s(v)m <
u

vmq1/2
, s(v)m

u

vmq1/2
< 1, m = 1, . . . , n. (4.10)

Then

ProbmASEP
N1,...,Nn

(η) =
⟨∅|QmASEP+ |Vη⟩

Z
mASEP+

N1,...,Nn

,

is the mASEP stationary distribution, and ⟨∅|QmASEP+ |Vη⟩ > 0 for all η.

Note that conditions (4.10) are written for u/vm entering the vertex weights asW(−m),mASEP+

q−1/2,s
(v)
m ,u/vm

,

while for displaying the weights in Figure 15 it was convenient to mulitply the spectral parameter
by q1/2.

Proof of Proposition 4.9. Assume first that s
(v)
m > 0 for all m. Replacing the queue vertex weights

with their gauge transformed versions (4.8) multiplies the partition function ⟨∅|Q |Vη⟩ by
∏n

m=1
(−1/s(v)m )Nm+...+Nn ,

which depends only on the sector, but not on the configuration η. Therefore, the gauge trans-
formation may be incorporated into the normalizing constant Z

mASEP+

N1,...,Nn
. One readily sees that

under conditions (4.10) and when s
(v)
m > 0 for all m, all vertex weights (4.8) are positive (see

Figure 15). This completes the proof in the case when all the s
(v)
m ’s are positive.

Setting some (or all) of the s
(v)
m ’s to zero in the weights (4.8) is allowed, and leads to a well-

defined partition function ⟨∅|QmASEP+ |Vη⟩. In this partition function, some of the vertex weights
in Figure 15 vanish. To show that ⟨∅|QmASEP+ |Vη⟩ is still positive and not merely nonnegative
for all η, first notice that there exists η for which ⟨∅|QmASEP+ |Vη⟩ ̸= 0 (this verification is
straightforward, and we omit it). Next, observe that

∑
η
⟨∅|QmASEP+ |Vη⟩⟨Vη| (4.11)
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is a nonzero left (row) eigenvector with eigenvalue 1 of the mASEP semigroup PmASEP(t) cor-
responding to an irreducible continuous time Markov process on a finite state space. Therefore,
(4.11) is proportional to the Perron–Frobenius eigenvector of PmASEP(t), which has all compo-
nents positive. This completes the proof.

4.3 Matching to multiline queues

4.3.1 Original multiline queues

First, we connect the queue vertex model QmASEP+ with special parameters with multiline queues
introduced by Martin [Mar20]. He showed that the output of the latter produces the stationary
distribution of mASEP on the ring.

Setting u = q1/2 and s
(v)
m = 0, vm = 1 for all m = 1, . . . , N in the vertex weights (4.8) leads

to the weights given in Figure 16 which we denote by

W(−m),mq := W(−m),mASEP+

q−1/2,0,q1/2
. (4.12)

By Proposition 4.9, these weights produce positive partition functions of the queue vertex model
on the cylinder.

Let us connect the queue vertex model QmASEP+ with these particular parameters to multiline
queue diagrams. These diagrams were defined in [Mar20, Sections 1.1 and 3.6], and the vertex
model interpretation follows from formula (3.9) in [Mar20]. For the reader’s convenience, in the
rest of Section 4.3.1 we reproduce the main definitions and the matching of queues to our vertex
models.
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Figure 16: Weights W(−m),mq (4.12). In Proposition 4.10 we match them to probabilities under
multiline queues of [Mar20]. Here m < k < ℓ ≤ n, and recall (Remark 4.2) that our ordering of
colors is reversed compared to particle types in [Mar20].

Let us recast [Mar20, Algorithm 2] (called the Martin algorithm in what follows) in the
language of one column of a vertex model on the cylinder. Fix m = 1, . . . , n, type counts
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Nm, Nm+1, . . . , Nn, and assume that we have an arbitrary fixed configuration η of paths of colors
strictly larger than m entering the column (−m) from the left. The configuration η has Ni paths
of color i, i > m. The Martin algorithm (for color m) samples a random new configuration η′ of
paths exiting the column (−m) to the right. The configuration η′ has Ni paths of color i ≥ m; it
is constructed sequentially, through the following three steps.

1. Start with the empty configuration η′ = {0, . . . , 0} (N zeros). In addition, sample a uniformly
random subset J ⊂ {1, . . . , N} of sites on the cylinder of cardinality Nm + . . . + Nn. Next,
we randomly update η′ such that in the end η′j > 0 if and only if j ∈ J .

2. For each color i = n, n − 1, . . . ,m + 1 (in this order), let ai1 < . . . < aiNi
be the locations of

paths of color i in η.

2a. For j = 1, . . . , Ni, if η
′
aij

= 0 and aij ∈ J , set η′
aij

= i (if a path of color i can come straight

through, it does so).

2b. Otherwise, the j-th path of color i starts from ηaij
and randomly chooses an exit site

among yet unoccupied sites in J as follows. Let aij < p1 < p2 < . . . < pl (here, p < p′

means that as we read upwards starting from p, possibly wrapping around in the vertical
direction, we observe p′ before getting back to aij), where (p1, . . . , pl) are all sites in J
for which at this point we have η′pt = 0, t = 1, . . . , l. Then, set η′pt = i with probability
proportional to qt−1.

2b’. Equivalently, instead of step 2b, one can think that the color i path starting from site
aij goes up the cylinder and sequentially with probability 1− q picks an unoccupied site
from J to exit, or with probability q skips this site (accepts or declines the service, in
queueing terminology). The path continues the motion up the cylinder until its exit, and
can go around the cylinder an arbitrary number of times. If the path exits at pt, then
after normalization, this produces the same probability proportional to qt−1.

3. Once all paths of all colors strictly larger than m are processed, we have Nm unoccupied sites
in J left. We set η′j = m for all these remaining sites.

To obtain the mASEP stationary distribution ProbmASEP
N1,...,Nn

(Definition 4.3), one needs to apply
the Martin algorithm for color n with input η(0) = ∅, and get a random output η(1). Then apply
the algorithm for color n − 1 with input η(1), get an output η(2), and so on. The final output
η(n) of the algorithm for color 1 is the random configuration distributed according to the mASEP
stationary distribution.

The following statement matches the output of the Martin algorithm to vertex models and
essentially coincides with [Mar20, Theorem 3.4]. For convenience, we reproduce it here.

Proposition 4.10. In each sector determined by the fixed type counts (N1, . . . , Nn), the output η
of the Martin algorithm has the same distribution as the output of our queue vertex model on the
cylinder with the weights W(−m),mq given in Figure 16.

Idea of proof. This follows by matching the vertex weights in Figure 16 to the weights wi(Q|A,S)
given in [Mar20, (3.9)]. The translation from the queueing language to vertex models is straight-
forward and we omit it.
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Figure 17: The Martin algorithm from [Mar20] with N = 6, n = 4, in the column (−m), where
m = 2. The set J is {1, 4, 5, 6}. Given this J , the conditional probability of the configuration in
the figure (according to the description with 2b’) is proportional to q5 (the color 4 path skips five
possibilities) times q2 (the top color 3 path skips two possibilities) times 1 (the bottom color 3
path selects the first available possibility). The boxed numbers indicate the ring sites.

In [Mar20], the stationarity of the output η of the Martin algorithm under mASEP follows
from the Matrix Product Ansatz. The connection between the algorithm and the Matrix Product
Ansatz is essentially equivalent to Proposition 4.10. We link queue vertex models to Matrix
Product Ansatz in Section 4.4 below.

Remark 4.11. While the Martin algorithm and the queue vertex model produce the same
output η (in distribution, in each sector), it remains unclear whether one can define appropriate
“states” of the queueing system under the Martin algorithm such that these states are in a weight-
preserving bijection (possibly up to a common proportionality constant) with states of the queue
vertex model. Indeed, tracking each particle’s choices as in step 2b’ of the Martin algorithm with
the input as in Figure 17 involves the following information:

• Track how many times the path of color 4 wraps around the cylinder.

• Pick a bijection between the color 3 inputs and outputs (there are 2! choices in Figure 17).

• For each of the two bijections, track how many times each of the two color 3 paths wraps
around the cylinder.

Under the queue vertex model, we do not choose a bijection, and the wrapping arrows of colors
m+ 1, . . . , n are encoded by the tuple M(−m). Here M(−m)k is the total number of arrows of
color k that wrap around the ring (that is, go between the sites N and 1).
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To show that summing over all data in the queueing system produces the desired distribution of
the output η, one seems to require the intricate argument with compatible queue-length processes;
see [Mar20, Section 4.2] for details.

4.3.2 Alternative multiline queues and an interpolation

Let us consider a different specialization of the queue vertex model QmASEP+ introduced in

Section 4.2. Namely, set u = 1 and s = s
(v)
m = q, vm = 1 for all m = 1, . . . , N in (4.8), and clear

the common denominators 1− q. The resulting weights W(−m),mqalt := (1− q)W(−m),mASEP+

q−1/2,q,q1/2
are

given in Figure 18. By Proposition 4.9, they lead to positive partition functions on the cylinder.
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Figure 18: Weights W(−m),mqalt for the alternative multiline queue model.

Just as by Proposition 4.10, the weights W(−m),mq from Figure 16 produce the same output η
(in distribution) as the Martin algorithm, the new weights W(−m),mqalt shuold be related to the
alternative multiline queue model introduced in [Mar20, Section 7].

By definition, the alternative algorithm for color m consists of the same steps as the algorithm
described in Section 4.3.1 above, except step 2a. Instead, if η′

aij
= 0 and aij ∈ J , then the

entering color i path (i > m) from site aij still has probability q to go up the cylinder and not
exit immediately through this site.

Arguing similarly to [Mar20, Section 4.2], one can show that in each sector determined by
the fixed type counts (N1, . . . , Nn), the output η of the alternative multiline queue algorithm has
the same distribution as the output of the queue vertex model on the cylinder with the weights
W(−m),mqalt given in Figure 18. This identification of the alternative multiline queues with the
vertex model would resolve the conjecture from [Mar20, Section 7] that the distribution of η
is stationary under the mASEP dynamics on the ring. Indeed, this is because the output of
the queue vertex model with the weights W(−m),mqalt is already stationary under the mASEP
dynamics on the ring, thanks to our general Propositions 4.5 and 4.9 which ultimately rely on
the Yang–Baxter equation for the twisted cylinder (Theorem 3.3).

If we do not specialize the parameter s to 0 or q, we obtain a family of queue vertex weights
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Figure 19: Weights (1− s)W(−m),mASEP+

q−1/2,s,q1/2
interpolating between the vertex weights related to the

original and the alternative multiline queues of [Mar20].

depending on q and s (see Figure 19). The output of the vertex model with these weights produces
the mASEP stationary distribution (this again follows from Propositions 4.5 and 4.9). The (q, s)-
dependent weights should be related to a new multiline queue model that interpolates between
the original and the alternative multiline queues:

Definition 4.12 (Interpolating multiline queues). Let s ∈ [0, 1), and modify the Martin algo-
rithm (for a given color m) by changing step 2a as follows. If a color i path (i > m) enters
at aij and η′

aij
= 0 (that is, a service is immediately available), then the path exits (accepts the

service) with probability 1−s. With probability s, the path turns up the cylinder and skips every
successive available exit (service) with probability q (as prescribed by step 2b’). All other parts
of the algorithm remain the same.

For q = 0 (when mASEP becomes the multi-species TASEP), the interpolating model pro-
duces a multiline queue model with random service assignment. Note that for q = 0, both the
original and the alternative multiline queues become the same and are deterministic. For two
colors, this deterministic model was constructed in [Ang06] to describe the stationary distribution
of the two-color TASEP. It was generalized to n colors in [FM07].

Similarly to the argument in [Mar20, Section 4.2], it should be possible to identify the output
of the interpolating multiline queues with that of the (q, s)-dependent queue vertex model on the
cylinder. In Section 4.4 below, we outline a possible connection of the latter with the Matrix
Product Ansatz.

4.4 Connection to Matrix Product Ansatz

Prior to the multiline queue realization of the mASEP stationary distribution ProbmASEP
N1,...,Nn

in

[Mar20], Prolhac–Evans–Mallick [PEM09] showed that ProbmASEP
N1,...,Nn

can be expressed in a matrix
product form. For processes on the ring, this expression has the same format as our general
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trace formula (2.20), see (4.14) below, and includes matrices XMPA
m , m = 0, 1, . . . , n, indexed by

available colors. Matrix product ansatz representations for stationary probabilities of stochastic
interacting particle systems date back to [DEHP93]. In the single-species case, the stationary
distribution on the ring is uniform, and so the Matrix Product Ansatz becomes nontrivial only
for ASEP on an open interval, in which particles can hop in and out at the endpoints. This
case was considered in [DEHP93]. For the two- and three-species ASEP on the ring, the matrix
product approach was employed, respectively, in [DJLS93] and [MMR99]. A full multi-species
solution on the ring appeared about ten years later in [PEM09]. See also [BE07] for an earlier
survey of Matrix Product Ansatz applications to particle systems.

