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Abstract

Many integrable stochastic particle systems in one space dimension (such as TASEP —
Totally Asymmetric Simple Exclusion Process — and its q-deformation, the q-TASEP) remain
integrable if we equip each particle with its own speed parameter. In this work, we present
intertwining relations between Markov transition operators of particle systems which differ by
a permutation of the speed parameters. These relations generalize our previous works [PS21],
[Pet21], but here we employ a novel approach based on the Yang-Baxter equation for the
higher spin stochastic six vertex model. Our intertwiners are Markov transition operators,
which leads to interesting probabilistic consequences.

First, we obtain a new Lax-type differential equation for the Markov transition semigroups
of homogeneous, continuous-time versions of our particle systems. Our Lax equation encodes
the time evolution of multipoint observables of the q-TASEP and TASEP in a unified way,
which may be of interest for the asymptotic analysis of multipoint observables of these systems.

Second, we show that our intertwining relations lead to couplings between probability
measures on trajectories of particle systems which differ by a permutation of the speed pa-
rameters. The conditional distribution for such a coupling is realized as a “rewriting history”
random walk which randomly resamples the trajectory of a particle in a chamber determined
by the trajectories of the neighboring particles. As a byproduct, we construct a new coupling
for standard Poisson processes on the positive real half-line with different rates.
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1 Introduction

1.1 Overview

Integrable (also called “exactly solvable”) stochastic interacting particle systems on the line are
Markov chains on configurations of particles on Z, which feature exact formulas governing their
distributions at any given time. These formulas lead to precise control of the asymptotic behavior
of these Markov chains in the limit to large scale and long times. In the past two decades, inte-
grable particle systems have been instrumental in uncovering new universal asymptotic phenom-
ena, including those present in the Kardar-Parisi-Zhang universality class. See Corwin [Cor12],
[Cor16], Halpin-Healy–Takeuchi [HT15], and Quastel–Spohn [QS15].

Initial progress for integrable stochastic particle systems was achieved through the use of
determinantal techniques, e.g., see Johansson [Joh00] for the asymptotic fluctuations of TASEP
(Totally Asymmetric Simple Exclusion Process). More recently, new tools arising from quantum
integrability, Bethe ansatz, and symmetric functions were applied to deformations of TASEP and
related models. These deformations include ASEP, where particles may jump in both directions
with asymmetric rates (Tracy–Widom [TW08], [TW09]); random polymers (O’Connell [O’C12],
Corwin–O’Connell–Seppäläinen–Zygouras [COSZ14], O’Connell–Seppäläinen–Zygouras [OSZ14],
Seppäläinen [Sep12], Barraquand–Corwin [BC16]); and various q-deformations of the TASEP
which modify its jump rates. Among the latter, in this paper, we consider the q-TASEP intro-
duced by Borodin–Corwin [BC14] (see also Sasamoto–Wadati [SW98]), and the q-Hahn TASEP
introduced and studied in Povolotsky [Pov13] and Corwin [Cor14].

One of the most recent achievements in the study of the structure of integrable stochastic
particle systems is their unification under the umbrella of integrable stochastic vertex models ini-
tiated in Borodin–Corwin–Gorin [BCG16], Corwin–Petrov [CP16a], and Borodin–Petrov [BP18a],
[BP16a]. The integrability of the stochastic vertex models is powered by the Yang–Baxter equa-
tion, which is a local symmetry of the models arising from the underlying algebraic structure.
This is the central starting point for studying the stochastic vertex models.

Ever since the original works on TASEP, it was clear that integrability in particle systems like
TASEP is preserved when we introduce countably many extra parameters; see Gravner–Tracy–
Widom [GTW02] and Its–Tracy–Widom [ITW01]. A typical example is when each particle has
its own jump rate. One can trace the ability to perform such a multiparameter deformation
to the underlying algebraic structure of the model, which connects it to a particular family of
symmetric polynomials (e.g., the probability distribution of the TASEP may be written in terms
of the Schur polynomials). In the framework of symmetric functions, interacting particle systems
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with different particle speeds already appeared in Vershik–Kerov [VK86] in connection with the
Robinson–Schensted–Knuth (RSK) correspondence; see also O’Connell [O’C03a], [O’C03b] for
further probabilistic properties of the RSK.

The multiparameter deformation of integrable stochastic particle systems should be contrasted
with q-deformations, like the one turning TASEP into the q-TASEP. The latter introduces just
one extra parameter while at the same time deforming the underlying symmetric functions in a
nontrivial way (for q-TASEP, passing from the Schur functions to q-Whittaker functions). On
the other hand, our multiparameter deformations rely on the presence of symmetry itself and can
be readily combined with q-deformations.

Let us remark that TASEP in inhomogeneous space (when the jump rate of a particle depends
on its location) does not seem to be integrable; see Costin–Lebowitz–Speer–Troiani [CLST13],
Janowsky–Lebowitz [JL92], and Seppäläinen [Sep01]. For this reason, control of the asymptotic
fluctuations in this process requires very delicate asymptotic analysis; see Basu–Sidoravicius–Sly,
[BSS14], Basu–Sarkar–Sly [BSS17]. Moreover, it is not known whether ASEP has any inte-
grable multiparameter deformations. The stochastic six vertex model introduced and studied by
Gwa–Spohn [GS92] and Borodin–Corwin–Gorin [BCG16] scales to ASEP and admits such a mul-
tiparameter deformation, see Borodin–Petrov [BP18a]. However, the scaling to ASEP destroys
this structure. Recently other families of spatially inhomogeneous integrable stochastic parti-
cle systems in one and two space dimensions were studied by Assiotis [Ass20], Borodin–Petrov
[BP18b], Knizel–Petrov–Saenz [KPS19], and Petrov [Pet20].

Due to the underlying algebraic structure powered by symmetric functions, certain joint distri-
butions in integrable stochastic particle systems are symmetric under (suitably restricted classes
of) permutations of their speed parameters. This symmetry is far from being evident from the
definition of a particle system and is often observed only as a consequence of explicit formu-
las. In our previous works (Petrov–Saenz [PS21], Petrov [Pet21], Petrov–Tikhonov [PT20]), we
explored various probabilistic consequences of these distributional symmetries. In particular,
we constructed natural monotone couplings between fixed-time distributions in particle systems
which differ by a permutation of the speed parameters.

However, the analysis in our previous works was severely restricted to the case of the dis-
tinguished step initial configuration in the particle systems and only to couplings of fixed-time
distributions. This paper presents a new approach based on the Yang-Baxter equation and widely
extends the scope of distributional symmetries and monotone couplings in integrable stochastic
particle systems. In particular, we extend the previous results to both the general initial condi-
tions and to couplings of measures on whole trajectories (and not only fixed-time distributions).

In the rest of the Introduction, we formulate the paper’s main results. We use a simplified
notation for some Markov operators that slightly differs from the notation later used in the rest
of the text. We begin by presenting concrete new probabilistic results in the well-known setting
of the two-particle continuous time TASEP and the Poisson processes on (0,+∞) in Sections 1.2
and 1.3.

1.2 Coupling in the two-particle TASEP with different particle speeds

Before presenting our general results in Section 1.6 below, let us illustrate them in the simplest
nontrivial case, the continuous time TASEP with two particles. Think of them as two cars, one
fast and one slow, driving on a one-lane road evolving in continuous time. The speeds of the cars
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are α0 > α1 > 0. These are the rates of independent exponential clocks associated with the cars.
When a clock rings, the car jumps by 1 to the right if the destination is not occupied by a car
in front of it. In particular, the car in front performs a simple continuous time Poisson random
walk, while the motion of the second car is more complicated than that of the first one due to
blocking from the first car.

We consider two systems, the fast-slow (FS) and the slow-fast (SF), depending on which car
is in front.

Proposition 1.1. If the cars start next to each other in both the FS and SF systems, then the
probability law of the whole trajectory {x2(t)}t∈R≥0

of the car in the back is the same in both
systems.

In other words, the trajectory of the car in the back, x2(t), depends on the parameters α0, α1

in a symmetric way. See Figure 1 for an illustration.

Idea of proof of Proposition 1.1. This statement can be traced back to the RSK construction of
TASEP (presented, e.g., in Vershik–Kerov [VK86] or O’Connell [O’C03a], [O’C03b]). The RSK
shows that (x1(t), x2(t)) is a deterministic function of the system of two independent continuous
time Poisson random walks with rates α0 and α1. While these deterministic functions are dif-
ferent in the SF and the FS systems, one can readily verify (for example, via the Bender–Knuth
involution [BK72]) that they produce the same distribution of the trajectory {x2(t)}t∈R≥0

.

Fast-slow system Slow-fast systemx1(t)

x2(t)

t

x1(t)
x2(t)

t

Figure 1: FS (left) and SF (right) systems of two cars started from the step initial configuration.
In the FS system, the first car quickly runs to the front, and the evolution of the second (slow) car
becomes an independent Poisson walk. In the SF system, the slow car in front often blocks the
fast car in the back. However, in both systems, the trajectory of the car in the back, {x2(t)}t∈R≥0

,
is the same in distribution.

The assumption that the cars start next to each other is crucial for Proposition 1.1. Indeed,
consider the initial condition x◦1 > x◦2 for the FS and SF systems so that x◦1 − x◦2 is large. In the
SF system, the trajectory of the car in the back first evolves as a random walk with the faster
slope α0 and, then, has slope α1 after catching up with the slow car. This is very different from
the behavior of the car in the back in the FS system, where the slope is α1 the whole time. So,
Proposition 1.1 fails for an arbitrary initial condition (x◦1, x

◦
2). See Figure 2, left and center, for

an illustration.
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In this paper, we suitably modify Proposition 1.1 to generalize it to arbitrary initial conditions
(x◦1, x

◦
2). The modification involves a randomization of the initial condition in the SF system.

Define
y◦1 := x◦2 + 1 +min(G, x◦1 − x◦2 − 1),

where G is an independent geometric random variable with parameter α1/α0, that is,

P(G = k) = (1− α1/α0) (α1/α0)
k, k ∈ Z≥0. (1.1)

The Markov map which turns (x◦1, x
◦
2) into (y◦1, x

◦
2) is an instance of the Markov swap operator

P (n) (with n = 1 here) entering Proposition 1.5 below. For the next statement, the gap x◦1 − x◦2
can be arbitrary, not necessarily large. Denote the FS and SF systems with the corresponding
initial conditions by FSx◦

1,x
◦
2
and SFy◦1 ,x

◦
2
.

Theorem 1.2. The trajectory of the car in the back, {x2(t)}t∈R≥0
, is the same in distribution

for FSx◦
1,x

◦
2
and SFy◦1 ,x

◦
2
, where y◦1 (the initial condition for the car in the front in SF) is random

and given by (1.1).

See Figure 2 for an illustration. When x◦1 = x◦2+1, from (1.1) we almost surely have y◦1 = x◦1,
and so Theorem 1.2 reduces to Proposition 1.1. For general initial conditions, the intertwining
result, i.e. Proposition 1.5 introduced in Section 1.5 below, is not enough to conclude the equality
in distribution of the whole trajectories. Namely, Proposition 1.5 only implies the equality in
distribution of x2(t) in FSx◦

1,x
◦
2
and SFy◦1 ,x

◦
2
at each fixed time t, but not jointly for all times. We

need a stronger coupling between measures briefly described in Section 1.6 below. To point to
the relevant results in the main text, Theorem 1.2 follows from the general Theorem 7.9 and its
continuous-time corollary, Proposition 9.2 (in particular, see Remark 9.3 for the TASEP case).

Fast-slow system
with general initial condition

Slow-fast system
with general initial condition

Slow-fast system
with randomized initial condition

x1(t)

x2(t)

t

x1(t)
x2(t)

t

x1(t)

x2(t)

t

Figure 2: Left: The FS system started from a general fixed initial condition (x◦1, x
◦
2). Center:

The SF system started from the same initial condition (x◦1, x
◦
2). Right: The SF system started

from a randomized initial condition (y◦1, x
◦
2) depending on (x◦1, x

◦
2). The trajectories of the car

in the back, {x2(t)}t∈R≥0
, are the same in distribution in the left and the right systems but are

different from the trajectory in the center system.

Let us describe the coupling between the two-particle systems FSx◦
1,x

◦
2
and SFy◦1 ,x

◦
2
which

leads to Theorem 1.2. Fix a terminal time M ∈ R≥0. The coupling (rewriting history operator
from future to past, in our terminology) replaces the trajectory {x1(t)}0≤t≤M in FSx◦

1,x
◦
2
by a

new trajectory {y1(t)}0≤t≤M such that x2(t) < y1(t) ≤ x1(t) for all t (so that the coupling is
monotone). The construction of y1(t) proceeds in two steps:

• First, at time t = M , set y1(M) = x2(M) + 1 + min(G, x1(M) − x2(M) − 1), where G is an
independent geometric random variable with parameter α1/α0, as in (1.1).
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• Then, start a continuous time Poisson random walk y1(t) in reverse time from M to 0 in
the chamber x2(t) < y1(t) ≤ x1(t), under which the car y1 jumps down by 1 at rate α0 if
y1(t) < x1(t) and at rate α0−α1 if y1(t) = x1(t). If y1(t) = x2(t)+1, the jump down is blocked.
Also, if the top boundary of the chamber goes down by 1, the walk y1(t) is deterministically
pushed down.

See Figure 3 for an illustration. Proposition 9.2 implies that the distribution of the two-
particle trajectory {y1(t), x2(t)}0≤t≤M is the same as the trajectory of the whole two-particle
system SFy◦1 ,x

◦
2
. In particular, the position y1(0) has the distribution y◦1 given by (1.1), and

Theorem 1.2 follows.

t

M0

x2

x1

y1

rate α0

rate α0 − α1

push

block

Figure 3: Construction of the coupling from FS to SF systems. The random walk y1(t) in reverse
time is confined to the highlighted chamber. In the bulk of the chamber, its rate of jumping down
is α0, and on the top boundary the rate is α0 − α1. On the bottom boundary, the jumps down
are blocked.

The resampling of a trajectory as a random walk in a chamber is reminiscent of the Brownian
Gibbs property from Corwin–Hammond [CH14]. However, there are several notable differences.
First, our resampling does not preserve the distribution but interchanges the rates α0 ↔ α1

(though in a continuous time limit as in Section 1.5, this issue disappears). Second, the resampled
trajectory is not a simple random walk conditioned to stay in the chamber like in the Brownian
Gibbs property, but rather a random walk reflected from the bottom wall and sticking to the top
wall. In the Brownian setting, processes sticking to one of the walls appeared in Warren [War97]
and Howitt–Warren [HW09] in a setting similar to ours, see Section 1.3 in Petrov–Tikhonov
[PT20] for a related discussion. Finally, our resampling changes the trajectory and its endpoints,
while under the Brownian Gibbs property, the endpoints stay fixed. We plan to explore Brownian
limits of our constructions in future work.

1.3 Coupling of Poisson processes

In the previous Section 1.6, we described a monotone coupling from FS to SF, which turns the
trajectory x1(t), 0 ≤ t ≤M , in FS having speed α0 into a trajectory y1(t) which lies below x1(t)
and has lower speed α1 < α0. The law of y1(t) depends on the trajectory x2(t) of the particle in
the back.