In the multi-species case, the matrices XMPA
m entering the product ansatz are constructed by

recursive tensoring from a few single-species building blocks A,D, and E satisfying quadratic
relations

AD − qDA = EA− qAE = (1− q)A, ED − qDE = (1− q)(E +D). (4.13)

The matrices A,D,E, as well as the XMPA
m ’s, are infinite-dimensional, and their products, as

well as the trace of A times a finite product of D and E matrices must be well-defined. The
tensoring construction of XMPA

m resembles the process of horizontally stacking the vertices in
columns −n,−n+1, . . . ,−1 as in Figure 9. We refer to [PEM09, (24)–(33)] or [Mar20, Section 2]
for details on the tensoring construction, and omit them here.

Once the matrix product probability distribution is defined through the trace in an appropriate
space as

ProbmASEP
N1,...,Nn

(η) =
Trace

(
XMPA
η1 · · ·XMPA

ηN

)

ZMPA
N1,...,Nn

, η = (η1, . . . , ηN ), (4.14)

one must independently check that it is stationary under the mASEP dynamics. A key property
in the argument is the existence of the so-called hat matrices X̂MPA

m , m = 0, 1, . . . , N , satisfying
quadratic relations [PEM09, (68)]:

n∑

i,i′=0

XMPA
i XMPA

i′
(
Mloc

)
ii′,jj′ = XMPA

j X̂MPA
j′ − X̂MPA

j XMPA
j′ , (4.15)

where Mloc are the local infinitesimal rates of the mASEP, see (4.3). These hat matrices are
also constructed in [PEM09] by recursive tensoring procedures. Note that our notation differs
from [PEM09] by a transposition (e.g. comparing (4.15) with formula (66) in [PEM09]). See also

[AAMP12] for a more general family of matrices XMPA
j , X̂MPA

j satisfying (4.15).

Let us explain how the construction of the hat matrices, and identity (4.15) for vertex model
partition functions directly follow from the Yang–Baxter equation. We take a concrete realization
of the Matrix Product Ansatz matrices XMPA

m using our vertex models.
Namely, let XMPA

j (u), j = 0, 1, . . . , n, be operators in V−n ⊗ . . . ⊗ V−1, where V−m has basis

|M(−m)⟩, M(−m) ∈ Zn
≥0, m = 1, . . . , n. By definition, the matrix elements of XMPA

j are partition
functions (with weights Wq−1/2,s,u) on the one-row lattice {1} × {−n, . . . ,−1} with boundary
conditions 0 and j on the left and right, respectively. See Figure 9 for an illustration.
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1 u(1− qAℓ)qA[ℓ+1,n] s(1− qAk)qA[k+1,n] sqA[m+1,n]

Figure 20: Table of weights W(−m),mASEP+

q−1/2,s,uq1/2
(4.8) with common denominators (1 − su) cleared,

which are used in the construction of the matrices A,D,E satisfying (4.13).

Let ϵ > 0 be small. By the Yang–Baxter equation (Proposition 2.10), the matrices XMPA
i (u)

and XMPA
i′ (u(1− ϵ)) satisfy the following identity involving the elements of R1−ϵ (2.4):

n∑

i,i′=0

XMPA
i (u)XMPA

i′ (u(1− ϵ)) ·R1−ϵ(i, i
′; j′, j) = XMPA

j (u(1− ϵ))XMPA
j′ (u). (4.16)

As in the proof of Proposition 4.4, let us differentiate (4.16) with respect to ϵ at ϵ = 0. Denote

X̂MPA
j (u) := (1− q)u

∂

∂u
XMPA
j (u), j = 0, 1, . . . , n.

Proposition 4.13. The matrices XMPA
i (u), X̂MPA

j (u) defined above with the help of the queue
vertex weights Wq−1/2,s,u satisfy the hat matrix identity (4.15).

Our realization of the matrices XMPA
j , X̂MPA

j satisfying the hat relation (4.15) as vertex model
partition functions highlights the Yang–Baxter structure of the Matrix Product Ansatz for the
multispecies ASEP which was previously unknown.

Proof of Proposition 4.13. The ϵ-derivative at ϵ = 0 of the right-hand side of (4.16) is equal to

−(1− q)−1X̂MPA
j (u)XMPA

j′ (u).

In the left-hand side, differentiating XMPA
i′ and noticing that R1(i, i

′; j′, j) = 1i=j1i′=j′ , we obtain

−(1 − q)−1XMPA
j (u)X̂MPA

j′ (u). This yields the second summand in the right-hand side of (4.15).
Finally, differentiating R1−ϵ and using (4.6), we recover the local infinitesimal rates of mASEP,
also multiplied by (1− q)−1. This completes the proof.

Let us also note that one can “recognize” the matrix product building blocks A,D,E in
the vertex weights of the queue vertex model on the cylinder. This allows to insert two extra
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parameters into the matrices. Namely, in [Mar20], two examples of A,D,E are presented, for
the original and for the alternative multiline queue models discussed in Section 4.3 above. Both
of these examples satisfy the relations (4.13). In these two examples, the matrices A,D,E are
equal to the n = 2 species versions of the corresponding XMPA matrices. Informed by this, and
now keeping track of the parameters u and s in the vertex weights, let us define

A :=




1 s 0 . . .
0 q qs . . .
0 0 q2 . . .
...

...
...

. . .


 , D := u−1




u− s 0 0 . . .
1− q u− sq 0 . . .
0 1− q2 u− sq2 . . .
...

...
...

. . .


 ,

E :=




1 u 0 . . .
0 1 u . . .
0 0 1 . . .
...

...
...

. . .


 .

(4.17)

These matrices can be obtained as one-row partition functions of the two-color queue-specialized

vertex model as shown in Figure 21. The relevant vertex weights W(−m),mASEP+

q−1/2,s,uq1/2
are shown in

Figure 20. We use the same parameter u in both columns.

∞2

∞2

(∞,M)

(∞,M ′)

0AM,M ′ = 1

∞2

∞2

(∞,M)

(∞,M ′)

0u2DM,M ′ = 2

∞2

∞2

(∞,M)

(∞,M ′)

0EM,M ′ = 0

Figure 21: The (M,M ′) martrix elements of the matrices A,D,E are obtained from the queue-
specialized vertex model. The symbol ∞2 represents (0,+∞) (infinitely many color 2 paths, and
no color 1 paths). Similarly, (∞,M) means a path configuration with M color 2 paths and +∞
color 1 paths.

One can directly check that the matrices (4.17) satisfy (4.13) for all u, s. Alternatively,
relations (4.13) can be obtained from the Yang–Baxter equation, satisfied by A, u2D,E and the
R matrix, in the same way as described in the proof of Proposition 4.13. When u = 1 and
s = 0, the matrices (4.17) become the matrix product building blocks of [PEM09], and lead to
the original multiline queue model [Mar20, (2.5)]. For u = 1 and s = q, they correspond to
the alternative model from [Mar20, Section 7]. However, like for the matrices A,D,E for the
alternative model, it is not clear how to build product ansatz matrices for mASEP from (4.17)
by recursive tensoring in a way analogous to [PEM09]. We do not pursue this question here.

We remark that matrices similar to (4.17) have occurred in the product ansatz for the open
ASEP on a bounded interval (for example, see [DEHP93]). There, the extra parameters are tied
to the boundary rates.
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5 Colored stochastic q-Boson process from straight cylinder

In this section we consider a specialization of the straight cylinder Markov transition operator
leading to the colored stochastic q-Boson process on the ring [Tak15], [BW22a, Section 12.4]. It
is also called the multi-species totally asymmetric zero range process (mTAZRP) in [AMM22].
The corresponding specialization of the queue vertex model will allow us to recover the stationary
distribution of the q-Boson process. In the case of at most one particle of each color, we also
match path configurations in the vertex model representing this stationary distribution to states
of a multiline queue considered in [AMM22, Section 8].

5.1 Colored q-Boson process on the ring

Let us fix the size of the ring N and the number of colors n. Also let us fix the type counts
(N1, . . . , Nn), where Ni ≥ 1 stands for the number of particles of color i in the system. The state
space of the colored stochastic q-Boson process consists of configurations of particles at sites of
the ring, where at each site there can be an arbitrary number of particles. The configurations are
encoded by

V = (V(1), . . . ,V(N)), V(j) ∈ Zn
≥0.

Here V(j)i denotes the number of particles of color i at site j, and Ni =
∑N

j=1V(j)i.

Definition 5.1. The stochastic colored q-Boson process depends on parameters q ∈ [0, 1) and
u1, . . . , uN > 0, and evolves in continuous time as follows. A particle of color i hops from site k
to site k − 1 (cyclically mod N) according to an independent exponential clock with rate

u−1
k (1− qV(k)i)qV(k)[i+1,n] .

Here we used the usual notation V(k)[i+1,n] =
∑n

r=i+1V(k)r. Denote by PqBos(t), t ∈ R≥0, the
continuous time Markov semigroup of this stochastic process.

The colored q-Boson process evolution is of zero range kind, that is, the jump from site k
depends only on the state of the system at site k. In [AMM22] it is referred to as the multi-species
totally asymmetric zero range process, or mTAZRP.

The q-Boson process preserves the type counts (N1, . . . , Nn). For a fixed vector of type counts,
this continuous time Markov chain evolves on a finite state space and is clearly irreducible. Thus,
it has a unique stationary distribution. We denote it by ProbqBos

N1,...,Nn
(V).

Following [BW22a, Section 12.4.3], we can identify PqBos(t) as a certain Poisson-type continu-
ous time limit of the straight cylinder formal Markov operator S(x,u; s(h)) defined in Section 3.2.
Recall that S has N + 1 sites on the ring. However, in the degeneration to the q-Boson process,
the distinguished site corresponding to spectral parameter x (cf. Figure 12) will be empty with
probability 1, and the dynamics can be restricted to N sites.

Fix small ϵ > 0, and set the horizontal spin parameters of S to s
(h)
j = ϵ. Also let x = −1.

With this specialization, the matrix elements of the operators L
s
(h)
j ,xu−1

j

entering the definition

of S (formula (3.6), see also Figure 5) become as in Figure 22. The operator S is a formal Markov
operator acting on states of the form (c,V), whereV ∈ Zn

≥0 is a state of the color q-Boson process,
and c ∈ {0, 1, . . . , n} corresponds to the auxiliary line (i.e., the one with the spectral parameter
x and the spin parameter q−1/2; see Figure 12).
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Figure 22: The weights Lϵ,−u−1
j

employed in the approximation of the colored q-Boson process,

Taylor expanded to O(ϵ2) or 1+O(ϵ) depending on whether they go to 0 or 1 as ϵ → 0. Here, as
usual, 1 ≤ k < ℓ ≤ n.

Proposition 5.2. Fix t ∈ R≥0. With the parameter specialization as above, have

lim
ϵ→0

⟨0,V|S(−1,u; (ϵ, . . . , ϵ))⌊t/ϵ⌋ |0,V′⟩ = ⟨V|PqBos(t) |V′⟩, V,V′ ∈ Zn
≥0.

Moreover, for any c ≥ 1 we have limϵ→0⟨0,V|S(−1,u; (ϵ, . . . , ϵ))⌊t/ϵ⌋ |c,V′⟩ = 0.

Not all matrix elements of S are nonnegative before the ϵ → 0 limit. This is not a problem
because the limiting semigroup PqBos(t) is a nonnegative Markov semigroup, and the stationarity
result (which we prove in Proposition 5.5 below) is a purely algebraic statement.

Proof of Proposition 5.2. Both statements follow from the expansions in Figure 22, after the
identification of the vertices in the cylinder (in Figure 12) with the stochastic q-Boson transitions
via

A C

k

ℓ

= k ℓ

A

C

,

where in the right-hand side the time is continuous and increases in the upward direction.
We see that the auxiliary line may become occupied with probability O(ϵ), and then instan-

taneously becomes free again with probability 1+O(ϵ). This means that the vertices of the type
(A, k;A, k) are not present in the limit. All other probabilities of order O(ϵ) in Figure 22 give
rise to the corresponding colored q-Boson transitions, which leads to the first claim.

To get the second claim, observe that with probability going to 1 in the limit as ϵ → 0, the
auxiliary line is not occupied. This completes the proof.
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5.2 Vertex model for the q-Boson stationary distribution

The convergence of Proposition 5.2 together with the general stationarity result (Theorem 3.6)
allows us to express the stationary distribution ProbqBos

N1,...,Nn
(V) of the colored q-Boson process

as a vertex model partition function.
To get a queue vertex model on the cylinder with nonnegative vertex weights, we take a certain

limit in the vertical parameters v, s(v). As a first step, let us consider the following degeneration

of the queue vertex weights W(−m)
s1,s2,u (2.12):

Lemma 5.3. We have

(u; q)−1
∞ · lim

s1→0
W(−m)

s1,s,us1/s
(A,B;C,D) = 1A+B=C+D · 1D1=...=Dm−1=0

×
∑

P

(s2/u; q)|P|(s
2)|B|−|P|u|D|−|B|+|P| q

∑
1≤i<j≤n(Bi−Pi)Pj

n∏

i=1

(q; q)Bi

(q; q)Pi(q; q)Bi−Pi

× q
∑

m≤i<j≤n Di(Cj−Pj) 1

(q; q)Dm

n∏

i=m+1

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

,

(5.1)

where the sum is over P ∈ Zn
≥0 with 0 ≤ Pi ≤ min(Bi, Ci) for all i, and

(u; q)−1
∞ · lim

s→0

(
lim
s1→0

W(−m)
s1,s,us1/s

(A,B;C,D)
)
= 1A+B=C+D · 1D1=...=Dm−1=0 ·

n∏

i=1

1Bi≤Ci

× u|D| q
∑

m≤i<j≤n Di(Cj−Bj) 1

(q; q)Dm

n∏

i=m+1

(q; q)Ci−Bi+Di

(q; q)Ci−Bi(q; q)Di

.