Along with this monotone coupling, there is a monotone coupling in another direction, rewrit-
ing history operator from past to future, which turns the particle’s trajectory in front of speed
α1 into a trajectory with a higher speed α0 > α1. Recall that in TASEP, the trajectories of the
particles in front are continuous time Poisson simple random walks, that is, they are counting
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functions of the standard Poisson point processes on (0,+∞). Remarkably, when FS and SF start
from the step initial configuration x1(0) = y1(0) = 0, x2(0) = −1, the operator for rewriting his-
tory from past to future does not depend on the trajectory x2(t). Thus, it produces a monotone
coupling between two Poisson simple random walks of rates α1 and α0 > α1, respectively. Let us
describe this coupling.

Let y1(t), t ∈ R≥0, be a Poisson simple random walk of rate α1 started from y1(0) = 0.
Fix α0 > α1. Start another random walk x1(t) from x1(0) = 0 which lives in the chamber
x1(t) ≥ y1(t) for all t, and jumps up by 1 at rate α0 if x1(t) > y1(t), and at rate α0 − α1 if
x1(t) = y1(t). When the bottom boundary of the chamber goes up by 1 and x1(t) = y1(t), the
walk x1(t) is deterministically pushed up. See Figure 4 for an illustration.

Theorem 1.3. The process x1(t) defined above (right before the Theorem) is a continuous time
Poisson simple random walk with rate α0.

t

M0

y1

x1rate α0 − α1 rate α0

push

Figure 4: Monotone coupling from a Poisson random walk y1(t) of rate α1 to a Poisson random
walk x1(t) of rate α0 > α1. The new process must lie in the highlighted chamber. In the bulk of
the chamber, it has jump rate α0, and on the bottom boundary the jump rate is α0 − α1.

Theorem 1.3 follows from our main result on coupling, Theorem 7.9, and its corollary for
rewriting history from past to future in continuous time, Proposition 9.4 (in particular, see
Remark 9.5 for the TASEP case).

Remark 1.4. We note that there is a well-known and simple randomized coupling between two
Poisson processes on (0,+∞) (from a rate α1 to the higher rate α0 > α1). It is called thickening
and consists of simply adding to the process of rate α1 an extra independent Poisson point process
configuration of rate α0 − α1. The union of the two point configurations is a Poisson process of
rate α0. The construction in Theorem 1.3 is very different from such an independent thickening:
it does not preserve all the points from the original process of rate α1, and has a Markov (and
not independent) nature.

Surprisingly, there also exist deterministic couplings between Poisson processes on the entire
line R from higher to lower rates which are translation invariant (constructed by Ball [Bal05]),
and also non-translation invariant ones on an arbitrary set in both α0 to α1 and the reverse
directions, see Angel–Holroyd–Soo [AHS11] and Gurel-Gurevich–Peled [GGP13].

It is possible to make the Poisson rates α0 and α1 equal to each other by taking a continuous
time Poisson type limit. This limit produces an interesting (and, to the best of our knowledge,
new) continuous time coupling between Poisson processes on (0,+∞) of all possible rates. This
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coupling is also monotone; that is, it increases the rate while almost surely increasing the tra-
jectory of the Poisson process’ counting function. This continuous time coupling is described in
Proposition 10.13.

1.4 Intertwining relations for stochastic vertex models

After highlighting two concrete applications in Sections 1.2 and 1.3, let us present our results in
a more general setting.

In the setting of the fully fused higher spin stochastic six vertex model, we prove an intertwin-
ing (also called quasi-commutation) relation between the transfer matrices of two models, which
differ by a permutation of the speed parameters. This vertex model is defined in Corwin–Petrov
[Cor14] and Borodin–Petrov [BP18a]; we recall it in Sections 2 and 3 below. We formulate the
intertwining as follows. Let us denote by T and Tσn−1 the one-step Markov operators (transfer

matrices) on the space {0, 1}Z of particle configurations on Z. The parameter sequences in T and
Tσn−1 differ by the elementary transposition σn−1 = (n − 1, n) which permutes the parameters
associated with two neighboring particles xn > xn+1.

1

Proposition 1.5 (Proposition 4.2 in the text). There exists a one-step Markov transition operator
denoted by P (n) such that

T P (n) = P (n)Tσn−1 , (1.2)

under a certain restriction on the parameters associated with the particles xn and xn+1.

The action of the Markov operator P (n) only moves the particle xn while preserving the
locations of all other particles. Here and throughout the paper, we interpret the product of
Markov operators as acting on measures from the right. That is, (1.2) states that if we start
from a fixed particle configuration, apply a random Markov step according to T , and then apply
a Markov step according to P (n), then the resulting random particle configuration has the same
distribution as the random particle configuration obtained by the action of P (n) followed by Tσn−1 .

The intertwining relation (1.2) is a consequence of the Yang-Baxter equation for the higher
spin stochastic six vertex model. Our crucial observation is that under certain restrictions on the
parameters, the intertwiner P (n) (coming from the corresponding R-matrix for the vertex model)
is itself a one-step Markov transition operator. The restrictions on the parameters are required
to make the transition probabilities of P (n) nonnegative.

Furthermore, we show that a sequential application of the operators P (n) over all n = 1, 2, 3, . . .
(denoted by B) intertwines the transfer matrix T with another transfer matrix Tshift obtained from
T by the one-sided shift of the parameter sequence (which eliminates the first of the parameters
with index 0):

TB = BTshift. (1.3)

See Theorem 4.7 in the text. We call B the Markov shift operator. See Section 4 for detailed
formulations and proofs of the general intertwining relations (1.2), (1.3).

1Note that we shift the indices for a better correspondence between particle systems and vertex models.
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1.5 Intertwining and Lax equation for the continuous time q-TASEP

In Section 1.4, the transfer matrices T, Tshift and the intertwiner B are one-step Markov transition
operators. It is well-known that the vertex model transfer matrices T admit a Poisson type limit
to the q-TASEP.

Recall that the q-TASEP, introduced in Borodin–Corwin [BC14], is a continuous time Markov
chain on particle configurations x = (x1 > x2 > x3 > . . .) in Z. Each particle xn has an
independent exponential clock of rate2 αn−1(1−qxn−xn+1−1). When the clock attached to xn rings,
this particle jumps by 1 to the right. Note that the jump rate of xn is zero when xn = xn+1 + 1,
meaning that a particle cannot jump into an occupied location. When q = 0, the q-TASEP turns
into the usual TASEP in which each particle jumps to the right at rate 1 unless the destination
is occupied.

Now, take the particle speeds in the q-TASEP to be the geometric progression, αj = rj ,
j ∈ Z≥0, where 0 < r < 1. Sending r → 1 leads to the q-TASEP with homogeneous speeds.
Let {T (t)}t∈R≥0

denote the corresponding Markov transition semigroup. Before taking the limit
r → 1, the application of the Markov shift operator B as in (1.3) turns the sequence of speeds
(1, r, r2, . . .) into (r, r2, r3, . . .). This shift is the same as multiplying all particle speeds by r or,
equivalently, turning the time parameter t into rt. Taking a second Poisson-type limit in B as
r → 1, we obtain an intertwining relation for the continuous time q-TASEP with homogeneous
speeds.

Let us now describe the continuous time limit of the Markov shift operators. This is a Markov
semigroup {B(τ)}τ∈R≥0

on the space of left-packed particle configurations x = (x1 > x2 > . . .),
i.e., configurations with xn = −n for all sufficiently large n. Under B(τ), each particle xn has an
independent exponential clock with rate n(xn−xn+1−1). When a clock rings, the corresponding
particle xn instantaneously jumps backwards to a new location x′n, xn+1 < x′n < xn, with
probability

1

(xn − xn+1 − 1)(1− qxn−x′
n)

∏xn−xn+1−1
i=1 (1− qi)∏x′
n−xn+1−1

i=1 (1− qi)
. (1.4)

In particular, the particles almost surely jump to the left. For left-packed configurations, the sum
of the jump rates of all possible particle jumps is finite, meaning that B(τ) is well-defined. The
process B(τ) was introduced in Petrov [Pet21], and its q = 0 version (for which the probabilities
(1.4) become uniform) appeared under the name backwards Hammersley process in Petrov–Saenz
[PS21]. See Figure 5 for an illustration of the latter process.

We prove the following intertwining relation between the q-TASEP and the backwards q-
TASEP processes:

Theorem 1.6 (Theorem 5.6 in the text). For any t, τ ∈ R≥0, we have

T (t)B(τ) = B(τ)T (e−τ t). (1.5)

Let us reformulate the intertwining relation (1.5) in probabilistic terms. Fix a left-packed
configuration y, and let δyB(τ) be a random configuration obtained from y by running the
backwards q-TASEP dynamics for time τ . Then, denote by x(t) the configuration of the q-
TASEP at time t started with initial condition x(0) = y. Now, fix τ , and run the backwards

2That is, the random time ξ after which the clock rings is distributed as Prob(ξ > s) = e−λs, s > 0, where
λ = αn−1(1− qxn−xn+1−1) is the rate.
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. . . x2(t) x1(t)

00001111112244

Figure 5: The q = 0 version of the backwards process B(τ) may be alternatively defined as
follows. Each hole in Z has an independent exponential clock with a rate equal to the number of
particles to the right of this hole. When the clock at a hole rings, the leftmost of the particles to
the right of the hole instantaneously jumps into this hole.

q-TASEP dynamics from the configuration x(t) for time τ . Then, the distribution of the resulting
configuration is the same as the distribution of the q-TASEP at time e−τ t but started from the
random initial configuration δyB(τ).

Identity (1.5) reduces to the result obtained earlier in Petrov–Saenz [PS21] and Petrov [Pet21]
when applied to the process started from the distinguished step initial configuration y = xstep

for which xn(0) = −n for all n ∈ Z≥1. That is,

δxstep T (t)B(τ) = δxstep T (e
−τ t). (1.6)

Indeed, the action of B(τ) preserves the step configuration since it moves all the particles left.
In probabilistic terms, (1.6) shows that the backwards process B(τ) produces a coupling in
the reverse time direction of the fixed-time distributions of the q-TASEP with the step initial
configuration.

We arrive at the following Lax equation for the q-TASEP semigroup:

t
d

dt
T (t) = [B, T (t)] , (1.7)

where B is the infinitesimal Markov generator of the backwards q-TASEP. This follows by differ-
entiating (1.5) in τ at τ = 0 and slightly rewriting the result using the Kolmogorov (a.k.a the
Fokker–Planck) equation. Equivalently, in terms of expectations, for any left-packed initial config-
uration y and a generic function F of the configuration, we have the following evolution equation
for the observables:

t
d

dt
Ey (F (x(t))) = BEy [F (x(t))]− Ey [(BF )(x(t))] . (1.8)

We use the notation Ey to denote the expectation with respect to the q-TASEP started from y.
The first generator B in the right-hand side of (1.8) acts on Ey [F (x(t))] as a function of y, while
the second one acts on the function F .

It is intriguing that while B and T (t) depend on q, the form of the Lax equations (1.7)–(1.8)
is the same for the q-TASEP and its q = 0 specialization, the TASEP. Though the structure and
asymptotics of multipoint observables of TASEP is well-studied by now (e.g., see Liu [Liu22],
and Johansson–Rahman [JR21]), its extension to q-TASEP is mostly conjectural at this point,
see Dotsenko [Dot13], Prolhac–Spohn [PS11], Imamura–Sasamoto–Spohn [ISS13], and Dimitrov
[Dim20] for related results.
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We believe that our Lax equation could be employed to study multipoint asymptotics of the
q-TASEP and, in a scaling limit, lead to Kadomtsev–Petviashvili (KP) or Korteweg–de Vries
(KdV) type equations for limits of the observables (1.8). The KP and KdV equations were
recently derived by Quastel–Remenik [QR19] for the KPZ fixed point process introduced earlier
by Matetski–Quastel–Remekin [MQR21]. We leave the asymptotic analysis of the Lax equation
to future work.

1.6 Coupling of measures on trajectories

Let us briefly outline the scope of couplings between trajectories of various integrable stochastic
particle systems obtained in the present paper. All these couplings, including the examples from
Sections 1.2 and 1.3, are obtained from the intertwining relations like (1.2), (1.5) through the
bijectivisation procedure. This idea originated in Diaconis–Fill [DF90] and was later developed in
the context of integrable stochastic particle systems in Borodin–Ferrari [BF14], Borodin–Gorin
[BG09], Borodin–Petrov [BP16b], and Bufetov–Petrov [BP19]. The building block of all the inter-
twining relations is the Yang-Baxter equation. We first apply the bijectivisation procedure to the
Yang-Baxter equation and obtain elementary Markov steps. They are conditional distributions
corresponding to a coupling between two marginal distributions coming from two sides of the
Yang-Baxter equation. The bijectivisation of the Yang-Baxter equation is not unique because
the coupling is not unique. We focus on the simplest case, which has the “maximal noise”. This
is the case that introduces the most randomness and independence. We recall these constructions
in Section 7. Let us now describe the couplings we obtain.

First, we begin with the intertwining relation (1.2) for the fully general fused stochastic higher
spin six vertex model. Graphically it is represented as follows:

T P (n) (1.2)
= P (n)Tσn−1 ⇔

x x′

y y′

T

Tσn−1

P (n) P (n)

In words, fix a particle configuration x, apply the Markov operator T , and then P (n). Relation
(1.2) implies that the distribution of the resulting random configuration y′ is the same as if we
first applied P (n) and then Tσn−1 . Section 7.3 defines two couplings based on the intertwining
(1.2). The coupling D(n) from the left- to the right-hand side of (1.2) (future to past in our
terminology) samples y given x,x′,y′. The coupling U (n) in the opposite direction (past to future
in our terminology) samples x′ given x,y,y′. Both couplings are compatible with (1.2) in the
sense that they satisfy a detailed balance equation; see (7.8) in the text.

Iterating the couplingsD(n), U (n) over time, we obtain a bijectivisation of the relation T kP (n) =
P (n)T k

σn−1
for any time k ∈ Z≥1. This leads to two discrete-time Markov operators for rewriting

history (in two directions). Their general construction is given in Definition 7.10 after Theo-
rem 7.9, and the general definitions are expanded in terms of particle systems in Section 8.

We write down concrete operators for rewriting history in q-TASEP in Sections 9.3 and 9.4 by
keeping n fixed, taking the Poisson type limit as k →∞ to continuous time, and specializing to
q-TASEP. For q = 0 and n = 1, these rewriting history operators give rise to the coupling results
for the two-particle TASEP and Poisson processes presented in Sections 1.2 and 1.3 above.
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Furthermore, we get a bijectivisation of the intertwining relation T kB = BT k
shift for any time

k ∈ Z≥1. This relation is an iteration of (1.3) over k. Namely, a bijectivisation of T kB = BT k
shift

is obtained by iterating D(n), U (n) over n = 1, 2, . . . and then iterating over time k, respectively.
Next, we specialize to q-TASEP, take the Poisson type limit as k →∞ to continuous time, and

further take another Poisson type limit in the particle speeds αj = rj as r → 1 as explained in Sec-
tion 1.5. This leads to a bijectivisation of the continuous time relation T (t)B(τ) = B(τ)T (e−τ t).
The latter bijectivisation is a pair of continuous time Markov processes on the space of q-TASEP
trajectories, which either speeds up or slows down the time in the process with homogeneous par-
ticle speeds. These rewriting history processes in continuous time are constructed and described
in Section 9. See Propositions 10.7 and 10.10 for the main results.

While our exploration of couplings is extensive, in this paper we only describe some of the
possible constructions. One can continue our methods in the following directions:

• Colored stochastic higher spin vertex models, introduced and studied in Borodin–Wheeler
[BW18] and further works, also possess stochastic Yang-Baxter equations leading to intertwin-
ing, couplings, and corresponding Lax equations.

• Within uncolored systems (the setting of the present paper), there are two natural directions.
First, taking different bijectivisations of the Yang-Baxter equation (which are not maximally in-
dependent) could produce more couplings of particle system trajectories and Poisson processes
with other nontrivial properties.

• We mainly restricted our couplings to the q-TASEP, for which the intertwiner B preserves
the distinguished step configuration. In a second natural direction within uncolored systems,
focusing on the Schur vertex model (discussed in Section 6 below), we see that the intertwiner
does not preserve the step configuration. Thus, the resulting couplings would not be monotone.
It would be interesting to see which probabilistic properties these couplings still satisfy.

We plan to address these directions in future work.

1.7 Outline

The paper consists of two parts. In the first part, we derive intertwining relations and study their
consequences. In more detail, in Section 2, we recall the stochastic higher spin six vertex models,
and in Section 3, write down a “vertical” Yang-Baxter equation for them. We also investigate
conditions under which the cross vertex weights (that is, the R-matrix) are nonnegative and thus
lead to Markov transition operators. Then, in Section 4, we prove our main intertwining results
which in full generality follow directly from the Yang-Baxter equation. In Section 5 and Section 6,
we specialize the general intertwining relations to concrete particle systems such as the q-Hahn
TASEP, the q-TASEP, the TASEP, and the Schur vertex model.

In the second part, we use the intertwining relations to construct couplings between probability
measures on trajectories of particle systems which differ by a permutation of the speed parameters.
The couplings are based on the bijectivisation procedure for the Yang-Baxter equation, which we
review in Section 7. The conditional distribution for such a coupling is realized as a “rewriting
history” process that randomly resamples a particle system’s trajectory. In Section 8, we construct
rewriting history processes for general discrete time integrable stochastic interacting particle
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systems. In Section 9, we specialize our constructions to concrete rewriting history dynamics
for the continuous time q-TASEP and TASEP. Finally, in Section 10, we take a limit of our
couplings to the case of homogeneous particle speeds, making the rewriting history dynamics
evolve in continuous time. As a byproduct, in Section 10.5, we construct a new coupling of the
standard Poisson processes on the positive real half-line with different rates.
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Part I

Intertwining Relations for Integrable
Stochastic Systems

In the first part, we obtain new intertwining relations between transfer matrices (viewed as one-
step Markov transition operators) of the stochastic higher spin six vertex model with different
sequences of parameters. The intertwining operators come from the R-matrix in the vertical
Yang-Baxter equation, and are also Markov transition operators.

2 Stochastic higher spin six vertex model and exclusion process

Here we recall the most general integrable stochastic particle system considered in the paper,
in both vertex model and exclusion process settings. This material is well-developed in several
works on stochastic vertex models. In our exposition we follow [CP16b] and [BP18a].

2.1 The q-deformed beta-binomial distribution

We need the q-deformed beta-binomial distribution φq,µ,ν from [Pov13], [Cor14]. Let q ∈ [0, 1).
Throughout the paper, we use the following notation for the q-Pochhammer symbols

(a; q)k := (1−a)(1−aq) . . . (1−aqk−1), k ≥ 1; (a; q)0 := 1, (a; q)∞ :=
∞∏
i=0

(1−aqi). (2.1)

For k ≤ −1, we use the standard convention

(a; q)k =
1

(a/q; 1/q)−k
. (2.2)

For m ∈ Z≥0, consider the following distribution on {0, 1, . . . ,m}:

φq,µ,ν(j | m) = µj (ν/µ; q)j(µ; q)m−j
(ν; q)m

(q; q)m
(q; q)j(q; q)m−j

, 0 ≤ j ≤ m. (2.3)

Throughout the paper, we sometimes write φq,µ,ν(j | m) when j > m or j < 0, and agree that
this expression equals zero in those cases.

When m = +∞, extend the definition as

φq,µ,ν(j | ∞) = µj (ν/µ; q)j
(q; q)j

(µ; q)∞
(ν; q)∞

, j ∈ Z≥0. (2.4)

The quantities (2.3) and (2.4) sum to one:

m∑
j=0

φq,µ,ν(j | m) = 1, m ∈ {0, 1, . . .} ∪ {+∞} .

14



The distribution φq,µ,ν depends on q ∈ [0, 1) and two other parameters µ, ν. We will use
the following two cases in which the weights φq,µ,ν(j | m) are nonnegative (and hence define a
probability distribution):3

0 ≤ µ ≤ 1 and ν ≤ µ; (2.5)

ν ≤ 0 and µ = qJν for some J ∈ Z≥0. (2.6)

2.2 Stochastic vertex weights

We consider the stochastic higher spin six vertex weights L
(J)
u,s which depend on the following

parameters:
q ∈ [0, 1), u ∈ [0,+∞), s ∈ (−1, 0], J ∈ Z≥1. (2.7)

Here q is the main “quantum” parameter, fixed throughout the paper, and all other parameters

may vary from vertex to vertex. The weights L
(J)
u,s (i1, j1; i2, j2) are indexed by a quadruple of

integers, where i1, i2 ∈ Z≥0 and j1, j2 ∈ {0, 1, . . . , J}, and are defined as

L(J)
u,s (i1, j1; i2, j2) := 1i1+j1=i2+j2

(−1)i1q 1
2
i1(i1+2j1−1)ui1sj1+j2−i2(us−1; q)j2−i1

(q; q)i2(su; q)i2+j2(q
J+1−j1 ; q)j1−j2

× 4ϕ̄3

(
q−i2 ; q−i1 , suqJ , qs/u
s2, q1+j2−i1 , qJ+1−i2−j2

∣∣∣∣ q, q) .

(2.8)

Here and throughout the paper the notation 1A means the indicator of an event or a condition
A, and 4ϕ̄3 is the regularized (terminating) q-hypergeometric series, where

r+1ϕ̄r

(
q−n; a1, . . . , ar

b1, . . . , br

∣∣∣∣ q, z) := r+1ϕr

(
q−n, a1, . . . , ar

b1, . . . , br

∣∣∣∣ q, z) r∏
i=1

(bi; q)n

=

n∑
k=0

zk(q−n; q)k
(q; q)k

r∏
i=1

(ai; q)k(biq
k; q)n−k.

(2.9)

The condition that L
(J)
u,s (i1, j1; i2, j2) vanishes unless i1 + j1 = i2 + j2 is the path conservation

property : the total number of incoming paths (from below and from the left) is equal to the total
number of outgoing paths (to the right and upwards) at a vertex; see Figure 6 for an illustration.

The vertex weights L
(J)
u,s are called stochastic because they satisfy the following properties:

Proposition 2.1. If the parameters q, u, s, J satisfy (2.7), then

1. We have 0 ≤ L
(J)
u,s (i1, j1; i2, j2) ≤ 1 for all i1, i2 ∈ Z≥0 and j1, j2 ∈ {0, 1, . . . , J}.

2. For any fixed i1 ∈ Z≥0 and j1 ∈ {0, 1, . . . , J}, we have

∞∑
i2=0

J∑
j2=0

L(J)
u,s (i1, j1; i2, j2) = 1. (2.10)

Note that due to the path conservation, this sum is always finite.
3These two cases do not exhaust the full range of parameters (q, µ, ν) for which the weights are nonnegative.

See, e.g., [BP18a, Section 6.6.1] for additional cases leading to nonnegative weights.
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j2

i2

j1

i1

s3u2(q − qJ)(q2 − qJ)(u− s)

(1− su)(1− qsu)(1− q2su)

Figure 6: Left: Notation of incoming and outgoing path counts at a vertex. Center: The vertex

of type (2, 1; 0, 3). Right: The weight L
(J)
u,s (2, 1; 0, 3).

Idea of proof. First, observe that for J = 1 the sum in (2.9) reduces to at most one term, and

the vertex weights L
(1)
u,s become the following explicit rational functions:

L
(1)
u,s(g, 0; g, 0) =

1− qgsu

1− su
, L

(1)
u,s(g, 0; g − 1, 1) =

−su(1− qg)

1− su
;

L
(1)
u,s(g, 1; g, 1) =

−su+ qgs2

1− su
, L

(1)
u,s(g, 1; g + 1, 0) =

1− qgs2

1− su
.

(2.11)

Then, both statements of the proposition are immediate for J = 1. The case of arbitrary J follows
from the J = 1 case using the stochastic fusion procedure. This involves stacking J vertices with

weights L
(1)
u,s, L

(1)
qu,s, . . . , L

(1)

qJ−1u,s
, on top of each other, and summing over all possible combinations

of outgoing paths. That is, the vertex weight L
(J)
u,s (i1, j1; i2, j2) can be represented as a convex

combination of products of the J = 1 vertex weights with varying spectral parameters. We refer
to [CP16b, Theorem 3.15], [BP18a, Section 5], or [BW18, Appendix B] for details. We also
remark that formula (2.8) for the fused weights is essentially due to [Man14], and the fusion itself
dates back to [KRS81].

Thanks to Proposition 2.1, we can view each vertex weight L
(J)
u,s (i1, j1; i2, j2) with fixed in-

coming path counts (i1, j1) as a probability distribution on all possible combinations of outgoing
paths (i2, j2). In Section 2.3 below, we use this probabilistic interpretation to build stochastic

particle systems out of the vertex weights L
(J)
u,s .

Let us also make two remarks on the fusion procedure which was mentioned in the proof of
Proposition 2.1.

Remark 2.2 (Fusion). 1. The fused weights L
(J)
u,s (2.8) are manifestly rational in qJ . Therefore,

qJ may be treated as an independent parameter and, moreover, may be specialized to a
complex number not necessarily from the set qZ≥1 =

{
q, q2, q3, . . .

}
. This analytic continuation

preserves the sum to one property (2.10) for the vertex weights L
(J)
u,s (i1, j1; i2, j2) when summed

over i2, j2 ≥ 0 (the path counts i1, j1, i2, j2 are always assumed to be nonnegative integers).

Note however that the nonnegativity of the vertex weights L
(J)
u,s has to be checked separately

after such a continuation.

2. For J = 1, the weights L
(1)
u,s may also be viewed as a stochastic fusion of the stochastic six

vertex weights along the vertical edges. The latter arise from L
(1)
u,s(i1, j1; i2, j2) by taking the

specialization s = q−
1
2 , which forces the path counts i1, i2 ∈ {0, 1} (in addition to the constraint
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j1, j2 ∈ {0, 1} due to J = 1). Note that s = q−
1
2 falls outside of (−1, 0], contradicting the

assumption (2.7), but one readily checks that the vertex weights L
(1)

u,q−1/2 are also nonnegative

for q ∈ [0, 1) and u ≥ q−
1
2 .

The vertex weights L
(J)
u,s generalize the q-beta-binomial distribution φq,µ,ν described in Sec-

tion 2.1, and reduce to it in two cases. First, setting u = s, we have [Bor17, Proposition 6.7]:

L(J)
s,s (i1, j1; i2, j2) = 1i1+j1=i2+j2 · 1j2≤i1 · φq,qJs2,s2(j2 | i1). (2.12)

In order to make (2.12) nonnegative, we should treat µ = qJs2 as a parameter independent of ν
(with qJ not from qZ≥1), and require that 0 ≤ µ ≤ 1 and ν ≤ µ, as in the first case in (2.5).
This analytic continuation is necessary since the substitution u = s falls outside of the parameter
range (2.7).

Second, in the limit as i1, i2 → +∞, we have (e.g., see [BMP21, Appendix A.2]):

L(J)
u,s (∞, j1;∞, j2) = φq,suqJ ,su(j2 | ∞). (2.13)

Here j2 ∈ Z≥0 is arbitrary, (2.13) does not depend on j1, and the path conservation property
disappears. The weights (2.13) are nonnegative for J ∈ Z≥1; see (2.6). Another choice to make
(2.13) nonnegative is to take an analytic continuation with su ≥ 0 and µ = qJsu treated as an
independent parameter with qJ /∈ qZ≥1 .

2.3 Particle systems

We define two state spaces for two versions of our Markov dynamics.

Definition 2.3. The vertex model state space is

G :=

{
g = (g1, g2, . . .) : gi ∈ Z≥0,

∞∑
i=1

gi <∞
}
. (2.14)

The last condition means that only finitely many of the gi’s are nonzero.
The exclusion process state space is

X :=
{
x = (x1 > x2 > x3 > . . .) : xi ∈ Z, xn = −n for all sufficiently large n

}
. (2.15)

We view x as a particle configuration in Z, which is empty far to the right and densely packed
far to the left. In other words, every x ∈ X differs from the distinguished step configuration
xstep := {−1 > −2 > −3 > . . .} by finitely many particle jumps to the right by one, when a
particle may only jump to an unoccupied location.

Definition 2.4 (Gap-particle transformation). Let the (well-known) bijection X→ G with x 7→ g
be defined as

gi = xi − xi+1 − 1, i ≥ 1; (2.16)

see Figure 7 for an illustration. Additionally, we use the convention g0 = x0 = +∞, which extends
(2.16) to i = 0.
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We refer to (2.16) as the gap-particle transformation. Note, in particular, that the distin-
guished step configuration of particles, xstep, corresponds to the empty configuration gstep :=
(0, 0, . . .). In the special case, when the updates are parallel and not sequential, this is the same
as the zero range process (ZRP) / ASEP transformation, e.g., see [Pov13].

We are now in a position to describe the fused stochastic higher spin six vertex (FS6V ) model
g(t) and its exclusion process counterpart, x(t). Both models were introduced in [CP16b] for
homogeneous parameters ui ≡ u, si ≡ s, and their inhomogeneous versions were considered in
[BP18a]. Here and throughout the rest of the section, t ∈ Z≥0 stands for discrete time in g(t).

The time-homogeneous Markov process {g(t)}t∈Z≥0
on G depends on two sequences of param-

eters

s = (s0, s1, s2, . . .), si ∈ (−1, 0]; u = (u0, u1, u2, . . .), ui ∈ [0,+∞), (2.17)

as well as on the parameters q ∈ [0, 1) and J ∈ Z≥1, as in (2.7). For convergence reasons discussed
in Lemma 2.6 below, we assume that

(−si)(ui − si)

1− uisi
< 1− ε < 1 (2.18)

for some fixed ε > 0 and all i large enough. For future use, let us write (u, s) ∈ T if the parameters
satisfy the conditions (2.17)–(2.18).

Remark 2.5. One readily sees that if −1 < si < 0 and ui > 0, then (−si)(si−ui)
1−siui

< 1. The
condition (2.18) is stronger than (2.17) in that it does not allow these ratios to get arbitrarily
close to 1 as i goes to infinity.