(5.2)

Proof. We have from (2.12):

W(−m)
s1,s,us1/s

(A,B;C,D) = 1A+B=C+D · 1D1=...=Dm−1=0 ·
(u; q)∞
(s21u; q)∞

×
∑

P

(s2/u; q)|P|(s
2
1u/s

2; q)|B−P|

(s21; q)|B|
q
∑

1≤i<j≤n(Bi−Pi)Pj

n∏

i=1

(q; q)Bi

(q; q)Pi(q; q)Bi−Pi

× (s2)|B|−|P|u|D|−|B|+|P| q
∑

m≤i<j≤n Di(Cj−Pj)
(s21; q)|D|

(q; q)Dm

n∏

i=m+1

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

.

Sending s1 → 0 immediately leads to (5.1). Further letting s → 0, we see that P = B, for
otherwise the factor (s2)|B|−|P| vanishes. This eliminates the summation over P and produces
the desired expression (5.2) together with the indicator that Bi ≤ Ci for all i.

We denote the right-hand side of (5.1) by W(−m),qBos
s,u (A,B;C,D). The right-hand side of

(5.2) is the s = 0 degeneration of (5.1). The weights W(−m),qBos
s,u are nonnegative for q ∈ [0, 1)

and u > s2 ≥ 0.

Definition 5.4. Fix parameters u = (u1, . . . , uN ), y = (y1, . . . , yn), and s(v) = (s
(v)
1 , . . . , s

(v)
n )

such that
0 ≤ (s(v)m )2 < uiym, i = 1, . . . , N, m = 1, . . . , n. (5.3)
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Let QqBos(u;y; s(v)) denote the queue transfer matrix on the n×N cylinder as in Figure 8, where

the vertex weight at each site (−m, j) is W(−m),qBos

s
(v)
m ,ujym

.

The vertex model of Definition 5.4 has nonnegative weights. Note that its partition functions
⟨∅|QqBos(u;y; s(v)) |V⟩ involve infinite sums over paths winding around the cylinder. Similarly to
Lemma 2.13, we see that these sums are convergent when V has all type counts Ni, i = 1, . . . , n,
at most 1.

Proposition 5.5. For any type counts (N1, . . . , Nn), Ni ≥ 1, and the parameters y, s(v) satisfying
(5.3), the stationary distribution of the colored q-Boson process with parameters u has the form

ProbqBos
N1,...,Nn

(V) =
⟨∅|QqBos(u;y; s(v)) |V⟩

ZqBos
N1,...,Nn

. (5.4)

The normalizing constant ZqBos
N1,...,Nn

depends on the parameters and the type counts, but not on
the state V within the sector determined by (N1, . . . , Nn).

Proof. We use Theorem 3.6 (in particular, recall the queue vertex model on the cylinder inter-
acting with the straight cylinder Markov operator as illustrated in Figure 13). Let us choose the
parameters of the queue vertex model

Q = Q
(
(xq

1
2 ,u); (q−

1
2 , s(h));v; s(v)

)

as

x = −1, s
(h)
j = ϵ → 0, vm =

s
(v)
m

ϵym

for all 1 ≤ j ≤ N , 1 ≤ m ≤ n. By Lemma 5.3, sending ϵ → 0 turns the weight at each site

(−m, j) of this queue vertex model on the cylinder into (ujym; q)∞W(−m),qBos

s
(v)
m ,ujym

. The overall factor
∏N

j=1

∏n
m=1(ujym; q)∞ is absorbed into the normalizing constant, and thus we can ignore it.

At the sites (−m, 0), before the limit we have the weights W(−m)

q−1/2,s
(v)
m ,−ϵq1/2ym/s

(v)
m

. Up to re-

parametrization, these are the same weights as in Figure 15. Sending ϵ → 0 (that is, −su → 0 in
the notation Figure 15), we see that

W(−m)

q−1/2,s
(v)
m ,−ϵq1/2ym/v

(v)
m

(A, 0;A, 0) → 1, W(−m)

q−1/2,s
(v)
m ,−ϵq1/2ym/v

(v)
m

(A, 0;A−
k , k) → 0.

Since the auxiliary line (i.e., the one with the spin parameter q−1/2) begins as initially unoccupied,
these convergences imply that this auxiliary line remains unoccupied in the cylindrical queue
vertex model under this limit (more specifically, any configuration in which it is occupied has
weight going to 0 as ϵ → 0). Therefore, we can remove this auxiliary line from the model on the
cylinder as follows:

lim
ϵ→0

〈
0, ∅
∣∣Q
(
(xq

1
2 ,u); (q−

1
2 , s(h));v; s(v)

) ∣∣0,V
〉
= ⟨∅|QqBos(u;y; s(v)) |V⟩, (5.5)

where QqBos(u;y) is defined before the proposition.

42



Arguing as in the proof of Proposition 4.5, we can take the limit as ϵ → 0 simultaneously
in the queue vertex model and in the straight cylinder Markov operator. Before the limit, these
operators satisfy the general stationarity relation of Theorem 3.6. By Proposition 5.2, the straight
cylinder Markov operator converges as ϵ → 0 (in the Poisson-type continuous time limit) to the
Markov semigroup PqBos(t). The limit of the general stationarity relation yields

⟨∅|QqBos(u;y;s(v))PqBos(t) |V⟩
= lim

ϵ→0

〈
0, ∅
∣∣Q
(
(xq

1
2 ,u); (q−

1
2 , s(h));v; s(v)

)
S(−1,u; (ϵ, . . . , ϵ))⌊t/ϵ⌋ |0,V⟩

= lim
ϵ→0

〈
0, ∅
∣∣Q
(
(xq

1
2 ,u); (q−

1
2 , s(h));v; s(v)

)
|0,V⟩

= ⟨∅|QqBos(u;y; s(v))|V⟩.
Here, the first equality holds by Proposition 5.2 and equation (5.5); the second holds by Theo-
rem 3.6; and the third holds again by (5.5).

This completes the proof.

Remark 5.6. While the quantities in the right-hand side of (5.4) seem to depend on y and s(v),
Proposition 5.5 implies that they are independent of these extra parameters. This observation is
parallel to the mASEP situation (see Remark 4.6).

5.3 Matching to multiline queues

In [AMM22, Section 8], a multiline queue model for the stationary distribution of the colored
q-Boson process is presented. Let us match this model to our queue vertex model QqBos on the

cylinder, specialized to s
(v)
m = 0, 1 ≤ m ≤ n (that is, with the simpler product-form weights (5.2)).

As in [AMM22], we restrict our attention to the simpler strict case when, by definition, there
is at most one particle of each color. First, we recall the definition of a q-Boson multiline queue
and its weight. We replace the parameter t from [AMM22] by our q, and adjust the notation of
integer indices, spectral parameters, and the direction of the ring to match the conventions used
throughout our paper.

Definition 5.7 ([AMM22]). A multiline diagram is an assignment of the labels from {1, . . . , n}
to the vertices of a cylinder {−n, . . . ,−1} × (Z/NZ), satisfying

• Each vertex (−m, j) is assigned a multiset of labels.

• In column (−m), all labels are from {m,m+ 1, . . . , n}.

• The combined multiset of all labels in column (−m) is obtained from the multiset of labels in
column −(m+ 1), together with some new labels of type m.

• (strict condition) Each label m, 1 ≤ m ≤ n, appears at most once in each of the columns
−m,−(m− 1), . . . ,−1.

The weight of a multiline diagram is, by definition, qRuc11 . . . ucNN , where cj is the total number of
labels assigned to the row j, and R is the refusal statistic defined as follows. Let

Rm :=
∑

m−1≤k<ℓ≤n

1pℓ(−(m−1))>pk(−(m−1))>pℓ(−m), (5.6)
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Figure 23: A multiline diagram (Definition 5.7) with weight q3u1u
2
2u

2
3u

2
4u5. Here the refusal

statistic 3 combines R3 = 1 (label 3 in column −2 is “between” the positions of labels 4 in
columns −3 and −2, in the sense described after Equation (5.6)) and R2 = 2 (labels 1 and 3 in
column −1 are between the labels 4 in columns −2 and −1). This is the same diagram as in
examples in [AMM22, Section 8], but rotated by 90◦ and with the direction of the ring reversed
(to match our vertex model). Here the size of the ring is N = 5, and the number of colors is
n = 4.

where pr(−m) is the position of the label r in column −m, and the event a > b > c means that,
reading along the ring in the downward direction (corresponding to decreasing positions j), the
label b is strictly between a and c. This includes the case a = c ̸= b; what this means for a
corresponding term in the sum is pℓ(−m) = pℓ(−(m − 1)), and we think of this as pℓ making a
full loop around the ring to get to its position at −(m − 1). Then we set R :=

∑n
m=2Rm. See

Figure 23 for an illustration.

Given a multiline diagram, associate to it a path configuration on the cylinder with vertex

weights W(−m),qBos
uj at each vertex (−m, j), and such that the multiset of labels at (−m, j) is

exactly the colors of the paths exiting this vertex. Recall that we usually denote the latter
multiset of colors by D ∈ Zn

≥0. Knowing D at each vertex is enough to reconstruct the whole
path configuration on the cylinder, up to unknown windings of paths around the cylinder. In this
way, one multiline diagram corresponds to many configurations of the queue vertex model QqBos

on the cylinder.

Proposition 5.8. Let there be exactly one particle of each color m, m = 1, . . . , n. Then the
mapping between multiline diagrams and configurations of the queue vertex model QqBos(u;1;0)

(that is, yi = 1 and s
(v)
i = 0 for all i) described before the proposition is weight-preserving. That

is, the sum of weights of all vertex model configurations over the winding of the paths around the
cylinder is proportional to the weight of the corresponding multiline diagram. The proportionality
constant depends on the parameters of the model, but not on the particle configuration.

If there are no particles of some color, then the sum of the vertex model weights might diverge,
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cf. Remark 2.14. On the other hand, we consider the multiline queues for at most one particle of
each color. This leads to the restriction in Proposition 5.8.

Proof of Proposition 5.8. It suffices to fix m and consider the behavior in the column (−m). For a
configuration of the queue vertex model in this column let the arrow configurations at each vertex
(−m, k) be A(k),B(k),C(k),D(k). The corresponding multiline diagram contains information
about B(k),D(k), but not about A(k),C(k). Let us fix B(k),D(k) for all k = 1, . . . , N , and sum
over A(k),C(k), k = 1, . . . , N . The resulting sum must be equal to the weight of column −m in
the corresponding multiline diagram.

With this data fixed, out of all allowed configurations of the vertices in column (−m), there

is one in which C
(N)
j is minimal for each j > m. Fixing C(N) allows one to reconstruct the whole

vertex model configuration in column (−m) in a unique way. Denote this minimal configuration

by C(k),min, and let E
(k)
j := C

(k),min
j −B

(k)
j , j = m+ 1, . . . , n.

The product of the vertex weights (5.2) in column (−m), summed over all allowed configura-

tions, is proportional to (using the fact that D
(k)
j ∈ {0, 1} for all j, k)

∞∑

am+1=0

· · ·
∞∑

an=0

N∏

k=1

(
u
|D(k)|
k q

∑
m≤r<s≤n D

(k)
r (E

(k)
s +as)

n∏

j=m+1

(q; q)
aj+E

(k)
j +D

(k)
j

(q; q)
aj+E

(k)
j

(q; q)
D

(k)
j

)

=

(
N∏

k=1

u
|D(k)|
k

) ∞∑

am+1=0

· · ·
∞∑

an=0

(
N∏

k=1

q
∑

m≤r<s≤n D
(k)
r (E

(k)
s +as)

)(
n∏

j=m+1

∏

k : D
(k)
j =1

1− q1+aj+E
(k)
j

1− q

)
.

(5.7)

Observe that B
(k)
j ≤ C

(k)
j for all j and k (see (5.2)). This implies (by arrow conservation,

since A
(k)
j , B

(k)
j , C

(k)
j , D

(k)
j ∈ {0, 1}) that if D(k)

j = 1, then E
(k)
j = 0. For each j = m + 1, . . . , n,

we either have D
(k)
j = 0 or D

(k)
j = 1, and there exists exactly one k = kj for which D

(k)
j = 1.

Thus, inside the summations we have

(
N∏

k=1

n∏

j=m+1

q
∑

m≤r<j D
(k)
r (E

(k)
j +aj)

)(
n∏

j=m+1

1− q1+aj

1− q

)
.