Let us describe how to randomly update the FS6V model g(t) in (discrete) time t. Fix time
t ∈ Z≥0, set g = g(t) ∈ G, and let g′ = g(t + 1) ∈ G be the random update. The update is
independent of time t and occurs as follows:

g′i = gi + hi−1 − hi, i = 1, 2, . . . , (2.19)

so that hi ∈ {0, 1, . . . , J}, with i ∈ Z≥0, are random variables that are sampled sequentially

using the stochastic vertex weights L
(J)
ui,si for i = 0, 1, 2, . . .. Namely, h0 is sampled from the

probability distribution L
(J)
u0,s0(∞, 0;∞, h0) (2.13). Then sequentially for i = 1, 2, . . ., given hi−1

and gi, we sample the pair (g′i, hi) with g′i + hi = gi + hi−1 from the probability distribution

L
(J)
ui,si(gi, hi−1; g

′
i, hi) (2.8). Below, in Lemma 2.6, we show that eventually the update terminates,

making it well-defined.

Lemma 2.6. We have hi = 0 for all i large enough for the update (2.19) with probability 1.

Proof. We know that gi = 0 for all i large enough. Since L
(J)
u,s (0, 0; 0, 0) = 1, it suffices to note

that all the probabilities of the form L
(J)
ui,si(0, j; 0, j) =

s2ji (ui/si;q)j
(siui;q)j

, where j ∈ {0, 1, . . . , J}, are
bounded away from 1 uniformly in j ≥ 1 and sufficiently large i, due to (2.18). This means
that once i becomes large enough so that all further gi’s are zero, then with probability 1 the
quantities hi eventually decrease to zero, and the update terminates.
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After the sequential update over i = 0, 1, . . . terminates according to Lemma 2.6, we have
reached the next state g′ = g(t+ 1).

The trajectory of the Markov process {g(t)}t∈Z≥0
may be viewed as a random path ensemble

in the quadrant Z2
≥1. Namely, the initial condition g(0) corresponds to the paths entering the

quadrant from below, and the quantities h0 sampled at each time moment t ≥ 1 determine the
paths entering from the left. The configuration g(t) ∈ G describes the paths crossing the horizontal
line at height t + 1

2 . The random update from g(t) to g(t + 1) determines the horizontal path
counts at height t+ 1. See Figure 7 for an illustration.

Denote by Tu,s the one-step Markov transition operator for the FS6V process {g(t)}t∈Z≥0
on

G. This operator also depends on the parameters q and J , but we suppress this in the notation.
In the literature on solvable lattice models (for instance, [Bax07]), Tu,s is often referred to as the
transfer matrix. Our transfer matrix is a Markov transition operator since the model is stochastic.
Similar stochasticity of transfer matrices was first observed in [GS92].

i

g1(3)

g1(0)

g2(3)

g2(0)

g3(3)

g3(0)

g4(3)

g4(0)

g5(3)

g5(0)

g6(3)

g6(0)

g7(3)

g7(0)

g8(3)

g8(0)

g9(3)

g9(0)

t

0

1

2

3

g(1) :

g(2) :

1 0 1 1 0 0 1 0 0 . . .

1 0 0 0 2 1 0 1 0 . . .

h : 1 1 1 2 3 1 0 1 0 0

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

x1x2x3x4x5x6x7x8x9

Figure 7: Top: A path ensemble corresponding to the time evolution of g(t) for t ∈ {0, 1, 2, 3}.
Middle: Update g(1) → g(2) and the corresponding quantities hi, i ≥ 0. Bottom: the corre-
sponding exclusion process update x(1) → x(2), where the particle configuration x(1) is shown,
and the arrows represent sequential particle jumps.

Finally, let us describe the Markov process {x(t)}t∈Z≥0
on the space X induced by the FS6V

process {g(t)} via the gap-particle transformation (2.16). The random update from x(t) to x(t+1)
is described as follows. First, the rightmost particle x1 jumps to the right by a random distance
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h0 sampled from L
(J)
u0,s0(∞, 0;∞, h0) (2.13). Then, sequentially for i = 1, 2, . . ., the particle xi+1

jumps to the right by a random distance hi sampled from

L(J)
ui,si(xi(t)− xi+1(t)− 1, hi−1;xi(t+ 1)− xi+1(t+ 1)− 1, hi),

given that xi has jumped by the distance hi−1. Note that the upper bound for the distance of
each particle’s jump is equal to the parameter J .

Due to the path conservation, we see that the dynamics of x(t) satisfies the exclusion rule,
that is, a particle may only jump to an unoccupied location. Consequently, the strict order of
the particles x1 > x2 > . . . is preserved throughout the dynamics. We also note that the jump of
each particle xi at time t is governed by the parameters (ui−1, si−1) as well as the locations xi(t),
xi−1(t), and xi−1(t+ 1).

We denote the one-step Markov transition operator of the process {x(t)}t∈Z≥0
on X by T̃u,s. It

is the image of the FS6V model operator Tu,s on G under the gap-particle transformation (2.16).
Throughout the paper we adopt the same convention for all Markov transition operators: A on
G corresponds to Ã on X.

3 Yang-Baxter equation and cross vertex weights

The vertex weights L
(J)
u,s (2.8) satisfy the Yang-Baxter equation, and this makes the stochastic

processes from Section 2 very special, i.e., integrable. In short, the Yang-Baxter equation deter-
mines the (local) action of swapping two consecutive vertex weights in the FS6V model. This
swapping action is represented by introducing a cross-vertex that is dragged across the vertex
weights; see Figure 9.

3.1 Vertical Yang-Baxter equation

There are several possible Yang-Baxter equations that the vertex weights L
(J)
u,s ’s may satisfy.

For our purposes, we focus on the Yang-Baxter equation that may be represented by vertically
dragging a cross vertex through two consecutive horizontal vertex weights.

Let s1, s2 ∈ (−1, 0] and z ≥ 0 be three parameters. Define the cross vertex weights as follows:

Rz,s1,s2(i1, i2; j1, j2) := L(I1)
s1z,s2(j1, i2; i1, j2), (3.1)

with the right side given by (2.8) so that I1 is determined by the identitys1 = q−I1/2. Here, we
treat q−I1/2 as an independent parameter which enters Rz,s1,s2 in a rational manner, according
to Remark 2.2. Explicitly, we have

Rz,s1,s2(i1, i2; j1, j2) = 1j1+i2=i1+j2

(−s1z)j1q
1
2
j1(j1+2i2−1)si2+j2−i1

2 (zs1s
−1
2 ; q)j2−j1

(q; q)i1(zs1s2; q)i1+j2(s
−2
1 q1−i2 ; q)i2−j2

× 4ϕ̄3

(
q−i1 ; q−j1 , zs−11 s2, qz

−1s−11 s2
s22, q

1+j2−j1 , s−21 q1−i1−j2

∣∣∣∣ q, q) ,

(3.2)

where i1, i2, j1, j2 are arbitrary nonnegative integers. The path conservation property in (3.1)
means that Rz,s1,s2(i1, i2; j1, j2) vanishes unless i1 + j2 = i2 + j1. See Figure 8 for an illustration.

The vertex weights L
(J)
u,s and the cross vertex weights Rz,s1,s2 satisfy the following Yang-Baxter

equation:
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i2 j1

j2i1

Figure 8: The weights Rz,s1,s2 (3.1) are attached to the cross vertices, i.e., vertices drawn on the
lattice rotated by 45◦. The path counts i1, i2, j1, j2 are as shown in the figure.

Proposition 3.1 (Yang-Baxter equation). Fix the path counts i1, j1 ∈ {0, 1, . . . , J}, i2, i3, j2, j3 ∈
Z≥0 and the parameters u1, u2, s1, s2. Then, we have∑

k1,k2,k3

Ru2
u1

,s1,s2
(j3, k2; k3, j2)L

(J)
u1,s1(i2, i1; k2, k1)L

(J)
u2,s2(i3, k1; k3, j1)

=
∑

k1,k2,k3

L(J)
u2,s2(k3, i1; j3, k1)L

(J)
u1,s1(k2, k1; j2, j1)Ru2

u1
,s1,s2

(k3, i2; i3, k2).
(3.3)

See Figure 9 for an illustration. The sums in (3.3) are over k1 ∈ {0, 1, . . . , J} and k2, k3 ∈ Z≥0.
However, both sum are finite due to the path conservation properties, making the Yang-Baxter
equation (3.3) an identity between rational functions.

Observe that the cross vertex weights Ru2
u1

,s1,s2
entering the Yang-Baxter equation (3.3) do

not depend on the parameter J and only depend on the parameters u1, u2 through their ratio.

Proof of Proposition 3.1. The Yang-Baxter equation (3.3) follows by fusion from the simpler case
when the paramters are s1 = s2 = q−1/2 and I1 = 1. This simpler case of the Yang-Baxter
equation may be checked through direct computations. Moreover, the latter equation essentially
coincides with [BMP21, Proposition A.1], up to the specialization of their parameter s into
q−J/2 and a gauge transformation making the vertex weights wu,s stochastic. Note that the cross
vertex weights ru/v in [BMP21, Proposition A.1] are already stochastic (i.e. satisfy the sum to one
property). Then, our fused Yang-Baxter equation (3.3) follows from [BMP21, Proposition A.3]
(which is essentially a fusion of [BMP21, Proposition A.1]), up to a gauge transformation and
path complementation i 7→ I − i.

Alternatively, the fused Yang-Baxter equation with stochastic vertex weights implying (3.3) is

a color-blind case of the master Yang-Baxter equation coming from Uq(ŝln) obtained in [BM16];
see [BW18, (C.1.2)].

3.2 Nonnegativity

From Proposition 2.1, we see that the cross vertex weights Rz,s1,s2 , defined by (3.1), satisfy the
sum to one property

∞∑
i1,j2=0

Rz,s1,s2(i1, i2; j1, j2) = 1 (3.4)

for any fixed i2, j1 ∈ Z≥0. Moreover, if the vertex weights Rz,s1,s2 are nonnegative, the vertex
weights define a probability distribution. This distribution is on the top paths (i1, j2) of a cross
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R

L1 L2

i1

i2 i3

j1

j2j3

k1
k2 k3

i1

i2 i3

j1

j2j3

k1

k2k3
R

L2 L1

=

Figure 9: The Yang-Baxter equation (3.3) is the equality of partition functions of the two con-
figurations in the figure, where the boundary path counts i1, i2, i3, j1, j2, j3 are fixed, and the
summation is over all possible configurations of paths occupying the internal edges. These inter-

nal path counts are k1, k2, k3. The vertex weights are Li = L
(J)
ui,si , and R = Ru2

u1
,s1,s2

.

vertex for any fixed bottom paths (i2, j1), see Figure 8. Below, we show that the cross vertex
weights are nonnegative under a suitable restriction of the parameters.

Proposition 3.2. If q ∈ [0, 1), s1, s2 ∈ (−1, 0), and 0 ≤ z ≤ min
{
s1
s2
, s2s1 ,

q
s1s2

}
, then

Rz,s1,s2(i1, i2; j1, j2) ≥ 0

for all i1, j1, i2, j2 ∈ Z≥0.

Proof. First, assume that i1 ≤ i2, which is equivalent to j1 ≤ j2. Rewrite (3.2) via the ordinary
q-hypergeometric series 4ϕ3 (2.9):

Rz,s1,s2(i1, i2; j1, j2) = 1j1+i2=i1+j2

(−s1z)j1q
1
2
j1(j1+2i2−1)si2+j2−i1

2 (zs1s
−1
2 ; q)j2−j1

(q; q)i1(zs1s2; q)i1+j2(s
−2
1 q1−i2 ; q)i2−j2

× (s22; q)i1(q
1+j2−j1 ; q)i1(s

−2
1 q1−i1−j2 ; q)i1 · 4ϕ3

(
q−i1 , q−j1 , zs−11 s2, qz

−1s−11 s2
s22, q

1+j2−j1 , s−21 q1−i1−j2

∣∣∣∣ q, q) .

(3.5)

Note that si2+j2−i1
2 = (−1)j1s2j22 (−s2)−j1 . Then, the following part of the prefactor

(−s1z)j1s2j22 (−s2)−j1q
1
2
j1(j1+2i2−1)(s22; q)i1(q

1+j2−j1 ; q)i1(zs1s
−1
2 ; q)j2−j1

(q; q)i1(zs1s2; q)i1+j2

is clearly nonnegative under our conditions. Additionally, observe that

(−1)j1 (s
−2
1 q1−i1−j2 ; q)i1

(s−21 q1−i2 ; q)i2−j2
= (−1)j1 (s−21 q1−j1−i2 ; q)j1 ≥ 0,

as all factors in the above q-Pochhammer symbol are nonpositive, and there are j1 of them.
Thus, it remains to establish the nonnegativity of the q-hypergeometric series 4ϕ3 in (3.5). We

use the nonnegativity result in the proof of [BMP21, Proposition A.8] which is based on Watson’s
transformation formula [GR04, (III.19)]. That proof essentially established the nonnegativity of

4ϕ3

(
q−i2 , q−i1 ,−q/(sξ),−sθ
−s/ξ, q1+j2−i2 ,−θq1−i1−j2/s

∣∣∣∣ q, q) , (3.6)
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where i2 + j1 = i1 + j2, i2 ≤ j2 (so i1 ≤ j1), and the parameters satisfy

q ∈ (0, 1), s ∈ (−√q, 0), ξ, θ ∈ [−s,−s−1]. (3.7)

Indeed, one can check that the prefactor

sj2(−θq1−i1−j2/s; q)i2
(−q/(sξ); q)i1−j1

(3.8)

in front of 4ϕ3 in [BMP21, (A.24)] is already nonnegative. Namely, for i1 = j2 = 0 this prefactor
is 1. For all other values of i1, j2 we see that s < 0, −θq1−i1−j2+l/s ≥ 1 for 0 ≤ l ≤ i2 − 1. Using
(2.2) we have (−q/(sξ); q)−1i1−j1 = (−1/(sξ); 1/q)j1−i1 , and note that −q−l/(sξ) ≥ 1 for l ≥ 0. Thus,
(3.8) is a product of j2 + i2 + j1 − i1 = 2j2 nonpositive factors, and hence is nonnegative.

Now, (3.6) matches the 4ϕ3 function in (3.5) when i1 = i1, i2 = j1, j1 = i2, j2 = j2, and

s = −√zs1s2, ξ =

√
zs1s

−3
2 , θ =

√
zs−31 s2.

Rewriting conditions (3.7) on s, ξ, θ in terms of z, s1, s2, we arrive at the desired result for i1 ≤ i2.
For the remaining case i1 > i2, one can check that Rz,s1,s2 satisfies

Rz,s1,s2(i1, i2; j1, j2) = zj2−i2
si2+j2
2

si1+j1
1

Rz,s2,s1(j2, j1; i2, i1). (3.9)

Thus, the case i1 > i2 reduces to case i1 ≤ i2 since the prefactor is nonnegative. This establishes
the result for all cases.

3.3 Specialization at q = 0

The expression for the cross vertex weights Rz,s1,s2 simplify considerably when q = 0. Let us
denote the specialization of the vertex weight at q = 0 as follows

R(0)
z,s1,s2(i1, i2; j1, j2) = Rz,s1,s2(i1, i2; j1, j2)

∣∣
q=0

. (3.10)

Additionally, introduce the notation

R̂(0)
z,s1,s2(i1, i2; j1, j2) := 1i1+j2=i2+j1 z

j1(s1s2)
−j1s2j22

×
(
(1− zs1s

−1
2 1j2>j1)(1− s221i1>0)(1− s211i2=01j1>0)

1− zs1s21i1+j2>0

− 1i1=i2>01j1>0
(−s1)(s2z − s1)

1− zs1s2

)
.

(3.11)

We express the specialization at q = 0 in terms of R̂
(0)
z,s1,s2 :

Proposition 3.3. We have

R(0)
z,s1,s2(i1, i2; j1, j2) =

{
R̂

(0)
z,s1,s2(i1, i2; j1, j2), if j1 ≤ j2;

zj2−i2si2+j2
2 s−i1−j11 R̂

(0)
z,s2,s1(j2, j1; i2, i1), if j1 ≥ j2,

(3.12)

with the weights on the left and right side of the equation given by (3.10) and (3.11).
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Proof of Proposition 3.3. Throughout the proof we assume that j1 + i2 = i1 + j2 due to the path
conservation property. We have

Rz,s1,s2(i1, i2; j1, j2) =

min(i1,j1)∑
k=0

(−s1z)j1q
1
2
j1(j1+2i2−1)si2+j2−i1

2 (zs1s
−1
2 ; q)j2−j1

(q; q)i1(zs1s2; q)i1+j2(s
−2
1 q1−i2 ; q)i2−j2

qk

(q; q)k
(q−i1 ; q)k

× (q−j1 ; q)k
(
zs2
s1

; q
)
k

( qs2
zs1

; q
)
k
(s22q

k; q)i1−k(q
1+j2−j1+k; q)i1−k(s

−2
1 q1−i1−j2+k; q)i1−k.

(3.13)

Setting q = 0 eliminates all the terms in the sum containing a positive power of q. There are
no negative powers of q, which follows from the fusion construction of Rz,s1,s2 , see the proof of
Proposition 3.1. A positive power of q may only come from the following terms:

q
1
2
j1(j1+2i2−1)+k(zs1s

−1
2 ; q)j2−j1

(s−21 q1−i2 ; q)i2−j2
(q−i1 ; q)k(q

−j1 ; q)k(s
−2
1 q1−i1−j2+k; q)i1−k.

For example, (zs1s
−1
2 ; q)j2−j1 yields q

1
2
(j1−j2)(j1−j2+1) for j2 < j1, see (2.2). Overall, one can check

that the total power of q is equal to

1j2<j1

(
j1−j2+1

2

)
+ 1

2k(k − 1) + k(i2 − i1) (3.14)

If j1 ≤ j2, then (3.14) equal to zero in the following cases:

• either k = 0;

• or i1 = i2 and k = 1.

We obtain (3.11) by the contribution of the two cases above. Setting q = 0 and k = 0 in the sum
in (3.13), we get the first summand in (3.11). For i1 = i2, we get the additional second summand
in (3.11) coming from the term with k = 1. This proves (3.12) for j1 ≤ j2. We use the symmetry
(3.9) to obtain the result when j1 ≥ j2 This completes the proof.

We extend the nonnegativity result of Proposition 3.2 for the specialization at q = 0. Note
that Proposition 3.2 restricts z to 0 for q = 0. Due to this, we need to independently find a range

of parameters (z, s1, s2) for which the weights R
(0)
z,s1,s2 are nonnegative:

Proposition 3.4. If q = 0, s1, s2 ∈ (−1, 0), 0 ≤ z ≤ min{ s1s2 ,
s2
s1
}, and s21 + s22 ≤ 1 + zs1s2, then

R(0)
z,s1,s2(i1, i2; j1, j2) ≥ 0

for all i1, j1, i2, j2 ∈ Z≥0.

Proof. For i1 ̸= i2, one can check that conditions s1, s2 ∈ (−1, 0) and 0 ≤ z ≤ min{ s1s2 ,
s2
s1
} are

enough for nonnegativity since only the first summand in (3.11) is present. When i1 = i2, in the
second summand in (3.11) we have s2z− s1 ≥ 0, so the second summand is negative. Combining
it with the first summand leads to the additional condition s21 + s22 ≤ 1 + zs1s2.
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3.4 Specialization to q-beta-binomial cross vertex weights

For q > 0, the cross vertex weights Ru2
u1

,s1,s2
(3.2) have a complicated q-hypergeometric expression,

even when J = 1 and the lattice vertex weights L
(J)
ui,si entering the Yang-Baxter equation (3.3)

are explicit rational functions (see (2.11)). There are several ways to specialize the cross vertex
parameters to simplify Ru2

u1
,s1,s2

. For instance, one may take finite spin specializations by setting,

in the simplest case, s1 = s2 = q−
1
2 . However, this specialization would bound the gap sizes

in the higher spin exclusion process x(t) defined in Section 2.3 and, as a result, we will not
consider this specialization here. Instead, we distinguish a specialization reducing Ru2

u1
,s1,s2

to

the q-beta-binomial distribution:

Proposition 3.5. If u2/u1 = s2/s1, then the cross vertex weights in the Yang-Baxter equation
in Proposition 3.1 are simplified as

R s2
s1

,s1,s2
(i1, i2; j1, j2) = 1i1+j2=i2+j1 · 1j2≤j1 · φq,s22/s

2
1,s

2
2
(j2 | j1), (3.15)

where φq,s22/s
2
1,s

2
2
is the q-beta-binomial distribution (2.3).

Proof. This is a combination of (3.1) and the reduction of the weights L
(J)
s,s (2.12). Here we set

qI1 = s−21 .

Recall (2.5) and note that R s2
s1

,s1,s2
(i1, i2; j1, j2) ≥ 0 for all i1, i2, j1, j2 ∈ Z≥0 if

s1, s2 ∈ (−1, 0], |s2| ≤ |s1|. (3.16)

We see that the specialization z = s2/s1 extends the range of nonnegativity of the cross vertex
weights compared to the conditions of Proposition 3.2. In particular, the condition s22 ≤ q is
dropped.

Definition 3.6. Let R be the range of parameters so that (z, s1, s2) ∈ R if

• either q ∈ (0, 1), s1, s2 ∈ (−1, 0), and 0 ≤ z ≤ min
{
s1
s2
, s2s1 ,

q
s1s2

}
as in Proposition 3.2;

• or q = 0, s1, s2 ∈ (−1, 0), 0 ≤ z ≤ min{ s1s2 ,
s2
s1
}, and s21 + s22 ≤ 1 + zs1s2 as in Proposition 3.4;

• or z = s2/s1 and s1, s2 ∈ (−1, 0] with |s2| ≤ |s1| as in (3.16).

Note that the cross vertex weights Rz,s1,s2(i1, i2; j1, j2) are nonnegative for all (z, s1, s2) ∈ R.

Let us describe the probabilistic interpretation of the specialization R s2
s1

,s1,s2
(i1, i2; j1, j2)

viewed as the distribution of the top paths (i1, j2) given the bottom paths (i2, j1), see Figure 8
for an illustration. From (3.15) we see that j1 paths coming from southeast randomly split into
j2 and j1 − j2 according to the q-beta-binomial distribution φq,s22/s

2
1,s

2
2
(j2 | j1). Then j2 paths

continue in the northeast direction, while j1 − j2 paths turn in the northwest direction. All the
southwest i2 paths simply continue in the northwest direction, so that i1 = i2 + j1 − j2.
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3.5 Limit to infinitely many paths

We will also need a limit of the cross vertex weights Rz,s1,s2(i1, i2; j1, j2) as the number of south-
west incoming paths i2 grows to infinity:

Proposition 3.7. Let j1, j2 ∈ Z≥0. We have lim
L→+∞

Rz,s1,s2(L,L+j2−j1; j1, j2) = Rbdry
z,s1,s2(j1, j2),

where Rbdry
z,s1,s2(j1, j2) is, by definition, equal to

(−1)j1q 1
2
j1(j1−1)s2j22 (s1z/s2; q)j2−j1
(q; q)j2(s

2
2; q)j1

(s22; q)∞
(zs1s2; q)∞

3ϕ̄2

(
q−j1 ; zs2/s1, qj2−j1zs1/s2
qj2−j1+1, q1−j1z/(s1s2)

∣∣∣∣ q, q) . (3.17)

Here 3ϕ̄2 is the regularized (terminating) q-hypergeometric series (2.9). Moreover, for any fixed
j1 ∈ Z≥0 we have

∞∑
j2=0

Rbdry
z,s1,s2(j1, j2) = 1. (3.18)

Proof. We apply the Sears’ transformation formula [GR04, (III.15)] to 4ϕ3 in Rz,s1,s2 (3.2). After
necessary simplifications, we obtain a terminating q-hypergeometric series 4ϕ3:

Rz,s1,s2(i1, i2; j1, j2) =
s2j2−j12 zj1s−j11 (s1s2/z; q)j1(zs1s

−1
2 ; q)j2−j1(s

2
2; q)i1(q

1+j2−j1 ; q)i1
(q; q)i1(s

2
2; q)j1(zs1s2; q)i2

× 1j1+i2=i1+j2 · 4ϕ3

(
q−j1 , zs2s

−1
1 , qj2−j1zs1s

−1
2 , qi2+1

q1+j2−j1 , q1−j1zs−11 s−12 , qi2zs1s2

∣∣∣∣ q, q) .

(3.19)

Note that in 4ϕ3 there is one upper and one lower parameter that each contain qi2 as a factor.
Then, sending i2 to infinity eliminates these upper and lower parameters in 4ϕ3, producing 3ϕ2

with the remaining parameters. The prefactor in front of 3ϕ2 readily leads to that in (3.17); recall
the regularization (2.9). This completes the proof of the first claim.

For the second claim, recall that the quantities Rz,s1,s2(i2 + j1 − j2, i2; j1, j2) (3.19) sum to

one over j2 ≥ 0 for any fixed (i2, j1), see (3.4). Due to the presence of the factor s2j22 in (3.19),
one can check that the tail ∑

j2≥M
Rz,s1,s2(i2 + j1 − j2, i2; j1, j2)

is bounded above uniformly in i2 by const · (1 − ε)M for some ε > 0. This implies that we can
take the limit i2 → +∞ inside the sum, resulting in (3.18).

Let us write down the specializations of Rbdry
z,s1,s2(j1, j2) to q = 0 and to the the q-beta-binomial

distribution, similar to Sections 3.3 and 3.4. For q = 0, we have the specialization (3.11)–(3.12)
for finite i1, i2. Then, by taking the limit as i1, i2 increase arbitrarily large, we obtain the following
specialization:

Rbdry,(0)
z,s1,s2 (j1, j2) := Rbdry

z,s1,s2(j1, j2)
∣∣
q=0

=


R̂

bdry,(0)
z,s1,s2 (j1, j2), if j1 ≤ j2;

s2j22 s−2j11

1− s211j2=0
R̂

bdry,(0)
z,s2,s1 (j2, j1), if j1 > j2,

(3.20)
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where

R̂bdry,(0)
z,s1,s2 (j1, j2) :=

zj1(s1s2)
−j1s2j22

1− zs1s2

(
(1− zs1s

−1
2 1j2>j1)(1− s22) + (zs1s2 − s21)1j1=j2>0

)
. (3.21)

In the q-beta-binomial specialization z = s2/s1, the limiting weights Rbdry
z,s1,s2(j1, j2) are exactly

the same as pre-limit ones (see Proposition 3.5):

Rbdry
s2
s1

,s1,s2
(j1, j2) = 1j2≤j1 · φq,s22/s

2
1,s

2
2
(j2 | j1). (3.22)

Indeed, setting z = s2/s1 eliminates the dependence of Rz,s1,s2(i1, i2; j1, j2) on i1, i2. Then, one
can immediately take the limit i1, i2 → +∞ as in Proposition 3.7.

We also observe that the limiting weights Rbdry
z,s1,s2 are nonnegative if (z, s1, s2) ∈ R, see

Definition 3.6.

4 Intertwining relations

In this section we present our first main result, the intertwining (or quasi-commutation) relations
for the Markov transition operator of the stochastic higher spin six vertex model. Here we discuss
the result at the level of Markov operators based on vertex weights. Then, in Sections 5 and 6
below, we present its specializations to exclusion processes on the line, such as q-TASEP and
TASEP, and to the Schur vertex model.

4.1 Swap operators

Recall the state spaces G and X, from Definition 2.3, and the Markov operators Tu,s and T̃u,s on
G and X, respectively and described in Section 2.3, coming from the stochastic higher spin six
vertex model g(t) and its exclusion process counterpart x(t). These Markov operators depend on
two sequences of parameters (u, s) ∈ T (i.e. parameters satisfying the conditions given by (2.17)–
(2.18)).

Here we define new Markov operators on G based on the stochastic cross vertex weights Rz,s1,s2

and Rbdry
z,s1,s2 . Via the gap-particle correspondence, these operators also define the corresponding

Markov operators on X.

Definition 4.1 (Markov swap operators). For n ≥ 1 and (z, s1, s2) ∈ R (the range of parameters

given in Definition 3.6), let P
(n)
z,s1,s2 be the Markov operator acting on G by randomly changing

the coordinates (gn−1, gn) into (g′n−1, g
′
n) sampled from the cross vertex weights{

Rz,s1,s2(g
′
n−1, gn−1; gn, g

′
n), n ≥ 2;

Rbdry
z,s1,s2(gn, g

′
n), n = 1.

(4.1)

In particular, we always have g′n−1+ g′n = gn−1+ gn. The boundary case n = 1 is consistent with

our usual agreement g0 = g′0 = +∞. By definition, the operator P
(n)
z,s1,s2 does not change all other

coordinates gj , where j ̸= n− 1, n.
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Additionally, let P̃
(n)
z,s1,s2 be the corresponding operator on X induced via the gap-particle

duality. This operator randomly moves the particle xn to a new location x′n based on the locations
of the neighboring particles xn−1 and xn+1, with probabilities coming from (4.1) via the gap-
particle transformation (Definition 2.4).

The Yang-Baxter equation implies an intertwining relation between P (n) and T . This relation
may also be called a (quasi-)commutation between the operators. The following statement is an
immediate consequence of Proposition 3.1:

Proposition 4.2. Fix n ≥ 1. Let (u, s) ∈ T be such that
(

un
un−1

, sn−1, sn
)
∈ R. Then, we have

Tu,sP
(n)
un/un−1,sn−1,sn

= P
(n)
un/un−1,sn−1,sn

Tσn−1u,σn−1s, (4.2)

where σn−1 = (n − 1, n) is the n-th elementary transposition in the symmetric group acting on
Z≥0. The same identity holds if all the operators in (4.2) are replaced by their counterparts acting
in the space X. See Figure 10 for an illustration.

Thus, we have established Proposition 1.5 from the Introduction.