As a result, the sum over aj becomes

q
∑N

k=1(D
(k)
m +...+D

(k)
j−1)E

(k)
j

∞∑

aj=0

qaj
∑N

k=1(D
(k)
m +...+D

(k)
j−1)

1− q1+aj

1− q
= C

[j]
N1,...,Nn

q
∑N

k=1(D
(k)
m +...+D

(k)
j−1)E

(k)
j ,

where C
[j]
N1,...,Nn

does not depend on the particular multiline diagram but only on the type counts

(N1, . . . , Nn). Indeed,
∑N

k=1(D
(k)
m + . . . +D

(k)
j−1) is the total number of colors i, m ≤ i ≤ j − 1,

leaving column (−m). Thus, we can continue

(5.7) = CN1,...,Nn

(
N∏

k=1

u
|D(k)|
k

)
N∏

k=1

q
∑

m≤i<j≤n D
(k)
i E

(k)
j , (5.8)
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where CN1,...,Nn also depends only on the type counts. Note that D
(k)
i , E

(k)
j ∈ {0, 1}. One can

readily verify that each pair m ≤ i < j ≤ n such that D
(k)
i = E

(k)
j = 1 corresponds to an indicator

equal to one in the definition of Rm (5.6). In particular, note that the indicator 1Bj≤Cj in the
weights (5.2) prevents a path from passing straight through without any winding. This behavior
is accounted for in (5.7), and corresponds to the fact that the case a = c ̸= b counts towards the
refusal statistic R (see the discussion after its definition (5.6)). Thus, the power of q in (5.8) is
exactly the same as the component Rm of the refusal statistic R. The powers of the uj ’s also
match the ones for the multiline diagrams. This completes the proof.

Let us make two final remarks in this section. First, [AMM22] does not explicitly define the
weights of general (not necessarily strict) multiline queue diagrams. We may use QqBos(u;1;0)
and sum over the winding of the paths around the cylinder to define weights of general multi-
line diagrams. We conjecture that these weights coming from the vertex model should directly
correspond to the tableau process of [AMM22, Section 4], but do not check this here.

Second, the Yang–Baxter equation for the queue vertex model (Proposition 2.10) should allow
to directly show the symmetry of the stationary distribution in the parameters uj . More precisely
[AMM22, Proposition 7.2], for any K, the distribution of the configuration at sites {1, . . . ,K} of
the ring is symmetric in the parameters uK+1, . . . , uN . Moreover, using the Yang–Baxter equation
and couplings similarly to [PS22], it should be possible to establish the stronger symmetry of the
distributions of the whole trajectories of the colored q-Boson system. This stronger property is
proven only for q = 0 [AMM22, Theorem 7.14]. We leave these two questions for future work.

6 Colored q-PushTASEP from straight cylinder

This section considers another specialization of the straight cylinder Markov transition operator
leading to the colored q-PushTASEP. We also present a vertex model on the cylinder producing
its stationary distribution. Our argument here is very similar to Sections 4 and 5 above. The
colored q-PushTASEP is a degeneration of the colored stochastic higher spin six-vertex model
and was introduced in [BW22a, Section 12.5].

Throughout the section, we assume that q ∈ (0, 1) and fix a positive integer P. As usual, let
N be the size of the ring, and n be the number of colors. The colored q-PushTASEP depends on
positive parameters u = (u1, . . . , uN ).

Definition 6.1. The state space of the colored q-PushTASEP is the set of particle configurations
on the ring. At any site, there can be at most P particles. Particles of the same color are
indistinguishable. Let VP be the vector space with the basis |V⟩, where V ∈ Zn

≥0 with |V| ≤ P.

The states of the colored q-PushTASEP can be identified with the basis vectors of V ⊗N
P . The q-

PushTASEP evolves in continuous time as follows. Let A ∈ Zn
≥0 be the configuration of particles

at a site k. For each j = 1, . . . , n, a particle of type j activates and instantaneously leaves the
site k (moving toward k + 1) with the rate u−1

k (q−Aj − 1)qP−A[j+1,n] .
The active particle triggers other instantaneous updates of the configuration according to the

following rules. Let B ∈ Zn
≥0 be the configuration of particles at a site k′. Suppose that an

activated particle of type c arrives at k′. Then the following happens:

• It deactivates and stays at k′ with probability 1− qP−|B|, then the update ends.
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• It deactivates and stays at k′, but causes the activation of another particle from k′ (which then
moves towards k′ + 1) of type d < c with probability (q−Bd − 1)qP−B[d+1,n] , and the update
continues.

• It remains active and moves on to site k′+1 with probability qP−B[c,n] , and the update continues.

All particle moves from j to j+1 are considered cyclically mod N . Denote the Markov semigroup
of the colored q-PushTASEP by PqPush(t), t ∈ R≥0.

As usual, by (N1, . . . , Nn) we denote the type counts in the configuration, which are preserved
by the q-PushTASEP dynamics. When restricted to a sector determined by (N1, . . . , Nn), the
colored q-PushTASEP is an irreducible continuous time Markov chain on a finite state space.
Therefore, it admits a unique stationary distribution which we denote by ProbqPushN1,...,Nn

(V).

Remark 6.2 (Frog model). Let us discuss the most degenerate version of the colored q-PushTASEP,
namely, when q = 0, P = 1, and uk = 1 for all k. In this case, each particle at any site k can
be activated at rate 1, and moves from k to k + 1. Then the instantaneous update proceeds as
follows:

• If an active particle arrives at an empty site, it deactivates and stays there, and the update
ends.

• If a particle of type c arrives at a site k′ with an existing particle of type d < c, then the type
c particle stays at k′ and displaces the type d particle, which now becomes active.

• Finally, if a particle of type c arrives at a site k′ with an existing particle of type d ≥ c, then
the type c particle moves through to site k′+1. The update continues with the type c particle.

This process is a particular case of the frog model [BC22] related to the problem of the longest
common subsequence of a random and a periodic word. Our particular case corresponds to the
periodic word with all letters distinct. More general periodic words lead to the simultaneous acti-
vation of particles at several sites. The stationary distribution of the frog model was constructed
(in the particular case of distinct letters) in [BC22, Section 4].

The colored q-PushTASEP is a degeneration of the straight cylinder formal Markov operator.
Thus, its stationary distribution is accessible through the corresponding limit transition from the
queue vertex model on the cylinder. These limits are very similar to the q-Boson case (Sections 5.1
and 5.2), so we will only provide pictorial illustrations and brief explanations.

A queue vertex model leading to the q-PushTASEP stationary distribution must have finite
spin rows (with the horizontal spin parameters q−P/2). We reverse the direction of the straight
cylinder operator to match the direction of the particle jumps from k to k+1 (opposite from the
q-Boson case). That is, consider the queue vertex model

Q
(
(u1, . . . , uN , u0); (q

−P/2, . . . , q−P/2, q−1/2); (v1, . . . , vm); (s
(v)
1 , . . . , s(v)n )

)
(6.1)

with N + 1 sites on the ring indexed by j = 1, . . . , N, 0. Let the distinguished auxiliary line
with j = 0 be at the bottom; see Figure 26. In (6.1), the vertex weights at the sites (−m, j),
1 ≤ j ≤ N , and at (−m, 0) are, respectively,

W(−m)

q−P/2,s
(v)
m ,uj/vm

and W(−m)

q−1/2,s
(v)
m ,u0/vm

. (6.2)
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By the Yang–Baxter equation for the queue vertex model (Proposition 2.10), the vertex weights
of the straight cylinder Markov operator must be the fused stochastic weights Wq1/2−P/2uj/u0,P,1

from Section 2.3. They are given in Figure 24.

Remark 6.3. The weights in Figure 24 are matched to transition probabilities of a discrete time
particle system on the ring as

A C

k

ℓ

= k ℓ

A

C

.

The picture in the left-hand side represents vertices in Figure 26. In the right-hand side, the
vertical direction corresponds to time, and the states A,C encode particle configurations at a
given site j ∈ {1, . . . , N} on the ring.

On the right, the horizontal arrow points left because after rotating Figure 26 by 90◦ coun-
terclockwise, the sites on the ring are cyclically ordered as (N,N − 1, . . . , 1). Recall that under
the q-PushTASEP, particles move in the direction of increasing j. This direction of the particle
motion is opposite to the q-Boson situation, cf. the proof of Proposition 5.2.

A A

0

0

A A

k

k

A A−
k

0

k

q−|A|x−1q − 1

x−1q − 1

q−A[k+1,n](x−1q − q−Aks−2)

x−1q − 1

x−1q · q−A[k+1,n](1− q−Ak)

x−1q − 1

A A+
k

k

0

A A+−
kℓ

k

ℓ

A A+−
ℓk

ℓ

k

s−2q−|A| − 1

x−1q − 1

−x−1q (q−Aℓ − 1)q−A[ℓ+1,n]

x−1q − 1

s−2 (1− q−Ak)q−A[k+1,n]

x−1q − 1

Figure 24: The vertex weights Wx,P,1(e,A; e′,A′)|qP=s−2 . Here e, e′ are basis vectors correspond-
ing to empty or one-particle configurations in Zn

≥0, and 1 ≤ k < ℓ ≤ n. Note that these weights
can be obtained from the stochastic L weights (Figure 5) by reflecting the picture about the
diagonal and setting s2 → s−2, q → q−1, sx → x−1q.

Now let us pass to a Poisson-type continuous time limit of the straight cylinder Markov
operator to get the continuous time Markov semigroup of the colored q-PushTASEP. Set

u0 := γϵ > 0, j = 1, . . . , N ; γ := qP/2−1/2, (6.3)

where ϵ > 0 is small. The ϵ → 0 expansions of the vertex weights from Figure 24 are given in
Figure 25.
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A A

0

0

A A

k

k

A A−
k

0

k

1 +O(ϵ) qP−A[k,n] +O(ϵ) γϵu−1
j qP/2+1/2q−A[k+1,n](q−Ak − 1)

A A+
k

k

0

A A+−
kℓ

k

ℓ

A A+−
ℓk

ℓ

k

1− qP−|A| +O(ϵ) γϵu−1
j qP/2+1/2 q−A[ℓ+1,n](q−Aℓ − 1) qP−A[k+1,n] (q−Ak − 1) +O(ϵ)

Figure 25: Small ϵ expansion of the vertex weights Wq1/2−P/2uj/u0,P,1
with u0 = γϵ.

These expansions imply the convergence as ϵ → 0 of the straight cylinder Markov operators
S(u, γϵ; (q−P/2, . . . , q−P/2, q−1/2))⌊t/ϵ⌋ to the q-PushTASEP semigroup PqPush(t), in the same
way as for the q-Boson process (Proposition 5.2). Indeed, the auxiliary spin 1/2 line becomes
occupied at a given instant in time with probability O(ϵ). Then, with high probability it becomes
unoccupied within a finite number of discrete time steps, which corresponds to it becoming
unoccupied instantaneously with respect to the macroscopic continuous time t.

The convergence of the straight cylinder Markov operators to the colored q-PushTASEP
implies that the stationary distribution of the latter process can be represented as the partition
function of a queue vertex model on the cylinder. More precisely, we have the following result:

Proposition 6.4. Let q ∈ [0, 1), P ∈ Z≥1 and u1, . . . , uN > 0. Fix the type counts (N1, . . . , Nn)

with Ni ≥ 1 for all i. For any v1, . . . , vn and s
(v)
1 , . . . , s

(v)
n , the stationary measure of the colored

q-PushTASEP process on the ring has the form

ProbqPushN1,...,Nn
(V) =

⟨∅|Q
(
(u1, . . . , uN ); (q−P/2, . . . , q−P/2); (v1, . . . , vm); (s

(v)
1 , . . . , s

(v)
n )
)
|V⟩

ZqPush
N1,...,Nn

.

(6.4)

Proof outline. This is proven in the same way as Proposition 5.5. The queue vertex model (6.4)
on the cylinder has the weights of the first type in (6.2). The weights of the second type have
the parameter u0 = γϵ. One can check that as ϵ → 0, we have

W(−m)

q−1/2,s
(v)
m ,γϵ

(A, 0;A, 0) = 1 +O(ϵ), W(−m)

q−1/2,s
(v)
m ,γϵ

(A, 0;A−
k , k) = O(ϵ).

This means that in the limit ϵ → 0, the auxiliary line is unoccupied with probability going to 1.
Thus, the weights of the second type in (6.2) do not contribute to the queue vertex model, and
we may pass from the model (6.1) on the cylinder with N + 1 rows to (6.4) with N rows, in the
same way as in (5.5). This completes the proof.

Let us now discuss the nonnegativity of the individual vertex weights in the queue vertex
model in (6.4). Note that the normalized partition functions are positive as components of the
Perron–Frobenius eigenvector of PqPush(t).
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(s
(v)
n , vn) (s

(v)
1 , v1)

. . .
0

0

0

0

0

(q−
1
2 , qP/2−1/2ϵ)

(q−
P
2 , uN )

(q−
P
2 , u3)

(q−
P
2 , u2)

(q−
P
2 , u1)

...

ℓ
V(N)

V(3)

V(2)

V(1)

. . .
0

0

0

0

0

=

...

ℓ
V(N)

V(3)

V(2)

V(1)

Figure 26: Illustration of the q-PushTASEP stationarity for finite ϵ.

Define

W(−m),qPush(P)+
s,u (A,B;C,D) := (−1/s)|D|W(−m)

q−P/2,s,u
(A,B;C,D), A,B,C,D ∈ Zn

≥0. (6.5)

Note that |B|, |D| ≤ P due to the finite-spin reduction (see Remarks 2.2 and 2.4). The multipli-

cation by (−1/s
(v)
m )|D| in each column of the queue vertex model (6.4) can be absorbed into the

normalizing constant, and thus does not affect the normalized partition functions. In other words,
we can use the weights (6.5) to represent the stationary distribution of the colored q-PushTASEP.