. . . . . .

gn+1gngn−1gn−2gn−3

g′
n−3 g′

n−2 g′
n+1

g′
n

g′
n−1

g′′
n−1 g′′

n
g′′
n−2g′′

n−3 g′′
n+1

Tu,s

P (n)
. . . . . .=

ĝ′
n+1

gngn−1

ĝ′
n−2ĝ′

n−3

g′′
n−3 g′′

n−2 g′′
n+1g′′

n
g′′
n−1

ĝ′
n−1 ĝ′

n

gn+1gn−2gn−3

P (n)

Tσn−1u,σn−1s

Figure 10: Relation (4.2)–(4.3) between Markov operators Tu,s and P (n) = P
(n)
un/un−1,sn−1,sn

.

Remark 4.3. In (4.2) and throughout the paper, we adopt the convention that the product of
Markov operators follows the order of their action on measures. In particular, on arbitrary delta
measures δg, where g ∈ G is fixed, the identity (4.2) is expanded as follows∑

g′∈G
Tu,s(g,g

′)P (n)
un/un−1,sn−1,sn

(g′,g′′) =
∑
ĝ′∈G

P
(n)
un/un−1,sn−1,sn

(g, ĝ′)Tσn−1u,σn−1s(ĝ
′,g′′), (4.3)

for any fixed g,g′′ ∈ G; see Figure 10 for an illustration. Note that both sums in (4.3) are finite
due to the path conservation property, which is built into the operator P (n).

4.2 Shift operator

Let us now consider a product of the operators P (n) over all n ≥ 1 with parameters chosen in
such a way that the iterated intertwining relations (4.2) lead to the shifting in u, s:

sh := . . . σ2σ1σ0, sh(u0, u1, u2, . . .) = (u1, u2, . . .), sh(s0, s1, s2, . . .) = (s1, s2, . . .). (4.4)

That is, we swap the parameters (u0, s0) first with (u1, s1), then with (u2, s2), and so on all the
way to infinity. As a result, the parameters (u0, s0) disappear, leading to the shift (4.4). First,
we need certain assumptions on the parameters:
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Definition 4.4. Denote by B the space of sequences (u, s) as in (2.17) such that:

•
(
un
u0
, s0, sn

)
∈ R for all n ≥ 1;

• There exists ε > 0 such that

(−sn)(uns0 − u0sn)

u0 − s0snun
< 1− ε < 1 (4.5)

for all sufficiently large n.

Similarly to Remark 2.5, the condition
(
un
u0
, s0, sn

)
∈ R implies that the ratios in (4.5) are

already ≤ 1. However, these ratios must be bounded away from 1 as n grows.
We are now in a position to define the Markov operator on the space G which acts on the

stochastic higher spin six vertex model Tu,s by shifting the parameter sequences.

Definition 4.5 (Markov shift operator). Let (u, s) ∈ B. We define the operator Bu,s on G by

Bu,s := P
(1)
u1
u0

,s0,s1
P

(2)
u2
u0

,s0,s2
P

(3)
u3
u0

,s0,s3
. . . (4.6)

(the order follows the action on measures, cf. Remark 4.3). See Figure 11 for an illustration.
By means of the gap-particle transformation (Definition 2.4), we also obtain a corresponding
operator B̃u,s acting in the space X of particle configurations.

g0 = +∞ g1 g2 g3 g4

g′
0 = +∞ g′

1 g′
2 g′

3 g′
4

Rbdry
u1
u0

,s0,s1

Ru2
u0

,s0,s2

Ru3
u0

,s0,s3

Ru4
u0

,s0,s4 . . .

Figure 11: The path configuration whose weight is the matrix element Bu,s(g,g
′) of the Markov

shift operator from Definition 4.5.

Lemma 4.6. If (u, s) ∈ B, then the shift operator Bu,s is well-defined.
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Proof. Since (un/u0, s0, sn) ∈ R for all n ≥ 1, all vertex weights involved in the operators

P
(n)
un/u0,s0,sn

in the product (4.6) are nonnegative. Next, the second condition in (4.5) implies that
no path escapes to infinity under the action of Bu,s, similarly to the proof of Lemma 2.6. Indeed,
we have

Run
u0

,s0,sn(0, j; 0, j) =
s2jn (uns0/(u0sn); q)j

(uns0sn/u0; q)j
, j ∈ Z≥0,

and due to (4.5), these quantities are bounded away from 1 uniformly in j ≥ 1 for all n sufficiently
large. This completes the proof.

The first main structural result is the next Theorem 4.7. It concerns the stochastic higher spin
six vertex model Tu,s with general horizontal spin J , and shows how the operator Bu,s acts on it by
shifting the parameter sequence. Below in Section 5, we consider specializations of Theorem 4.7
to simpler particle systems, which leads to known and new results. Most importantly, whereas the
known results only applied to step initial conditions, the new results apply to stochastic particle
systems started from a arbitrary initial condition.

Theorem 4.7. Let (u, s) ∈ T ∩ B. Then

Tu,sBu,s = Bu,sTsh(u),sh(s), (4.7)

where sh is the shift (4.4). The same identity holds if all the operators in (4.7) are replaced (via
the gap-particle transformation of Definition 2.4) by their corresponding counterparts acting on
the space X.

Proof. This is simply an iteration of Proposition 4.2.

Note that the intermediate summations, as in Remark 4.3, arising in the products in both
sides of (4.7) are finite. Indeed, for any fixed g,g′′ ∈ G there are only finitely many g′ ∈ G such
that Tu,s(g,g

′)Bu,s(g
′,g′′) > 0. Moreover, one can check similarly to the proofs of Lemmas 2.6

and 4.6 that under the condition (u, s) ∈ T ∩B, both products in (4.7) are well-defined as Markov
operators in G. That is, with probability 1, the product of the Markov operators does not allow
paths to run off to infinity if (u, s) ∈ T ∩ B.

5 Application to q-Hahn TASEP and its specializations

In this section we consider specializations of Theorem 4.7 to the q-Hahn TASEP [Pov13], [Cor14],
various q-TASEPs [SW98], [BC14], [BC15], and the usual TASEP. We recover the previously
known results on parameter symmetry obtained in [PS21], [Pet21], and extend them to arbitrary
initial data. All Poisson-type limit transitions involved in this section are the same as in [Pet21],
and therefore we only sketch the details of how discrete time Markov chains become continuous
time Markov jump processes.
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5.1 q-Hahn Boson and q-Hahn TASEP

Let us first recall [BP18a, Section 6.6] how the stochastic higher spin six vertex model Tu,s from
Section 2.3 specializes to the q-Hahn Boson system from [Pov13], [Cor14]. This is achieved by
setting

ui = si ∈ (−1, 0], i ∈ Z≥0, qJ = γ ∈
[
1, supi≥0 s

−2
i

)
. (5.1)

The stochastic vertex weights L
(J)
si,si for all i ≥ 0 are the q-beta-binomial weights φq,γs2i ,s

2
i
(2.3),

see (2.12)–(2.13). These weights are nonnegative under the parameter assumptions (5.1). Thus,
the resulting stochastic vertex model is called the (stochastic) q-Hahn Boson system. Denote

its one-step Markov transition operator acting on G by T qHahn
γ,s , and the corresponding Markov

transition operator acting on X (via the gap-particle transformation, see Definition 2.4) by T̃ qHahn
γ,s .

Throughout this section it is convenient to work in the exclusion process state space X.
The stochastic particle system on X with Markov transition operator T̃ qHahn

γ,s is called the
q-Hahn TASEP. In q-Hahn TASEP, the updates are performed in parallel, as opposed to the
sequential update in the general case. That is, each particle xn jumps to the right independently
of other particles by a random distance hn−1, where 0 ≤ hn−1 ≤ xn−1 − xn − 1, with probability

φq,γs2n−1,s
2
n−1

(hn−1 | xn−1 − xn − 1), n = 1, 2, . . . . (5.2)

Here, we use the notation hn−1 in agreement with Section 2.3. For n = 1, we have x0 = +∞, so
the jumping distribution is given by (2.4).

Let us denote the q-Hahn specialization of the swap operator (Definition 4.1) acting on the

space G by P
(n),qHahn
sn−1,sn , and its corresponding counterpart acting on the space X by P̃

(n),qHahn
sn−1,sn .

These operators involve the cross vertex weights

Rbdry
s1
s0

,s0,s1
(g1, g

′
1) = 1g′1≤g1 · φq,s21/s

2
0,s

2
1
(g′1 | g1),

R sn
sn−1

,sn−1,sn(g
′
n−1, gn−1; gn, g

′
n) = 1g′n−1+g′n=gn−1+gn · 1g′n≤gn · φq,s2n/s

2
n−1,s

2
n
(g′n | gn),

(5.3)

where n ≥ 2, which specialize to the q-beta-binomial distribution (Proposition 3.5). By (3.16),

the operators P
(n),qHahn
sn−1,sn and P̃

(n),qHahn
sn−1,sn have nonnegative matrix elements if sn−1, sn ∈ (−1, 0]

and |sn| ≤ |sn−1|.

Remark 5.1. Setting si = ui is not the only way of making the cross vertex weights to take the
simpler q-beta-binomial form. For instance, one could take J ∈ Z≥1 and require that si/sj = ui/uj
for all i, j. We do not focus on this case in the current Section 5 since this section is devoted to
extending existing results from [PS21], [Pet21] on q-Hahn TASEP and its specializations. Results
very similar to the ones below in Section 5 hold for the subfamily of stochastic higher spin six
vertex models with si/sj = ui/uj for all i, j. We return to this subfamily in Section 8 below.

Proposition 4.2 extends the action of the q-Hahn swap operators from [Pet21] to general initial
data. Let us fix some notation to formulate the result. Fix a discrete time t ∈ Z≥0 and a particle
configuration y ∈ X. Let x(t) be the particle configuration of the q-Hahn TASEP at time t started
from the initial particle configuration x(0) = y, with parameters s = (s0, s1, s2, . . .), −1 < si ≤ 0.

Additionally, let n ∈ Z≥1 and assume that |sn| ≤ |sn−1|. Applying the swap operator P̃
(n),qHahn
sn−1,sn
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to the configuration x(t) at time t moves a single particle xn(t) to a random new location x′n(t)
with probability

φq,s2n/s
2
n−1,s

2
n
(x′n(t)− xn+1(t)− 1 | xn(t)− xn+1(t)− 1). (5.4)

Denote the resulting configuration by x′(t).

Proposition 5.2 (Extension of [Pet21, Theorem 3.8] to general initial data). Take the notation
above. Then, the random configuration x′(t) coincides in distribution with the configuration of the

q-Hahn TASEP at time t started from a random initial configuration δyP̃
(n),qHahn
sn−1,sn that evolves

with the swapped parameters σn−1s, where σn−1 = (n−1, n) is the n-th elementary transposition.

Proof. This is the q-Hahn specialization of the intertwining relation (4.2) of Proposition 4.2
between the swap operator and the time evolution operator (applied t times). Note that this
result is formulated for the space X of particle configurations in Z.

The swap operator P̃
(n),qHahn
sn−1,sn preserves the step initial configuration y = xstep due to the

presence of the indicator 1g′n≤gn in (5.3). Thus, the swap operator does not randomize the
initial configuration for the q-Hahn TASEP started with xstep. In the case of step initial data,
Proposition 5.2 was proven in [Pet21] (up to matching notation νi = s2i−1) using exact formulas

which are not readily available for general initial data. Finally, observe that P̃
(n),qHahn
sn−1,sn becomes

the identity operator when sn = sn−1, and the statement of Proposition 5.2 in this case is trivial
(while still true).

One may also specialize Theorem 4.7 to the case of q-Hahn TASEP. The result is a shift
operator which acts by removing the parameter s0 if |s0| ≥ |sn| for all n ≥ 1. In a continuous time
limit, this leads to an extension of [Pet21, Theorem 4.7] to general initial data. The original result
[Pet21, Theorem 4.7] for the step initial data follows by observing that the q-Hahn specialization
of the shift operator preserves xstep. To avoid cumbersome notation, in this paper we only consider
the continuous limit for the case of q-TASEP, see Sections 5.3 and 5.4 below.

5.2 Intertwining relation for geometric q-TASEP

Let us now consider the limit of the q-Hahn TASEP leading to the discrete time q-TASEP:

s2n → 0, γs2n → an ∈ (0, 1), n = 0, 1, . . . . (5.5)

This also implies that s2n/s
2
k → an/ak. Under this limit, the q-Hahn TASEP turns into the

discrete time geometric q-TASEP introduced in [BC15]. During each time step in this process,
each particle xn, n ∈ Z≥1, jumps to the right independently of other particles by a random
distance hn−1 with probability (see (5.2))

φq,an−1,0(h | g) = ahn−1(an−1; q)g−h
(q; q)g

(q; q)h(q; q)g−h
, h = hn−1, g = xn−1 − xn − 1. (5.6)

When n = 1, we have g = +∞, by agreement. Each an−1 may be viewed as the speed parameter
attached to the particle xn in the q-TASEP. When q = 0, the jumping distance (5.6) becomes
hn−1 = min(η, xn−1 − xn − 1), where η ∈ Z≥0 is a geometric random variable with P(η = k) =
akn−1(1− an−1). Hence, the name “geometric”.
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Observe that the geometric q-TASEP swap operator depends only on the ratio of the speed pa-
rameters, and involves the vertex weights φq,an/an−1,0 similarly to (5.3)–(5.4). The swap operator
and the q-TASEP evolution satisfy a relation similar to Proposition 5.2.

Let us further specialize the speed parameters in the q-TASEP by setting

ak = αrk, k ∈ Z≥0, (5.7)

where α, r ∈ (0, 1) are fixed. Denote the Markov transition operator of this q-TASEP acting on
X by T̃ qT

α,r . Using Definition 4.5, let us also denote by B̃qT
r the corresponding shift operator. Note

that it does not depend on α and involves the vertex weights φq,rn,0, where rn = an/a0.

Proposition 5.3. Fix t ∈ Z≥0 and y ∈ X. Let x(t) be the configuration of the geometric q-

TASEP T̃ qT
α,r at time t, started from y = x(0). Also, let x′(t) be the configuration resulting from

applying the shift operator B̃qT
r to x(t). Then, x′(t) coincides in distribution with the q-TASEP

T̃ qT
αr,r at time t started from a random initial configuration δyB̃

qT
r and evolving with the modified

parameters a′k = αrk+1, k ∈ Z≥0.

In terms of the operators, the statement is equivalent to the following intertwining relation:(
T̃ qT
α,r

)t
B̃qT

r = B̃qT
r

(
T̃ qT
αr,r

)t
, (5.8)

where the order of the operators is understood as in Remark 4.3, and (· · · )t means raising to the
nonnegative integer power t.

Proof of Proposition 5.3. This is a specialization of Theorem 4.7 formulated in terms of particle
systems. Note that the operator T̃ qT

α,r is well-defined for ak = αrk, since 0 < ak < 1 for all k. Also,

the shift operator B̃qT
r is well-defined by Lemma 4.6 since ak > ak+1 for all k, and the second

condition in Definition 4.4 holds trivially if ui = si for all i.

5.3 Limit to continuous time q-TASEP

Let us now take a Poisson-type limit to continuous time for the geometric q-TASEP T̃ qT
α,r . This

is achieved by letting
α→ 0, t = ⌊(1− q)t/α⌋, (5.9)

where t ∈ R≥0 is the new continuous time variable. Indeed, observe the expansion

φq,µ,0(h | g) =


1 +O(µ), h = 0;

1− qg

1− q
µ+O(µ2), h = 1;

O(µ2), h ≥ 1,

µ→ 0. (5.10)

This means that particles jump very rarely for small α in discrete time. Moreover, when a
particle jumps, it jumps by one with much higher probability than any other distance greater
than one. Then, by speeding up the time, the discrete jumping distributions φq,αrn−1,0 (5.6)
lead to independent exponential clocks. Therefore, under the resulting continuous time q-TASEP
[BC14], each particle xn has an independent exponential clock of rate rn−1 (1− qgn), where
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gn = xn − xn+1 − 1 (the factor 1 − q in the rate in (5.10) is removed by the time scaling (5.9)).
When the clock attached to the particle xn rings, this particle jumps by 1 to the right. Note
that when gn = 0, the jump rate of xn is zero, which means that a particle cannot jump into an
occupied location.

Remark 5.4 (TASEP specialization, q = 0). The continuous time q-TASEP with the sequence
of speeds (1, r, r2, . . .) turns into the TASEP with these speeds when q = 0. Under TASEP,
each particle xn has an independent exponential clock with rate rn−1. When a clock rings, the
corresponding particle jumps to the right by one, provided that the destination is unoccupied.
Otherwise, the jump of the particle is blocked.

Moreover, in the case r = 1, we recover the well-known homogeneous continuous time TASEP
in which the speeds of all particles are equal to 1.

Let us denote the continuous time Markov semigroup on X corresponding to the continuous
time q-TASEP with particle speeds (1, r, r2, . . .) by {T̃ qT

r (t)}t∈R≥0
. In the case r = 1, the process

given by the semigroup T̃ qT
1 (t) (which we will denote simply by T̃ qT(t)) is the homogeneous

q-TASEP, where all particles have speeds equal to 1.
Taking the continuous time limit (5.9) in (5.8), we get the following intertwining relations for

any m ∈ Z≥1:
T̃ qT
r (t)

(
B̃qT

r

)m
=

(
B̃qT

r

)m
T̃ qT
r (rm t). (5.11)

Indeed, shifting the sequence of speed parameters as (1, r, r2, . . .) 7→ (rm, rm+1, rm+2, . . .) means
slowing down all the particles by the factor rm, which is equivalent to looking at the q-TASEP
distribution at an earlier time rm t.

5.4 Mapping q-TASEP back in time

We now aim to take one more Poisson-type limit in the intertwining relation (5.11). Let

r = 1− ε, m = ⌊τ/ε⌋, ε↘ 0, (5.12)

where τ ∈ R≥0 is a new continuous time parameter. Under (5.12), one readily sees that the q-
TASEP Markov operators in both sides of (5.11) turn into the operators T̃ qT(t) and T̃ qT(e−τ t),
respectively. Recall that the latter two operators correspond the homogeneous q-TASEP where
all particles move with homogeneous speed one.

Let us consider the limit of
(
B̃qT

r

)m
. In particular, consider the cross vertex weights (5.3) in

the limit ε→ 0 under the specialization (5.5) and (5.7). For any fixed n ∈ Z≥0, we have:

φq,rn,0(g
′ | g) =


n

1− qg−g′
(q; q)g
(q; q)g′

ε+O(ε2), 0 ≤ g′ ≤ g − 1;

1− ngε+O(ε2), g′ = g.

(5.13)

Note that the quantity rn arises as an/a0, see (5.7).
We have the following interpretation for the expansion (5.13). For small ε, the action of

a single shift operator B̃qT
r does not change the particle configuration with high probability.

Speeding up the time leads to exponential particle jumps with rates coming from the coefficients
of the ε-terms in (5.13). In the limit regime (5.12) the operators

(
B̃qT

r

)m
on X converge into a
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continuous time Markov semigroup {B̃qT(τ)}τ∈R≥0
on X, where the convergence is in the sense

of matrix elements of Markov operators on X.
We call the Markov semigroup B̃qT(τ) on X the backwards q-TASEP dynamics. Under this

dynamics, each particle xn has an independent exponential clock with rate ngn = n(xn−xn+1−1).
When a clock rings, the corresponding particle xn instantaneously jumps backwards to a new
location x′n < xn with probability

1

gn(1− qxn−x′
n)

(q; q)gn
(q; q)g′n

, where gn = xn − xn+1 − 1, g′n = x′n − xn+1 − 1. (5.14)

Observe that for any configuration in X, the sum of the jump rates of all possible particle jumps
is finite, meaning that the backwards q-TASEP on X is well-defined.

Remark 5.5. In the TASEP specialization, when q = 0 (cf. Remark 5.4), the probabilities (5.14)
define a uniform distribution. Therefore, under the backwards dynamics, when the clock of the
particle xn rings (with rate n(xn − xn+1 − 1)), this particle selects one of the following locations

{xn+1 + 1, xn+1 + 2, . . . , xn − 2, xn − 1}

uniformly at random, and instantaneously jumps into the selected location. Thus, setting q = 0
turns the backwards q-TASEP dynamics B̃qT(τ) into the (inhomogeneous) backwards Hammersley
process introduced in [PS21] (see Figure 5 for an illustration).

Taking the Poisson-type limit (5.12) of the intertwining relation (5.11), we immediately obtain
the main result of Section 5 (this is Theorem 1.6 from the Introduction):

Theorem 5.6. Let {T̃ qT(t)}t∈R≥0
and {B̃qT(τ)}τ∈R≥0

be the Markov semigroups of the homoge-
neous q-TASEP and the backwards q-TASEP on X, respectively. Then

T̃ qT(t)B̃qT(τ) = B̃qT(τ) T̃ qT
(
e−τ t

)
for all t, τ ∈ R≥0. (5.15)

The same identity holds if all the operators are replaced (via the gap-particle transformation of
Definition 2.4) by their counterparts acting in the vertex model space G.

Theorem 5.6 may be reformulated equivalently in terms of stochastic particle systems on Z.
Fix y ∈ X, and let x(t) denote the configuration of the homogeneous q-TASEP at time t started
with initial condition x(0) = y. Fix τ , and run the backwards q-TASEP dynamics from the
configuration x(t) for time τ . Then, the distribution of the resulting configuration is the same as
the distribution of the q-TASEP at time e−τ t with random initial configuration δyB̃

qT(τ).
We recover the ν = 0 case4 of [Pet21, Theorem 4.7] by setting the initial configuration y

is xstep. In particular, note that the configuration xstep is fixed by B̃qT(τ). The Theorem in
[Pet21, Theorem 4.7] states that the backwards dynamics maps the distribution of q-TASEP
with step initial data backwards in time, from t to e−τ t, by applying the backwards q-TASEP for
time τ . Moreover, setting q = 0 recovers [PS21, Theorem 1] for the homogeneous TASEP.

4An intertwining relation for general ν is also readily obtained in a continuous time limit from the shift operator
for the q-Hahn TASEP, but in the present paper we omit this statement, as well as its limit to the beta polymer
as in [Pet21, Section 6].
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5.5 Lax equation for q-TASEP and TASEP

We obtain a Lax type equation for the q-TASEP (and TASEP in the special case q = 0), arising
from identity (5.15) established in Theorem 5.6. Our computations in this subsection are informal,
though we believe that the end results (5.17) and (5.18) become rigorous in appropriate spaces of
functions. We believe that our Lax equation could be employed to study multipoint asymptotics
of the q-TASEP and, in a scaling limit, lead to Kadomtsev–Petviashvili (KP) or Korteweg–de
Vries (KdV) type equations recently derived in [QR19] for the KPZ fixed point process [MQR21].
We leave the asymptotic analysis of the Lax equation to future work.

Let T̃ and B̃ denote the infinitesimal generators of the q-TASEP and the backwards q-TASEP,
respectively. Multiply both sides of (5.15) by T̃ qT(t− e−τ t) from the right. Using the semigroup
property of T̃ qT(t), we obtain

T̃ qT(t)B̃qT(τ) T̃ qT(t− e−τ t) = B̃qT(τ) T̃ qT
(
t
)
.

Fix t > 0, and differentiate this identity in τ at τ = 0. We obtain

T̃ qT(t)
(
B̃+ t · T̃

)
= B̃ T̃ qT(t).

Dividing by t, rewrite this as

T̃ qT(t)T̃ =
[
1
t B̃, T̃

qT(t)
]
, (5.16)

where [·, ·] is the commutator of operators. Using Kolmogorov (also called Fokker–Planck) equa-
tion, we can express the left-hand side as a derivative in t. Thus, we obtain

d

dt
T̃qT(t) =

[
1
t B̃, T̃

qT(t)
]
, (5.17)

a differential equation for the q-TASEP semigroup in the Lax form.
Let us apply the Lax equation to an arbitrary (sufficiently nice) function F on the space X.

Note that we have
(
T̃qT(t)F

)
(y) = Ey [F (x(t))], where the expectation is with respect to the

q-TASEP at time t started from y, since T̃qT(t) is a Markov semigroup. Then, from (5.16), we
obtain the following:

tEy

[(
T̃F

)
(x(t))

]
= B̃Ey [F (x(t))]− Ey

[(
B̃F

)
(x(t))

]
, (5.18)

where the operator B̃ on the right side acts on the expectation as a function in y, for the first
term, and on the function F , for the second term.

Identity (5.18) generalizes [Pet21, Proposition 5.3] (and also [PS21, Proposition 7.1] when
q = 0) by allowing an arbitrary initial condition y. Indeed, if y = xstep, then B̃Ey [F (x(t))] = 0
because xstep is an absorbing state for B̃. Thus, the combined generator tT̃+ B̃ satisfies

Exstep

[(
tT̃F + B̃F

)
(x(t))

]
= 0,

so the process with this combined generator preserves the time t distribution of the q-TASEP
started from the step initial configuration. This preservation of measure was proven in [Pet21]
using contour integral formulas available for the q-TASEP distribution with the step initial config-
uration, and for q = 0 in [PS21] using a different approach. Moreover, using duality, in [Pet21] it
was shown that the process with the combined generator converges to its stationary distribution
when started from an arbitrary initial configuration in X.
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6 Application to Schur vertex model

The Schur vertex model studied in [KPS19] is the J = 1, q = 0 specialization of the stochastic
higher spin six vertex model g(t) defined in Section 2.3. The name “Schur” comes from the
fact that some joint distributions in g(t) are expressed through the Schur processes [KPS19,
Theorem 3.5]. This model can be equivalently reformulated as a certain corner growth [KPS19,
Section 1.2], and is also equivalent to the generalized TASEP of [DPPP12] and [Pov13], which
appeared (in the form of tandem queues and first passage percolation models) already in [Woe05]
and [Mar09]. Here we outline the specialization of the general shift operator from Section 4.2 to
this model. We also observe that in contrast with the q-Hahn TASEP and its specializations, in
the Schur vertex model the shift operator does not preserve the distinguished initial configuration
gstep.

The Schur vertex model scales to a version of the TASEP in continuous inhomogeneous space
[KPS19, Theorem 2.7]. It would be interesting to see how the shift operators behave under this
scaling, but we do not pursue this analysis here.

6.1 Schur vertex model

The Schur vertex model depends on the parameters ui, si as in (2.17). For simplicity, here we
can take the parameters si to be homogeneous, si ≡ s ∈ (−1, 0). Denote ν = s2 ∈ (0, 1) and
−sui = ai ≥ 0. In term of these parameters, condition (2.18) means that the ai’s should be
uniformly bounded from above.

The transition probabilities in the Schur vertex model are the q = 0 specializations of (2.11).
They are given by

LSchur
ai,ν (0, 0; 0, 0) = 1, LSchur

ai,ν (0, 1; 0, 1) =
ν + ai
1 + ai

, LSchur
ai,ν (0, 1; 1, 0) =

1− ν

1 + ai
;

LSchur
ai,ν (g, 0; g, 0) = LSchur

ai,ν (g, 1; g + 1, 0) =
1

1 + ai
, g ≥ 1;

LSchur
ai,ν (g, 0; g − 1, 1) = LSchur

ai,ν (g, 1; g, 1) =
ai

1 + ai
, g ≥ 1.

(6.1)

Throughout this section it is convenient to work in the vertex model state space G (Definition 2.3).
We interpret gi for each i ∈ Z≥1 as the number of particles at location i, where multiple particles
per site are allowed. Let T Schur

ν,a denote the Markov transition operator for the Schur vertex model
acting in G.

Let us describe the dynamics for the Markov operator T Schur
ν,a . At each time step, the stacks of

particles are updated in parallel. First, each nonempty stack of particles gi(t) > 0 emits a single
particle with probability ai/(1 + ai). Then, the emitted particle instantaneously travels to the
right by a random distance min(η, k + 1), where η is a random variable in Z≥1 with distribution

P (η = j) =
1− ν

1 + ai+j

j−1∏
m=1

ν + ai+m

1 + ai+m
, j ≥ 1,

and k ≥ 0 is the number of empty stacks after gi(t), i.e. gi+1(t) = . . . = gi+k(t) = 0 and
gi+k+1(t) > 0. If gi(t) is the rightmost nonempty stack, then k = +∞.
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6.2 Shift operator for the Schur vertex model

Let BSchur
ν,a denote the Markov shift operator (Definition 4.5) for the Schur vertex model. It acts on

the space G and involves the cross vertex weights R
bdry,(0)

a1/a0,−
√
ν,−√ν (3.20) and R

(0)

an/a0,−
√
ν,−√ν (3.12)

for n ≥ 2. For the nonnegativity of these weights, the parameters must satisfy the conditions in
Proposition 3.4, which means

2− 1

ν
≤ an

a0
≤ 1, n ≥ 1. (6.2)

Note that the lower bound on an/a0 is restrictive only for ν > 1
2 . The operator BSchur

ν,a is
well-defined due to Lemma 4.6, since the condition (4.5) is automatic for our specialization of
parameters. The next statement readily follows from Theorem 4.7:

Proposition 6.1. Let ν ∈ (0, 1) and the parameters an ≥ 0 be uniformly bounded from above
and satisfy (6.2). Then

T Schur
ν,a BSchur

ν,a = BSchur
ν,a T Schur

ν,sh(a), (6.3)

where sh is the shift of the sequence a = (a0, a1, a2, . . .) as in (4.4).

In contrast with the q-Hahn TASEP and its specializations considered in Section 5 and in the
previous papers [PS21] and [Pet21], the shift operator BSchur

ν,a , for the Schur vertex model, does
not preserve the distinguished empty configuration gstep ∈ G:

Proposition 6.2. Let the parameters {an} satisfy (6.2). Then the action of BSchur
ν,a on gstep

changes gstep with positive probability.