The weights (6.5) arise from the mASEP queue weights (4.8) by fusion. That is, each weight

(6.5) is a certain sum of P-fold products of the weights W(−m),mASEP+

q−1/2,s,uqi
, where i = 0, 1, . . . ,P− 1.

We refer to [BW22a, Appendix B] and [BGW22, Theorem 8.5] for details. This implies the
following nonnegativity of (6.5):

Proposition 6.5. Let

0 ≤ s(v)m <
uj
vm

qP−1/2 <
uj
vm

q−1/2 ≤ 1

for all 1 ≤ m ≤ n, 1 ≤ j ≤ N . Then the vertex weights W(−m),qPush(P)+

s
(v)
m ,uj/vm

(6.5) (entering the queue

vertex model on the cylinder representing the stationary distribution of the q-PushTASEP) are
nonnegative.

Proof. Under the hypotheses, the weights W(−m),mASEP+

q−1/2,s
(v)
m ,qiuj/vm

, where i runs from 0 to P− 1, are all

nonnegative; see Proposition 4.9. Together with fusion, this implies the desired nonnegativity of

the weights W(−m),qPush(P)+

s
(v)
m ,uj/vm

.

Remark 6.6. The stationary distribution for the colored q-PushTASEP with equal parameters
uj = u, 1 ≤ j ≤ N , and with P = 1, is the same as for the mASEP. Indeed, this follows by
matching the vertex weights (see the discussion before Proposition 6.5). On the other hand,
the proofs of the stationarity for mASEP and for the q-PushTASEP require different Markov
operators on the cylinder (the twisted and the straight ones, respectively).
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7 Stationarity in the quarter plane and on the line

Here we explain how the queue vertex models on the cylinder from Sections 4 to 6 can be used
to construct the stationary distributions for mASEP, the colored q-Boson and the colored q-
PushTASEP on the line Z. Instead of passing to the limit as the size of the ring goes to infinity
(as in, e.g., [Mar20, Section 5]), our proof of the stationarity on the line passes through applying
the Yang–Baxter equation in the quarter plane, which may be viewed as a colored generalization of
Burke’s theorem for stochastic vertex models. Applications of the latter to single-color stochastic
integrable systems were the subject of, e.g., [OY01] (semi-discrete Brownian polymer), [Sep12]
(log-gamma polymer). Particular cases of the colored Burke’s theorem (in the language of queues)
appeared previously in [FM05], [FM09].

Remark 7.1. We only consider space-homogeneous systems on the line (uj = u for all j for the q-
Boson and the q-PushTASEP; there are no known space-inhomogeneous integrable deformations
of the ASEP). In contrast with the ring, stationarity of space-inhomogeneous systems on Z is
much more delicate. If the inhomogeneity is smooth in space, we may locally model stationary
distributions by the homogeneous ones. In the non-smooth case, inhomogeneity in the q-Boson
system may lead to infinite stacks of particles, separating the whole system into independent
components. Out-of-equilibrium single-color inhomogeneous models (featuring both smooth and
non-smooth inhomogeneity) were considered in, e.g., [BP18b], [BSS17], [KPS19], [Pet20], and we
refer to those works for further details.

A special case P = 1 of the space-homogeneous colored q-PushTASEP is the same as the
colored six-vertex model. Therefore, our constructions immediately produce stationary measures
for the colored stochastic six-vertex model on the line. Furthermore, taking the Poisson type
limit of the latter model along the diagonal (as described on the ring in Proposition 4.4), we get
the mASEP on the line. This implies that the stationary measures for the q-PushTASEP with
P = 1 coincide with those of the mASEP. In Remark 6.6 we already noticed this connection on
the ring. Therefore, in describing stationary measures on the line, we may restrict attention to
the q-Boson and the q-PushTASEP.

7.1 Queue steady state

Let n ≥ 1 be the number of colors, and fix 1 ≤ m ≤ n. Fix parameters α, ν such that

0 ≤ ν ≤ α. (7.1)

Consider the queue vertex weights

W(−m),line
α,ν (A, k;B, ℓ) := W(−m)

q−1/2,s,z
(A, k;B, ℓ), α = −szq−1/2, ν = −s2. (7.2)

These weights are given in Figure 15 with z = uq1/2, and for convenience we reproduce them with
the parameters α, ν in Figure 27. The next statement is straightforward from these expressions
and the sum-to-one property (2.10):

Lemma 7.2. The weights (7.2) sum to one over (B, ℓ) for any fixed (A, k). Moreover, under

(7.1), we have W(−m),line
α,ν (A, k;B, ℓ) ≥ 0 for all A,B ∈ Zn

≥0 and k, ℓ ∈ {0, 1, . . . , n}.
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1
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1 + α

α(1− qAk)qA[k+1,n]

1 + α

αqA[m+1,n]

1 + α
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A

A+
k

k ℓ

A

A+−
kℓ

ℓ k

A

A+−
ℓk

ℓ m

A

A+
ℓ

1

1 + α

α(1− qAℓ)qA[ℓ+1,n]

1 + α

ν (1− qAk)qA[k+1,n]

1 + α

ν qA[m+1,n]

1 + α

Figure 27: The weights W(−m),line
α,ν (7.2), where m < k < ℓ ≤ n, and Am = +∞.

Remark 7.3. On the ring the stochasticity of the queue vertex weights is not essential, and we
multiplied them by (−1/s)1ℓ>0 to be nonnegative for s ≥ 0; see (4.8) and Proposition 4.9. The
factors (−1/s)1ℓ>0 were absorbed into the normalizing constant of the stationary distribution on
the ring. On the line, this absorption is not possible, so we need to deal with a different range of
the parameters s, z as in (7.1) and (7.2).

Fix parameters

α1 > α2 > . . . > αn > 0, νi ∈ [0, αi], i = 1, . . . , n. (7.3)

Our first step is to construct a certain queue steady state vertex model. FixK ∈ Z≥1 and consider
the rectangle

RK := {−n,−n+ 1, . . . ,−1} × {−K,−K + 1, . . . , 0}
(formed by the bottom K rows and the left n columns in the left side of Figure 29). In this
rectangle, define a stochastic vertex model with empty inputs from the bottom and the left, and

vertex weights W(−m),line
αm,νm at each (−m,−j) ∈ RK . Denote the outgoing arrow configuration at

the top by MK = (MK(−n), . . . ,MK(−1)), where MK(−m) ∈ Zn
≥0, and the outgoing arrow

configuration on the right by dK = (dK(0), dK(−1), . . . , dK(−K)), where dK(−j) ∈ {0, 1, . . . , n}.

Proposition 7.4. Fix arbitrary c ∈ Z≥0. As K → +∞, the random tuples

MK and (dK(0), dK(−1), . . . , dK(−c))

converge in joint distribution to random tuples M and d[−c].

We refer to the K → +∞ limit of the model in RK as to the queue vertex model in steady
state. The limiting tuples d[−c] are compatible for c ≥ 0. Let us denote the corresponding infinite
tuple by d = (d(0), d(−1), d(−2), . . .).
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Proof of Proposition 7.4. View the vertical coordinate in RK as discrete time t ∈ {−K,−K +
1, . . . , 0}. Observe that

W(−m),line
αm,νm (A, k;A+

k , 0) = W(−m),line
αm,νm (A, 0;A, 0) =

1

1 + αm
.

Therefore, if we do not distinguish the colors ≥ m, then the arrows leaving the column (−m) form
a Bernoulli process (in discrete time t) with probability of success αm/(1 + αm). This implies
that the combined number of arrows of colors m+1, . . . , n in the column (−m) evolves as a birth
and death Markov chain on Z≥0 starting from 0, which makes jumps by −1, 0, and +1. Denote
this chain by A[m+1,n](t). The jumps by +1 and −1 have probabilities, respectively,

αm+1

1 + αm+1
· 1 + νmqA[m+1,n](t)

1 + αm
and

1

1 + αm+1
· αm(1− qA[m+1,n](t))

1 + αm
.

The jump by 0 occurs with the complementary probability.
Since αm+1 < αm, for large A[m+1,n](t) the probability to go down is strictly larger, which

implies that the birth and death chain on Z≥0 is recurrent. Thus, in each column (−m), 1 ≤
m ≤ n, the number of arrows of color > m does not grow to infinity.

We conclude that the (colored) configurations of arrows in all columns (−m), 1 ≤ m ≤ n,
jointly form a recurrent Markov chain [Dur19, Chapter 5] — a system of n queues in tandem. The
limiting random tuple M is its steady state. The limiting configuration d = (d(0), d(−1), . . . ) is
the steady state (colored) departure process, with time running from −∞ to 0. This completes
the proof.

Remark 7.5. For νm = 0, 1 ≤ m ≤ n, the system of n queues in tandem in the proof of
Proposition 7.4 was considered in [Mar20, Sections 3.4 and 5].

7.2 Colored Burke’s theorem via Yang–Baxter equation

Let us first discuss the general application of the Yang–Baxter equation in the quarter plane
without specifying the weights leading to the concrete model. We discuss specializations to
our colored stochastic particle systems in Sections 7.3 and 7.4 below. Assume that there exist
stochastic, nonnegative vertex weights

W(−m),queue
ξ,α,ν (A,B;C,D) and W qp

ξ (k,B; ℓ,D) (7.4)

which together with the weights W(−m),line
α,ν (A, k;B, ℓ) (7.1) satisfy the Yang–Baxter equation

given in Figure 28.

In Section 7.1 above we used the weights W(−m),line
αm,νm to construct the queue steady state

vertex model in {−n, . . . ,−1} × Z≤0 depending on the parameters (7.3). As the output, the
steady state model produces the random state M = (M(−n), . . . ,M(−1)) at the top, and the
random departure process d = (d(0), d(−1), . . .) on the right. Let us define two more stochastic
vertex models (see the left side of Figure 29, for an illustration):

• A queue vertex model in {−n, . . . , 1} × {1, 2, . . .}, with the weight W(−m),queue
ξ,αm,νm

at each vertex
(−m, j). This model has no incoming arrows from the left, and the incoming arrow configu-
ration M from the bottom. Denote by V(j), j ∈ Z≥1, the outgoing arrow configuration from
the j-th horizontal line of this model.

53



∑
K1, k2,K3 i2 J1

I1

k2

K1
j2

K3

A

B

W(−m),line
α,ν

W(−m),queue
ξ,α,ν

W qp
ξ

=
∑

K1, k2,K3 i2 J1

I1 j2

K1

k2

K3

A

B
W(−m),line

α,ν

W(−m),queue
ξ,α,ν

W qp
ξ

Figure 28: Elementary Yang–Baxter equation for the quarter plane. Here I1,A,J1,B ∈ Zn
≥0 and

i2, j2 ∈ {0, 1, . . . , n} are fixed, and the sums in both sides are over the internal arrow configurations
K1,K3 ∈ Zn

≥0 and k2 ∈ {0, 1, . . . , n}.

• A vertex model in the quadrant Z≥0 ×Z≥1. Let each vertex (i, j) in the quadrant have weight
W qp

ξ . Let the incoming arrow configurations for this model be V(1),V(2), . . . from the left,
and d(0), d(−1), . . . from the bottom.

Let (i, j) ∈ Z≥0×Z≥1. Denote by V′(j) ∈ Zn
≥0 the arrow configuration at the horizontal edge

(0, j)− (1, j), and by d′(−i) ∈ {0, 1, . . . , n} the color of the vertical edge (i, 1)− (i, 2).

Theorem 7.6 (Colored Burke’s theorem). We have equalities of joint distributions:

{(
d(−i)

)
i≥0

,
(
V(j)

)
j≥1

}
d
=
{(

d′(−i)
)
i≥1

,
(
V(j)

)
j≥1

}
d
=
{(

d(−i)
)
i≥0

,
(
V′(j)

)
j≥2

}
.

In words, the joint distribution of the horizontal and the vertical arrow configurations along
the boundary of an arbitrarily shifted quadrant Z≥I × Z≥J+1 (where I, J ≥ 0) is the same as
for the original quadrant Z≥0 × Z≥1. Since by our assumption the weights W qp

ξ are stochastic,
Theorem 7.6 can be viewed as the statement that the boundary data given by (V,d) is stationary
for the stochastic vertex model in the quadrant with the weights W qp

ξ .

Proof of Theorem 7.6. The result follows by repeatedly applying the Yang–Baxter equation from
Figure 28 to the combination of the three vertex models in the left side of Figure 29. Indeed, to
shift the index in

(
V(j)

)
j≥1

up by one, one needs to drag the crosses from the right to the left,

and move the dotted line given by {y = 1} down to minus infinity. See the top two pictures in
the right side of Figure 29. The cross vertices on the left boundary are empty, have probability
weight 1, and thus can be removed. In the limit as the dotted line goes down to minus infinity, the
distribution of the outputs M and d of the queue steady state model becomes the same; in fact,
the transition matrix for the system of queues in tandem commutes with the transition matrix for
the queues obtained from the stochastic vertex weights on the dotted line, and thus, the dotted
line preserves (M,d) if (M,d) is stationary. The index shift in

(
d(−i)

)
i≥0

is performed similarly,

but now we need to move the turning line which carried d(0) up to positive infinity (see the
bottom picture in the right side of Figure 29 for an illustration). This completes the proof.

Remark 7.7. The stochastic vertex model in the quadrant can be made inhomogeneous by
letting the parameters αm and ξ in the queue vertex model part depend on the vertical coordinate
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0

−1

−2

−K

(αn, νn) (α1, ν1)

d(0)

d(−1)

d(−2)

M(−n) M(−1)

V(1)

V(2)

V(3)

· · · · · ·...

... · · ·

· · · · · ·...

...

... · · ·

· · · · · ·...

... · · ·

YBE

YBE

2×YBE

Figure 29: Left: The queue steady state vertex model in {−n, . . . ,−1}×Z≤0 produces the random
state M(−n), . . . ,M(−1) and the departure process d = (d(0), d(−1), . . .) (see Proposition 7.4).
It has the empty incoming configuration from the left. On top of it we put a queue vertex model
in {−n, . . . ,−1}×Z≥1 (also with no incoming arrows from the left; the choice of the queue weights
depends on whether we work with the colored q-Boson or q-PushTASEP). Denote the random
output of this model by V = (V(1),V(2), . . .).

The outputs V and d form the left and bottom inputs into a third stochastic vertex model in
the quadrant. In a limit when the one of the lattice directions turns into the continuous time,
the model in the quadrant converges to either the colored q-Boson or the colored q-PushTASEP
stochastic particle system.

Right: Consecutive applications of the Yang–Baxter equation to the vertex models on the left
which lead to the shift of the quadrant by (1, 1). The cross vertices on the left boundary are
empty and can be removed. The black dots on the edges in all pictures represent arrow configu-
rations d′(−i) (solid) and V′(j) (circled), whose joint distributions are the same in all pictures.
Throughout applying the Yang–Baxter equation, the red (larger) dots representing d′(0) and
V′(1) disappear, which corresponds to shifting of the indices in the formulation of Theorem 7.6.
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j ∈ Z. This would lead to the weights W qp
viξj

at each vertex (i, j) ∈ Z≥0 × Z≥1. One can readily
formulate an extension of Theorem 7.6 for this situation, but for simplicity we only discussed the
homogeneous setting. See also Remark 7.1 on stationarity in the presence of space inhomogeneity.

Let us record a property of the steady state M which will be useful in Appendix A below:

Lemma 7.8. Let M = (M(−n), . . . ,M(−1)) be the steady state of the n-column queue vertex

model with the weights W(−m),line
αm,νm (the bottom n columns in Figure 29, left). Take a one-row

vertex model in {−n, . . . ,−1} × {0} with the weight W(−m),queue
ξ,αm,νm

at each vertex (−m, 0). If there
are no arrows incoming from the left, and the configuration M of arrows incoming from below
into this one-row model, then the distribution of the outgoing arrows from the top is the same as
that of M.

In short, the distribution of M is preserved by the horizontal action of the n-column queue

vertex model with the weights W(−m),queue
ξ,αm,νm

.

Proof. Consider the rectangle {−n, . . . ,−1}×{0,−1, . . . ,−K}. Put a single n-column layer with

the weightsW(−m),queue
ξ,αm,νm

at the horizontal coordinate 0. Below it, let us putK layers of the weights

W(−m),line
αm,νm . Assume that the incoming arrow configuration at the left boundary is empty, while

at the bottom let the input be the random steady state M = (M(−n), . . . ,M(−1)). Denote the
random output at the top by M′ = (M′(−n), . . . ,M′(−1)). See Figure 30, left, for an illustration.
Since the solid horizontal lines preserve the distribution of M (this is the steady state property),
it remains to show that M′ and M have the same distribution.

Attach K cross vertices with the stochastic weights W qp
ξ to the rectangle on the right. This

does not change the distribution of M′. Then apply the Yang–Baxter equation (as in Figure 28)
to move these cross vertices to the left. On the left, there are no incoming arrows, so the cross
vertices in Figure 30, right, can be removed.

Denote by M′′ the random configuration which arises from M after the single dashed line,

that is, the line with the weights W(−m),queue
ξ,αm,νm

. The Yang–Baxter equation implies that M′ has
the same distribution as the random configuration which arises from M′′ after K solid horizontal

lines, that is, the lines with the weights W(−m),line
αm,νm . Taking K → +∞, we see that the growing

number of solid horizontal lines converges to its steady state distributed as M. In particular, this
steady state is independent of the initial configuration M′′. Therefore, M′ and M have the same
distribution, as desired.

From Theorem 7.6, we can construct a stationary random configuration of the vertex model
W qp

ξ in the whole plane Z2. The model in the plane is characterized as follows (a similar single-
color construction appeared in [Agg18, Section A.2]). For any J ≥ 1, define the map

τJ : Z≥0 × Z≥1 → Z2, τJ : (i, j) 7→ (i− J, j − J).

By Theorem 7.6, the random configurations of colored paths in parts of Z2 coming from shifting
the configuration in Z≥0×Z≥1 by τJ , J ∈ Z≥1, are compatible in J . Therefore, by the Kolmogorov
extension theorem, there exists a distribution on path configurations in the whole plane Z2, which
is translation invariant (that is, stationary under the stochastic vertex model W qp

ξ ).
The parameters (αm, νm) of the queue vertex models attached to the quadrant determine the

densities of various types of colors (the “colored slope”) of the resulting translation invariant
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(αn, νn) (α1, ν1)

M(−n) M(−1)

M′(−n) M′(−1)

...

...

· · ·

(αn, νn) (α1, ν1)

M(−n) M(−1)

M′(−n) M′(−1)

M′′(−n+ 1) M′′(−1)

−→
K×YBE

Figure 30: Application of the Yang–Baxter equation in the proof of Lemma 7.8. The dashed and

the solid horizontal lines correspond to the vertex weightsW(−m),queue
ξ,αm,νm

andW(−m),line
αm,νm , respectively.

model in Z2. We explore the exact connection between these parameters and the densities of
various colors for q-Boson and q-PushTASEP in Sections 7.3 and 7.4 below.

7.3 Specialization to stochastic six-vertex model and q-PushTASEP

Let us specialize Theorem 7.6 to the colored q-PushTASEP (defined on the line in the same way
as in Definition 6.1, but with the homogeneous parameters uk = u, k ∈ Z). Take the weights
(7.2), (7.4) to be

W(−m),line
αm,νm (A, k;B, ℓ) = W(−m)

q−1/2,s
(v)
m ,z/vm

(A, k;B, ℓ),

W(−m),queue
ξ,αm,νm

(A,B;C,D) = W(−m)

q−P/2,s
(v)
m ,u/vm

(A,B;C,D),

W qp
ξ (k,B; ℓ,D) = Wq1/2−P/2u/z,P,1(ek1k≥1,B; eℓ1ℓ≥1,D),

αm := −s(v)m q−1/2 z

vm
, νm := −(s(v)m )2, ξ := u/z.

(7.5)

Here P ∈ Z≥1, and αm, νm must satisfy (7.3). The weights in the right-hand sides of (7.5) are
given, respectively, in Figure 15, formula (2.12), and Figure 24.

One can check that the weights (7.5) are all nonnegative if

νi ∈ [0, αiq
P−1], i = 1, . . . , n, ξ ≥ q1/2−P/2. (7.6)

Indeed, the first condition corresponds to the fact that the weights W(−m),queue
ξ,αm,νm

come from the

fusion of W(−m),line
αm,νm (see Proposition 6.5 for a related nonnegativity property), and the second

condition involving the weights W qp
ξ is read off from their explicit form given in Figure 24.

Let us first consider the case P = 1. Then the vertex model in the quadrant with the weights
W qp

ξ becomes the colored stochastic six-vertex model (see [BW22a, Figure 1] for a simulation
with non-stationary boundary conditions). Theorem 7.6 and the shifting argument after it allows
to construct a translation invariant (stationary) colored stochastic six-vertex model in the full
plane Z2. By analogy with [NdN95], [Agg22], let us call this path configuration in Z2 the colored
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KPZ pure phase of the stochastic six-vertex model. The colored KPZ pure phase has a finite
number n of colors.

From Figure 27, we see that the probability that no paths leave column (−m) under the

stochastic weights W(−m),queue
ξ,αm,νm

and W(−m),line
αm,νm , respectively, is equal to

1

1 + αmξq−1/2
and

1

1 + αmq−1/2
. (7.7)

By Proposition 7.4, the arrow configurations in the columns −n, . . . ,−1 are in steady state. This
means that the number of colors i > m in the each column (−m) does not grow to infinity. Thus,
once a path of color m originates at the column (−m), it must exit the column (−1) at a bounded
(random) distance from where it originated. This means that the combined density of paths of
colors ≥ m exiting the column (−1) (in either the bottom or the top part of the configuration of
n vertical columns, see Figure 29, left) is equal to the complementary probability to (7.7).

We conclude that in the colored KPZ pure phase determined by the parameters {αm}nm=1,
the horizontal and the vertical densities of each color m = 1, . . . , n are, respectively,

ρ(h)m =
αmξq−1/2

1 + αmξq−1/2
− αm+1ξq

−1/2

1 + αm+1ξq−1/2
, ρ(v)m =

αmq−1/2

1 + αmq−1/2
− αm+1q

−1/2

1 + αm+1q−1/2
. (7.8)

Here αn+1 = 0, by agreement. When n = 1, we can solve for α1, and get

ρ
(h)
1 =

ρ
(v)
1 ξ

1 + (ξ − 1)ρ
(v)
1

,

which agrees with the slope relation ρ
(h)
1 = φ(ρ

(v)
1 ) in the single-color KPZ phase (for example,

see [Agg22, (2.6)]). For general n, solving for the αi’s in (7.8) yields the following colored slope
relations:

ρ(h)m =
ρ
(v)
m ξ

(
1 + (ξ − 1)ρ

(v)
[m,n]

)(
1 + (ξ − 1)ρ

(v)
[m+1,n]

) , m = 1, . . . , n, (7.9)

where ρ
(v)
[a,b] = ρ

(v)
a + ρ

(v)
a+1 + . . .+ ρ

(v)
b .

Under the colored KPZ pure phase, the colors occupying the vertical edges along a given
horizontal line induce a random configuration of colors on Z. This random configuration is a
stationary distribution for the mASEP.

Remark 7.9. As shown in [FKS91], for given color densities, a translation invariant stationary
distribution for mASEP on Z is unique. We believe that a similar uniqueness holds for the
colored stochastic six-vertex model, but this statement does not seem to be present in the existing
literature.

Let us now return to the case of general P, and take a continuous time limit to the colored
q-PushTASEP. The limit is achieved by setting z = qP/2−1/2ϵ, and letting ϵ → 0. In this limit,
the horizontal direction in the quarter plane, scaled by 1/ϵ, turns into continuous time t ∈ R≥0.
See Figure 25 for the ϵ → 0 expansions of the weights W qp

ξ . The continuous time Markov

process coming from W qp
ξ lives on configurations on Z≥1 (where at each site there are at most
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P particles), and coincides with the colored q-PushTASEP (Definition 6.1) with homogeneous
parameters uk ≡ u.

After the rescaling, let us further set νm = 0, which implies nonnegativity of the remaining

weights W(−m),queue
ξ,αm,0 and W(−m),line

αm,0 . Indeed, note that as αm (containing z as a factor) goes to
zero, conditions (7.6) cannot hold unless νm = 0.

Remark 7.10. In the constructions on the line, we need to set νm = 0, m = 1, . . . , n, from the
beginning, to ensure the nonnegativity of the queue vertex weights and the corresponding jump
rates in the queue columns (occurring as ϵ → 0). The nonnegativity is required to ensure the
existence of the steady state in the queue columns (see Proposition 7.4).

This should be contrasted to the ring case, where we could initially work with negative
probabilities and jump rates formally. Then, when the commutation relation between the queue
vertex model transfer matrix and the straight cylinder transfer matrix is established, we can
renormalize the queue vertex model on the cylinder to get nonnegative probabilities under the
stationary distribution. Thus, we have a whole family of vertex models on the cylinder (depending
on the νm’s) which produce the same stationary measure, and on the line we have to set νm = 0
for all m.

In the remaining vertex models in Figure 29, the weights W(−m),queue
ξ,αm,0 in the top part do not

depend on z (see (7.5)) and thus do not change in the limit. In the weights W(−m),line
αm,0 in the

bottom part (given in Figure 27), we have

αm = −s
(v)
m

vm
qP/2−1ϵ =: ymϵ → 0. (7.10)

Here y1 > . . . > yn > 0 are the new parameters of the continuous time colored q-PushTASEP.
The fact that the αm’s are proportional to ϵ corresponds to the scaling of the bottom columns
{−n, . . . ,−1} × Z≤0 in Figure 29 to continuous ones, {−n, . . . ,−1} × R≤0. Note that this

scaling does not affect the weights W(−m),queue
ξ,αm,νm

since they do not depend on z. The result-
ing scaled queue steady state model in {−n, . . . ,−1} × R≤0 runs in continuous time. Let
M = (M(−n), . . . ,M(−1)) be the steady state of these continuous time queues in tandem, and
let d(t), t ≤ 0, be the (continuous time) departure process. Using d(t) and the output V of the
top columns {−n, . . . ,−1}×Z≥1, one can use the Burke’s theorem (Theorem 7.6) to construct a
stationary version of the colored q-PushTASEP on the whole line.

Let us compute the densities of the colors under the stationary measure for the colored
q-PushTASEP. Since more than one arrow may leave the column (−m), we need to take the
expectation of the number of arrows. For this expectation, we do not need to distinguish the
colors. Employing the color merging discussed in Appendix A, we may assume that m = n = 1.
By a specialization of (2.12), one can check that the weights have the form (with a = c = ∞):

W(−1),queue
ξ,αm,0 (a, b; c, d) =

1a+b=c+d

(q−P/2s
(v)
m u/vm; q)P

(qP/2s
(v)
m u/vm)d (q−P; q)d

(q; q)d

=
1a+b=c+d

(−q1−Puym; q)P

(−quym)d (q−P; q)d
(q; q)d

.
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Note that these weights sum to 1 over 0 ≤ d ≤ P by the q-binomial theorem [GR04, (1.3.2)]. The
expected number of arrows is expressed through the function

ϕ(ζ) :=

∞∑

k=0

ζqk

1− ζqk
(7.11)

(up to a change of variables and a linear transformation, this is the q-digamma function). We
have

P∑

d=0

ζd(q−P; q)d
(q; q)d

=
(q−Pζ; q)∞
(ζ; q)∞

= (q−Pζ; q)P,

1

(q−Pζ; q)P

P∑

d=0

d · ζ
d(q−P; q)d
(q; q)d

= ζ
∂

∂ζ
log(q−Pζ; q)P = −

P−1∑

i=0

qi−Pζ

1− qi−Pζ
,

and the latter sum is a difference of two functions of the form (7.11) with the arguments differing
by the factor q−P. Therefore,

P∑

d=0

d · 1

(−q1−Puym; q)P

(−quym)d (q−P; q)d
(q; q)d

= ϕ(−quym)− ϕ(−q1−Puym). (7.12)

Thus, the horizontal density of the m-th color is the difference of the above expressions:

ρ(h)m = ϕ(−quym)− ϕ(−q1−Puym)− ϕ(−quym+1) + ϕ(−q1−Puym+1), (7.13)

where, by agreement, yn+1 = 0. This follows similarly to the case of the colored six-vertex model:
since the queues are in steady state, a color m cannot accummulate in any column except (−m).

This implies that the expectation (7.12) is equal to ρ
(h)
[m,n] = ρ

(h)
m + . . .+ ρ

(h)
n , which yields (7.13).

We can also compute the currents of the colored q-PushTASEP in stationarity (that is, the
vertical densities of the colors), using

W(−m),line
αm,0 (A, k;B, 0) =

1

1 + αm
= 1− ymϵ+O(ϵ2),

where B = A+ ek1k≥1. Therefore, in the continuous time limit, we have

ρ(v)m = ym − ym+1. (7.14)

Expressing the colored currents (ρ
(v)
1 , . . . , ρ

(v)
n ) in terms of the colored densities (ρ

(h)
1 , . . . , ρ

(h)
n ) for

general P would require finding the ym’s from (7.13), which is not explicit for general P. However,
a reverse expression is essentially given by (7.13)–(7.14):

ρ(h)m = ϕ
(
−quρ

(v)
[m,n]

)
− ϕ

(
−q1−Puρ

(v)
[m,n]

)
− ϕ

(
−quρ

(v)
[m+1,n]

)
+ ϕ

(
−q1−Puρ

(v)
[m+1,n]

)
.

Remark 7.11. We believe that for any P, a translation invariant stationary distribution for the
q-PushTASEP on Z with parameter P and with given densities of the colors is unique. However,
this statement does not seem to be present in the existing literature.
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7.4 Specialization to q-Boson

Let us specialize Theorem 7.6 to the stochastic colored q-Boson process. It is defined the same
way on the line as on the ring (Definition 5.1), but we reverse the direction of the particle
movement. That is, a particle of color i jumps from k to k + 1, k ∈ Z, at the homogeneous rate
u−1(1− qV(k)i)qV(k)[i+1,n] , where V(k) ∈ Zn

≥0 is the arrow configuration at site k.
To obtain the q-Boson process together with its stationary measure from the vertex models in

Figure 29, is it convenient to take horizontally fused weights (meaning multiple paths can occupy
a horizontal edge, as compared to Section 7.3, when W(−m),line were weights for which at most
one path can occupy a horizontal edge) in the bottom part {−n, . . . ,−1} × Z≤0. That is, let us
take the following pre-limit weights depending on ϵ > 0:

W(−m),line
ξ,αm,νm

(A,B;C,D) = W(−m)
ϵ,s,uϵym/s(A,B;C,D),

W(−m),queue
αm,νm (A, k;B, ℓ) = W(−m)

q−1/2,s,−ϵq1/2ym/s
(A, k;B, ℓ),

W qp
ξ,ϵ (A, k;B, ℓ) = W−1/(uϵ),1,N(A, ek1k≥1;B, eℓ1ℓ≥1),

αm := ϵym/s, νm := −s2, ξ := u, q−Nϵ
:= ϵ2.

(7.15)

Note that here we placed the ξ-dependence into the bottom part of the left n columns in Figure 29,
left, instead of the top one.

Let us take ϵ → 0 and simultaneously rescale the vertical coordinate of the quadrant by 1/ϵ.
This turns the vertical coordinate into the continuous time t ∈ R≥0. After that, set s = 0, which
would imply the nonnegativity of the jump rates (the restriction s = 0 is parallel to the case of
the q-PushTASEP; see Remark 7.10). The results of Sections 5.1 and 5.2 imply that as ϵ → 0
and s = 0, the weights (7.15) become

W(−m),line
ξ,αm,νm

→ (uym; q)∞W(−m),qBos
0,uym

,

W(−m),queue
αm,νm → jump rates in a continuous time queue vertex model (Figure 31),

W qp
ξ,ϵ → colored q-Boson jump rates in Figure 22,

(7.16)

where W(−m),qBos
0,uym

is given by the right-hand side of (5.2), and the limits of W(−m),queue
αm,νm to the

continuous vertical direction are read off from Figure 15. These limits are given in Figure 31.
One readily sees that the vertex weights (7.16) define Markov processes in discrete and con-

tinuous time with nonnegative transitions. Similarly to the proof of Proposition 7.4, for

y1 > y2 > . . . > yn > 0

one can verify that the queue vertex model with the weights (uym; q)∞W(−m),qBos
0,uym

produces a
steady state (that is, it does not run off to infinity). Then, following the proof of Theorem 7.6
and the shifting argument after it, one can construct a stationary version of the colored q-Boson
process on the whole line. We omit the details of the construction as they are similar to the ones
in Section 7.3.

Remark 7.12. The results of [ABGM21] imply that for q = 0, a translation invariant stationary
distribution for the q-Boson process on the whole line with given densities of the colors is unique.
We believe that a similar result should hold for general q ∈ (0, 1), but its proof does not seem
present in the existing literature.
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Figure 31: Expansions of the weights W(−m)

q−1/2,s,−ϵq1/2y/s

∣∣∣
s=0

as ϵ → 0. Here m < k < ℓ ≤ n. The

vertices of the types (A, k;A, k) and (A, k;A+−
kℓ , ℓ) with probabilities of order ϵ do not occur

in the queue vertex model. Indeed, to get a nonempty input from the left, another event of
probability O(ϵ) should have occurred at the same instance of the continuous time.

Arguing similarly to the case of the q-PushTASEP (Section 7.3), we can compute the colored
densities and currents in terms of the parameters y1 > . . . > yn > 0. The colored densi-

ties are the vertical densities ρ
(v)
m under the steady state vertex model with probability weights

(uym; q)∞W(−m),qBos
0,uym

(5.2). Let us compute the expected number of arrows leaving the column
(−m). By color merging described in Appendix A, we do not need to distinguish the colors and
may assume that m = n = 1. We have

(uym; q)∞W(−m),qBos
0,uym

(a, b; c, d) = (uym; q)∞ · (uym)d

(q; q)d
, d ∈ Z≥0.

The expected number of arrows is expressed through the function (7.11):

∞∑

d=0

d · (uym; q)∞ · (uym)d

(q; q)d
= ϕ(uym).

Thus, we have
ρ(v)m = ϕ(uym)− ϕ(uym+1). (7.17)

Here yn+1 = 0, by agreement. The colored currents are determined from the continuous time
queue vertex model in Figure 31, and have the form

ρ(h)m = ym − ym+1.

Similarly to the q-PushTASEP, expressing the currents in terms of the densities is not an explicit
operation. On the other hand, a reverse expression is readily available. It is obtained from (7.17)

by replacing each yj with ρ
(h)
[j,n].
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A Merging of colors in stationary measures on the line

Take a stochastic particle system (mASEP, the q-Boson process or the q-PushTASEP) with n
colors on the line Z. By agreement, holes are viewed as particles of color 0. If we declare that for
some m = 0, 1, . . . , n, all particles of colors m and m+ 1 are identified, then we get a stochastic
process with n − 1 colors. This operation of identifying two colors is a particular case of color
merging (see Definition A.3 below).

A similar color merging can be performed for a stationary distribution of an n-colored particle
system, and as a result, we should get a stationary distribution of a system with n − 1 colors
and modified densities of the colors. We call this the color merging property of the stationary
distributions. Here we explain how one can get this property on the line Z using our queue vertex
model constructions from Section 7.

Remark A.1. For some (but not all) of our particle systems, it is proven that a translation
invariant stationary distribution with given densities of colors is unique (see Remarks 7.9, 7.11,
and 7.12). When this uniqueness is available, it implies the color merging property of the sta-
tionary distributions directly, without reference to queue vertex models.

Remark A.2 (Color merging on the ring). For all colored particle systems on the ring (mASEP,
the q-Boson process, and the q-PushTASEP), we readily have uniqueness of the stationary dis-
tribution in any given sector determined by the number of particles of each color. Thus, on the
ring the color merging property holds automatically.

However, it is not clear if this color merging can be seen at the level of queue vertex models
on the cylinder. One reason for this is that queue vertex models on a cylinder are not stochastic
because they involve summing over input and also output path configurations at vertices (see Sec-
tion 2.5 for more discussion). At the same time, color merging involves summing over outputs
only, and the two summations are not readily compatible. In the remainder of Appendix A, we
focus only on systems on the line.

Definition A.3 (Color merging). Suppose we have a partition of {0, 1, . . . , n} into k disjoint
intervals I0, . . . , Ik ⊂ {0, 1, . . . , n} which are contiguous (that is, max(Ij) = min(Ij+1)−1 for all j).
The color merging projection π = πI0,...,Ik applied to a state i ∈ {0, 1, . . . , n} or A ∈ Zn

≥0 maps

it into π(i) ∈ {0, 1, . . . , k} or π(A) ∈ Zk
≥0, respectively, by assigning to all particles (or arrows)

with colors in each interval Ij the new color j.
For a probability measure µ on n-color configurations on Z (where the maximal number of

particles at a site is 1, P, or ∞, depending on the particle system), denote by π∗µ the pushforward
of µ under the color merging projection π.

Fix a partition {0, 1, . . . , n} = I0 ⊔ . . . ⊔ Ik as in Definition A.3. For the densities ρ1, . . . , ρn
of the old colors, denote by

ρ′j :=
∑

i∈Ij

ρi, j = 1, . . . , k, (A.1)

the densities of the new colors. In Sections 7.3 and 7.4, we showed that the densities (ρ1, . . . , ρn)
are in one-to-one correspondence with ordered n-tuples y1 > . . . > yn > 0. More precisely, ym
parametrizes

∑
i≥m ρi (the exact parametrization is different for the q-PushTASEP and the q-

Boson process, but for color merging we do not need these exact formulas). Therefore, the new
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densities (ρ′1, . . . , ρ
′
k) correspond to the ordered k-tuple

y′ = (ymin(I1), . . . , ymin(Ik)). (A.2)

Here, by agreement, if I1 contains the color 0 (corresponding to the hole), then we need to remove
the parameter ymin(I1) = y0 from the tuple y′.

Denote by µy and µy′ the stationary measures, respectively, for the n- and the k-colored
particle systems on the whole line Z.

Let us record the color merging properties of the vertex weights which appeared in Section 2.
We have:

∑
i2,j2 : π(i2)=i′2,π(j2)=j′2

Rz(i1, j1; i2, j2) = Rz(π(i1), π(j1); i
′
2, j

′
2), (A.3)

∑
B,ℓ : π(B)=B′,π(ℓ)=ℓ′

Ls,x(A, k;B, ℓ) = Ls,x(π(A), π(k);B′, ℓ′), (A.4)
∑

C,D : π(C)=C′,π(D)=D′ Wx,L,M(A,B;C,D) = Wx,L,M(π(A), π(B);C′,D′), (A.5)
∑

C,D : π(C)=C′,π(D)=D′ W
(−m)
s1,s2,u(A,B;C,D) = W(−π(m))

s1,s2,u (π(A), π(B);C′,D′). (A.6)

Identity (A.3) is immediate. Vertical fusion or a direct verification leads to (A.4). Then by
horizontal fusion, (A.4) leads to (A.5). Finally, we get (A.6) from (A.5) by the queue specialization
defined in Section 2.4. Note that in (A.6), both m and π(m) must be strictly positive.

In probabilistic language, identity, say, (A.6), can be interpreted as follows. Starting from

(π(A), π(B)), to sample (C′,D′) under the k-color stochastic weightW(−π(m))
s1,s2,u , we may choose any

representatives (A,B) for the input, sample (C,D) under the n-color stochastic weight W(−m)
s1,s2,u,

and then project the output (C,D) back to k colors using π. The projection π “forgets” some of
the information about the colors, and this operation is the same as the summation in the left-hand
side of (A.6). The other identities (A.3)–(A.5) have a similar probabilistic interpretation.

Stacking vertices vertically or horizontally results in a Markov mapping which commutes
with the projection π in the same way as described in (A.3)–(A.6). We need an instance of
this stacking for queue vertex models on the whole line. Let us take a queue vertex model in

{−n, . . . ,−1} × Z with empty input from the left and vertex weights W(−m)
s1,s2,u in the column

−m, m = 1, . . . , n. Assume that the parameters s1, s2, u make these weights nonnegative. More

precisely, we assume that the weights are of the form W(−m)

q−P/2,s
(v)
m ,u/vm

for the q-PushTASEP (7.5),

or (uym; q)∞W(−m),qBos
0,uym

for the q-Boson process (7.16). In both cases, we can define the steady
state distribution of this model as in Proposition 7.4. Denote the corresponding random tuple
by M = (M(−n), . . . ,M(−1)).

Lemma A.4. Fix a partition {0, 1, . . . , n} = I0 ⊔ . . . ⊔ Ik as in Definition A.3, and let π be the
corresponding projection.

Let the random configurations V = (V(1),V(2), . . . ) and Ṽ = (Ṽ(1), Ṽ(2), . . . ) be sampled
from the vertex models shown on the left and right in Figure 32, respectively. That is, V is the
output of the original n-color queue vertex model run in steady state. The model for Ṽ has input

π(M), and k-color queue vertex weights W(−π(m))
s1,s2,u in the column −m, m = 1, . . . , n. Then

π(V)
d
= Ṽ.
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Moreover, the distribution of the n-tuple π(M) is the steady state for the system of n k-colored
queues in tandem in the right side of Figure 32.

Proof. Both claims follow from an inductive application of the color merging property (A.6).

· · ·...

3

2

1

M(−n) M(−1)

V(1)

V(2)

V(3)

· · ·...

3

2

1

π (M(−n)) π (M(−1))

Ṽ(1)

Ṽ(2)

Ṽ(3)

Figure 32: Color merging applied to queue vertex models; see Lemma A.4. There are n columns
in both figures.

Lemma A.5. Let π be a projection which merges colors 1 and 0. Under π, the n-color queue

vertex weights W(−1)
s1,s2,u(A,B;C,D) in the rightmost column turn into the (n − 1)-color fused

stochastic weights (2.9)

Ws1s
−1
2 u,L,M(A′,B′;C′,D′)

∣∣
q−L=s21, q−M=s22

, (A.7)

where A′ = (A2, . . . , An) ∈ Zn−1
≥0 , and similarly B′,C′,D′, and

A = (∞,A′), B = (0,B′), C = (∞,C′), D = (D1,D
′).

Here B1 = 0 because in a queue vertex model, no arrows of color 1 can enter the column (−1).

Proof. We use the explicit expression (2.12) for W(−1)
s1,s2,u. Let P

′ = (P2, . . . , Pn), which is a part of

the summation index in W(−1)
s1,s2,u. We have P1 = 0 because P1 ≤ B1. The projection π involves the

summation over D1 from 0 to ∞. The latter reduces to the q-binomial theorem [GR04, (1.3.2)]:

∞∑

D1=0

W(−1)
s1,s2,u(A,B;C,D) =

(s−1
1 s2u; q)∞

(s1s2u; q)∞

∑

P′

(s1s2/u; q)|P′|(s1u/s2; q)|B′−P′|

(s21; q)|B′|

× q
∑

2≤i<j≤n(Bi−Pi)Pj (s1s2u
−1)|B

′|−|P′|(s−1
1 s2u)

|D′|
n∏

i=2

(q; q)Bi

(q; q)Pi(q; q)Bi−Pi

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

× q
∑

2≤i<j≤n Di(Cj−Pj)(s21; q)|D′|

∞∑

D1=0

qD1(|C′|−|P′|)(us2/s1)
D1

(s21q
|D′|; q)D1

(q; q)D1
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=
(s−1

1 s2u; q)∞
(s1s2u; q)∞

∑

P′

(s1s2/u; q)|P′|(s1u/s2; q)|B′−P′|

(s21; q)|B′|

× q
∑

2≤i<j≤n(Bi−Pi)Pj (s1s2u
−1)|B

′|−|P′|(s−1
1 s2u)

|D′|
n∏

i=2

(q; q)Bi

(q; q)Pi(q; q)Bi−Pi

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

× q
∑

2≤i<j≤n Di(Cj−Pj)(s21; q)|D′|
(s1s2uq

|C′|−|P′|+|D′|; q)∞

(s−1
1 s2uq|C

′|−|P′|; q)∞
.

Canceling out the infinite q-Pochhammer symbols, we continue the computation as follows:

=
∑

P′

(s−1
1 s2u; q)|C′|−|P′|(s

2
1; q)|D′|

(s1s2u; q)|C′|−|P′|+|D′|

(s1s2/u; q)|P′|(s1u/s2; q)|B′−P′|

(s21; q)|B′|
(s1s2u

−1)|B
′|−|P′|(s−1

1 s2u)
|D′|

× q
∑

2≤i<j≤n(Bi−Pi)Pjq
∑

2≤i<j≤n Di(Cj−Pj)
n∏

i=2

(q; q)Bi

(q; q)Pi(q; q)Bi−Pi

(q; q)Ci−Pi+Di

(q; q)Ci−Pi(q; q)Di

.

From (2.9), one readily sees that the resulting expression matches (A.7), and we are done.

Now, we can formulate and prove our main statement about the color merging property of
the stationary distributions.

Proposition A.6. We have π∗µy = µy′. Here µy is the stationary distribution of the n-colored
q-PushTASEP or the q-Boson process on Z with the densities of the colors depending on the
parameters y1 > . . . > yn > 0 via (7.13) or (7.17), respectively. The distribution µy′ is stationary
for the corresponding k-colored system, and the parameters y′ are obtained from y by merging as
in (A.2).

Proof. Arguing inductively, it suffices to consider the merging any two consecutive colors m and
m + 1. Case (1) with m = 0 is special, we treat it separately first. For m ≥ 1, we need to
show that the output of the column −(m + 2) (distributed as µ(ym+2,...,yn)), passed through two
consecutive columns with infinitely many arrows of color m and parameters ym+1 and ym, is
distributed as µ(ym,...,yn). After that, we can pass the output of the column (−m) into further
columns, and the final output will be distributed as µy′ by the very definition. Thus, in Case (2)
it suffices to take m = 1 and merge the colors 1 and 2.

Case (1). Step 1. Consider the system of n columns of queue vertex models (“queues in
tandem”) which produces the n-color stationary distribution µy. Let us denote the output of this
system by V = (V(1),V(2), . . .). We know that the color merged output π(V) is the same as
the output of n queues with n − 1 colors, where the columns −2, . . . ,−n do not change, and π
is applied to the rightmost column (−1). Indeed, π affects only the column (−1), and erases the
color 1 which does not appear in columns (−m), m ≥ 2. It thus suffices to show that π(V) is
distributed as µy′ , that is, it is stationary for the (n− 1)-color interacting particle system.

Case (1). Step 2. Applying Lemma A.5, we see that the weights in the rightmost column
(−1) become the q-PushTASEP or q-Boson specializations of the (n − 1)-color weights (A.7).
More precisely, for the q-PushTASEP, we have the following weights in the column (−2) and the
column (−1):

W(−2)

q−P/2,s,−q1−P/2s−1uy2

∣∣∣
s=0

and W−q1−Ps−2uy1,P,M

∣∣∣
s=0

, (A.8)
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· · ·...

3

2

1

M(−n) M(−2) π (M(−1))

π(V(1))

π(V(2))

π(V(3))

· · ·...

3

2

1
π(V(1))

π(V(2))

π(V(3))

M′(−n) M′(−2) M′(−1)

M(−n) M(−2)

Figure 33: Two ways to sample the random configuration π(V) in Case (1) in the proof of
Proposition A.6. Left: π(V) is the output of a system of n queues with (n−1) colors in the steady
state, where π is applied only in the rightmost column. Right: We add auxiliary vertices with

the weights W(−2)
0,0,ym/y1

at the bottom of each column (−m), m = 2, . . . , n. The incoming arrow

configurations are empty on the left, and the (n − 1)-color steady state (M(−n), . . . ,M(−2))
at the bottom. The partition function on the right satisfies the Yang–Baxter equation at the
triangular intersection of the lines.

where q−M = s2 (see Section 7.3). Note in particular that for the q-PushTASEP, the queue

weights W(−m),queue
ξ,αm,νm

(see (7.5)) do not scale with ϵ which entered the weights W(−m),line
αm,νm in the

quadrant through the scaling (7.10).
For the q-Boson process, these weights are, respectively,

W(−2)
ϵ,s,ϵs−1uy2

∣∣∣
ϵ→0 then s=0

and W(ϵ/s)2uy1,L,M

∣∣∣
ϵ→0 then s=0

, (A.9)

where q−L = ϵ2 and q−M = s2 (see Section 7.4).
Let us now choose the auxiliary weights with which (A.8) or (A.9), respectively, satisfy the

Yang–Baxter equation. They are found from Proposition 2.10. The auxiliary weights for the
q-PushTASEP and the q-Boson are exactly the same, and they have the form

W(−2)
s,s,y2/y1

∣∣∣
s=0

. (A.10)

One can check that the weights (A.8), (A.9), and (A.10) are nonnegative under our restrictions
on the parameters (in particular, recall that y1 > y2 > 0).

Case (1). Step 3. Let us show that the random output π(V) may be sampled using another
vertex model which is displayed in Figure 33, right. We claim that

(
M(−n), . . . ,M(−2), π(M(−1))

) d
=
(
M′(−n), . . . ,M′(−2),M′(−1)

)
. (A.11)

By Lemma 7.8, the distribution of (M(−n), . . . ,M(−2)) in Figure 33, right, can be generated
by infinitely many dashed horizontal lines below the picture (carrying the corresponding queue

67



vertex weights). Using the Yang–Baxter equation, we may bring an arbitrary number, say, K, of
these dashed horizontal lines into the space between the auxiliary line (solid horizontal line) and
the output (M′(−n), . . . ,M′(−2),M′(−1)). See Figure 34 for an illustration. Taking the limit
as K → ∞, we get (A.11) because its left-hand side is the steady state of the system of n queues
with (n− 1) colors.

· · ·

...
...

...

−→
K×YBE

K

M′(−1)M′(−n)

· · ·

...
...

...

M′(−1)M′(−n)

K

Figure 34: Moving of K dashed horizontal lines in step 3 of the proof of Proposition A.6. In the
picture, K = 3. We add K empty cross vertices to the left, and drag them through to the right.
In the limit as K → +∞, the distribution of M′ becomes the same as of M.

Case (1). Step 4. Now, using the Yang–Baxter equation, we may move the rightmost vertical
line in Figure 33, right, all the way to the left of the column −n. There, this vertical line can be
removed because it carries no arrows. This application of the Yang–Baxter equation transforms
the lattice from the right panel of Figure 34 to the left one. The resulting output configuration
from the (n− 1)-column system is distributed as π(V), and we are done. This shows that π(V)
has the same distribution as the output of the system of n − 1 queues with (n − 1) colors and
parameters y2 > . . . > yn > 0. Thus, π(V) is distributed as µ(y2,...,yn) = µy′ , as desired.

The applications of the Yang–Baxter equation in Steps 3 and 4 are similar to what we used
in the colored Burke’s theorem in Section 7.2.

Case (2). Now let us consider the merging of colors 1 and 2. Consider the system of n − 1
queues in tandem, which have n− 1 colors, and parameters y2 > . . . > yn. Denote its output by
V′ = (V′(1),V′(2), . . .); it is distributed as the (n− 1)-colored stationary distribution µ(y2,...,yn).
We need to replace the color 2 by 1 in V′ and pass it as an input into the column (−1) with
parameter y1. To complete the proof, it suffices to show that the output V of the column (−1)
in this scenario has the distribution µ(y1,y3,...,yn), see (A.2).

Notice that by Lemma 2.9, the queue vertex weights in the column (−1) do not depend on
the arrows of color 1 incoming from the left. Therefore, instead of replacing the color 2 by 1
in V′, we may replace the color 2 by 0, and pass the result into the column (−1). Denote by π◦

the projection which merges the colors 2 and 0. By Case (1), π◦(V′) has n − 2 colors 3, . . . , n
and is distributed as µ(y3,...,yn). Passing π◦(V′) through the column (−1) with the parameter
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y1 adds the color 1 and, by the very definition of the queue vertex model, produces V with the
distribution µ(y1,y3,...,yn). This completes the proof.
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[ABGM21] G. Amir, O. Busani, P. Gonçalves, and J.B. Martin, The TAZRP speed process, Ann. Inst. H. Poincaré
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