Proof. From (3.20)–(3.21) we have

R
bdry,(0)

z,−√ν,−√ν(0, j) =
νj(1− ν)(1− z1j>0)

1− νz
, j ∈ Z≥0. (6.4)

This means that applying the first operator P (1) (see (4.6)) to gstep introduces a random number
of paths according to the distribution (6.4) with z = a1/a0. These paths do not disappear after
the application of the further operators P (2), P (3), . . . in (4.6) due to path conservation. Moreover,
from (3.11)–(3.12) we have

R
(0)

z,−√ν,−√ν(i, j; 0, j − i) =
νj−i(1− ν1i>0)(1− z1i<j)

1− νz1j>0
, i ∈ 0, 1, . . . , j, (6.5)

where z = an/a0 for n ≥ 2. This implies that the operator BSchur
ν,a indeed does not preserve the

distinguished empty configuration gstep.
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Part II

Bijectivisation and Rewriting History

In the second part, we describe how the intertwining relations obtained in the first part lead to
couplings between trajectories of the stochastic vertex model (and the corresponding exclusion
process) with different sequences of parameters. The passage from intertwining relations to
couplings, a “bijectivisation”, is by now a well-known technique that originated in [DF90] and was
later developed in the context of integrable stochastic particle systems in [BF14], [BG09], [BP16b],
[BP19]. Here, we apply a bijectivisation in a new setting leading to couplings of probability
measures on trajectories under time evolution of integrable stochastic systems.

7 Bijectivisation and coupling of trajectories.
General constructions

In this section, we return to the general setup of the fused stochastic higher spin six vertex model
as in Sections 2 to 4. We construct couplings between measures on trajectories of the stochastic
higher spin six vertex model with different sequences of parameters by applying a bijectivisation
[BP19] (also called a “probabilistic bijection”, e.g., see [AF21]) to the Yang-Baxter equation and
iterating it. This section focuses on a general discussion which does not rely on any particular
choice of a bijectivisation of the Yang-Baxter equation. In further sections, we consider the
simplest, i.e. independent, bijectivisation in a subfamily of vertex models. This subfamily is still
quite general and, in particular, includes q-TASEP and TASEP.

7.1 Bijectivisation of summation identities

We begin by recalling the basic notion of a bijectivisation for a summation identity with finitely
many terms, see [BP19, Section 2]. Let A,B be two disjoint finite sets. Also, introduce a positive
weight function w(x) for each element x ∈ A ∪B so that the following identity holds:∑

a∈A
w(a) =

∑
b∈B

w(b). (7.1)

In particular, identity (7.1) defines probability distributions on the sets A and B with probability
weights proportional to {w(a)}a∈A and {w(b)}b∈B, respectively. A bijectivisation is a coupling
between these two probability distributions, expressed via conditional probabilities.

More precisely, a bijectivisation is a family of forward and backward transition probabilities
pfwd(a → b) ≥ 0, pbwd(b → a) ≥ 0, for a ∈ A, b ∈ B, satisfying the following stochasticity and
detailed balance equation:∑

b∈B
pfwd(a→ b) = 1 ∀a ∈ A,

∑
a∈A

pbwd(b→ a) = 1 ∀b ∈ B.

w(a) pfwd(a→ b) = w(b) pbwd(b→ a), ∀a ∈ A, b ∈ B.

(7.2)

For general sets A and B, a bijectivisation exists and it is not unique. However, in the special
case when the cardinality of the sets A or B, i.e. |A| or |B|, is equal to 1, a bijectivisation is
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unique. For instance, when |A| = 1 and A = {a0}, we have

pfwd(a0 → b) =
w(b)

w(a0)
, pbwd(b→ a0) = 1, ∀b ∈ B.

In the case when |A| = |B| = 2, the dimension of the space of all possible solutions to the linear
equations (7.2) is equal to one, meaning that there is a one-parameter family of bijectivizations
for this case.

7.2 Bijectivisation of the vertical Yang-Baxter equation

Let us determine a bijectivisation to the vertical Yang-Baxter equation from Proposition 3.1.
The equation depends on four parameters u1, u2 ≥ 0 and s1, s2 ∈ (−1, 0]. Recall that the
path conservation implies that the sums in both sides of the Yang-Baxter equation (3.3) are
actually finite. Additionally, all terms in the sums for the Yang-Baxter equation are nonnegative
if (u2/u1, s1, s2) ∈ R; see Definition 3.6. For fixed i1, j1 ∈ {0, 1, . . . , J}, i2, i3, j2, j3 ∈ Z≥0, we
denote the terms on the left and right side of the Yang-Baxter equation, respectively, by the
following weight functions:

wLHS
i1,j1(k2, k3 | i2, i3; j2, j3) = Ru2

u1
,s1,s2

(j3, k2; k3, j2)L
(J)
u1,s1(i2, i1; k2, k1)L

(J)
u2,s2(i3, k1; k3, j1),

wRHS
i1,j1 (k

′
3, k
′
2 | i2, i3; j2, j3) = L(J)

u2,s2(k
′
3, i1; j3, k

′
1)L

(J)
u1,s1(k

′
2, k
′
1; j2, j1)Ru2

u1
,s1,s2

(k′3, i2; i3, k
′
2),

(7.3)

where k1, k
′
1 are omitted in the notation of the weight functions since they may be determined

through the path conservation:

k1 = i1 + i2 − k2, k′1 = j1 + j2 − k′2.

Throughout the current Section 7, we denote any choice of transition probabilities coming
from a bijectivisation of the Yang-Baxter equation (3.3) by

p↓i1,j1 [(k2, k3)→ (k′3, k
′
2) | i2, i3, j2, j3] and p↑i1,j1 [(k

′
3, k
′
2)→ (k2, k3) | i2, i3, j2, j3]. (7.4)

Here, the down and up arrows indicate the direction in which the cross vertex is moved. See
Figure 12 for an illustration.

Remark 7.1 (Bijectivisation with infinitely many paths). We tacitly included the case of in-
finitely many paths i2 = j3 = +∞ (arising at the left boundary of the stochastic higher spin
six vertex model, see Section 3.5) into the notation (7.4). In this case, the range of the down
transition probability (i.e. the set of possible values of (∞, k′2)) is always finite. However, the
range of the up transition probability

p↑∗,j1 [(∞, k′2)→ (∞, k3) | ∞, i3, j2,∞]

(“∗” means that there is no dependence on i1) may be infinite, since both k1 and k3 may be
arbitrarily large, provided that i3+k1 = k3+j1, because the stochastic higher spin six vertex model
allows for an unbounded number of paths per horizontal edge by letting qJ be an independent
parameter with J /∈ Z≥1.
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i1

i2 i3

j1

j2j3

k1
k2 k3

p↓i1,j1 [(k2, k3)→ (k′3, k
′
2) | i2, i3, j2, j3] = P i1

i2 i3

j1

j2j3

k′1

k′2k′3

→

Figure 12: Graphical illustration of the down transition probability coming from a bijectivisation
of the Yang-Baxter equation. The up transition is similar, with the cross vertex moving upwards
instead.

Throughout the rest of this section, we assume that a well-defined bijectivisation at the left
boundary exists. In considering explicit bijectivisations for the present paper, we restrict our
attention to models with J = 1 and, thus, the issue of an infinite range of the up transition
probability does not arise.

In the current Section 7, we explain the general framework for a bijectivisation and couplings
of measures on trajectories of stochastic vertex models. We do not pursue an explicit computation
of possible transition probabilities p↓i1,j1 and p↑i1,j1 in the fully general case when all three vertex
weights entering the Yang-Baxter equation have a q-hypergeometric form. Below in Section 8,
we focus on a, still rather general, subfamily of vertex models for which the cross vertex weights
factorize and become q-beta-binomial as in Section 3.4. Moreover, we set J = 1 in the weights

L
(J)
ui,si , which forces i1, j1 to be either zero or one. For this subfamily, an explicit treatment of a

bijectivisation is accessible.

7.3 Down and up transitions on vertex model configurations

Recall the space G whose elements encode vertical paths crossing a given horizontal slice in the
stochastic higher spin six vertex model, see Section 2.3. Recall the transition operator of the

stochastic vertex model Tu,s (Section 2.3) and the swap operator P
(n)
z,s1,s2 (Section 4.1). These

operators satisfy a (quasi-)computation relation (Proposition 4.2) which follows from the Yang-
Baxter equation. Here we employ bijectivisation of this intertwining relation to define up and
down transitions on vertex model configurations.

Fix n ∈ Z≥1 and abbreviate throughout the rest of this section:

P (n) = P
(n)
un/un−1,sn−1,sn

, T = Tu,s, Tσ = Tσu,σs, (7.5)

where σ is an arbitrary permutation from the infinite symmetric group (that is, σ acts on Z≥0
by fixing all but finitely many points). The intertwining relation from Proposition 4.2 is

TP (n) = P (n)Tσn−1 , (7.6)

see Figure 13, left, for an illustration. Here σn−1 = (n − 1, n) is an elementary transposition.
Recall that we are writing products of Markov operators as acting on measures, cf. Remark 4.3.
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Relation (7.6) follows from a single Yang-Baxter equation illustrated in Figure 10. Note that
all the terms of this Yang-Baxter equation are nonnegative if we assume that the parameters u, s
of the operators (7.5) satisfy the conditions of Proposition 4.2. Taking a bijectivisation (7.4) of
this Yang-Baxter equation, we arrive at the following down and up Markov operators.

g g′

d d′

T

Tσn−1

P (n) P (n)

g g′

d d′

U (n)g g′

d d′
D(n)

Figure 13: Left: A commuting diagram of Markov operators, where g,g′,d,d′ ∈ G with the
notation from (7.5). The element g is fixed, and all other elements are random. Intertwining
means that the distributions of d′ obtained along both paths (right-down and down-right) coin-
cide. Center and right: Markov operators D(n) and U (n) constructed from bijectivisation.

Definition 7.2 (Down Markov operators for swaps). Fix n ∈ Z≥1 and g,g′,d′ ∈ G such that
T (g,g′)P (n)(g′,d′) ̸= 0. Define a random element d ∈ G such that dl = gl for all l ̸= n − 1, n,
and dn−1, dn are random and chosen from the distribution

p↓i1,j1 [(g
′
n−1, g

′
n)→ (dn−1, dn) | gn−1, gn, d′n−1, d′n],

with i1, j1 given by the numbers of horizontal paths determined from the configurations of vertical
paths

i1 =
∑

l≥n−1 d
′
l −

∑
l≥n−1 gl, j1 =

∑
l≥n+1 d

′
l −

∑
l≥n+1 gl. (7.7)

Let D(n)(g′ → d | g,d′) denote the probability weight of d, and call D(n) = D
(n)
un−1,sn−1;un,sn the

down Markov operator corresponding to the swap operator P (n) at sites n− 1, n. See Figure 13,
center, for an illustration.

Definition 7.3 (Up Markov operators for swaps). Fix n ∈ Z≥1 and g,d,d′ ∈ G such that
P (n)(g,d)Tσn−1(d,d

′) ̸= 0. Define a random element g′ ∈ G such that g′l = d′l for all l ̸= n− 1, n,
and g′n−1, g

′
n are random and chosen from the distribution

p↑i1,j1 [(dn−1, dn)→ (g′n−1, g
′
n) | gn−1, gn, d′n−1, d′n],

with i1, j1 given by (7.7). Let U (n)(d → g′ | g,d′) denote the probability weight of g′, and call

U (n) = U
(n)
un−1,sn−1;un,sn the up Markov operator corresponding to P (n). See Figure 13, right, for

an illustration.

The operators D(n), U (n) depend on the parameters un−1, sn−1, un, sn (which we often omit
from the notation) and on the choice of bijectivisation which typically is not unique. For any
choice of bijectivisation, the down and up operators satisfy the stochasticity∑

d∈G
D(n)(g′ → d | g,d′) = 1 ∀g,g′,d′;

∑
g′∈G

U (n)(d→ g′ | g,d′) = 1 ∀g,d,d′,
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and the detailed balance equation

T (g,g′)P (n)(g′,d′)D(n)(g′ → d | g,d′) = P (n)(g,d)Tσn−1(d,d
′)U (n)(d→ g′ | g,d′) (7.8)

for any quadruple g,g′,d,d′ ∈ G. Note that when, say, T (g,g′)P (n)(g′,d′) = 0 (in contradiction
with the assumption in Definition 7.2), the value of D(n) is irrelevant in (7.8) and, additionally,
the corresponding value of U (n) must be zero to satisfy the detailed balance. Moreover, observe
that summing (7.8) over d and g′ results in the intertwining relation (7.6).

7.4 Down and up transitions related to the Markov shift operator

Throughout the rest of this section we continue to use abbreviations (7.5), and also introduce the
following abbreviations

P (0,n) = P
(n)
un/u0,s0,sn

, B = Bu,s, Tsh = Tsh(u),sh(s), (7.9)

where sh is the shift (4.4). Recall that the Markov shift operator B is obtained by iterating the
swap operators P (0,n) over all n ∈ Z≥1, see (4.6). Iterating the down or up operators in a similar
manner would result in Markov operators on G denoted by D• and U• which satisfy the following
detailed balance equation:

T (g,g′)B(g′,d′)D•(g′ → d | g,d′) = B(g,d)Tsh(d,d
′)U•(d→ g′ | g,d′) (7.10)

for any g,g′,d,d′ ∈ G. Graphically, one can extract the definition of D• and U• from the tower
of intertwining relations in Figure 14. However, to describe these operators in full detail we need
some notation and observations.

Denote
D(0,n) = D(n)

u0,s0;un,sn , U (0,n) = U (n)
u0,s0;un,sn . (7.11)

That is, D(0,n) randomly changes (g′n−1, g
′
n) to (dn−1, dn), but uses the parameters (u0, s0) and

(un, sn) instead of the ones in Definition 7.2, and similarly for U (0,n). Let the parameters of
the vertex model satisfy (u, s) ∈ T ∩ B, so that the operators T, Tsh, and B are well-defined
(see (2.17)–(2.18) and Definition 4.4). Moreover, assume that the up transition U (0,1) at the left
boundary is also well-defined, cf. Remark 7.1.

Now, let us encode the path configurations at intermediate horizontal slices in the vertex model
for B(g,d) given in Figure 11. For g,d ∈ G with B(g,d) ̸= 0, we denote the mth horizontal slice
by g[m] and it is given by

(g[m])l =


dl, l < m;

hm, l = m;

gl, l > m;

(7.12)

for m ∈ Z≥0 so that the number of vertical arrows at the mth position is given by

hm :=
∑
l≥m

dl −
∑

l≥m+1

gl, m ∈ Z≥1. (7.13)

Note that hm = 0 for all sufficiently large m since d,g ∈ G. Also, note that g[0] coincides with g.
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g g′

g[1] g′
[1]

g[2] g′
[2]

g[3] g′
[3]

. . . . . . . . . . . . . . . . . . . . . . . .

d d′

T

Tσ0

Tσ1σ0

Tσ2σ1σ0

Tsh

P (0,1) P (0,1)

P (0,2) P (0,2)

P (0,3) P (0,3)B B

Figure 14: Relation TB = BTsh is a consequence of the tower of intertwining relations displayed
in the figure. The random configuration d ∈ G distributed according to D•(g′ → d | g,d′)
is constructed as follows. Fix g,g′,d′ ∈ G. This completely determines g′[m] for all m ≥ 1, see

(7.13)–(7.12). Apply the down Markov operator for swaps to each square of the tower from the top
of the diagram to the bottom; see Definition 7.2. First, use D(0,1) to sample g[1] given g,g′,g′[1],

and continue consecutively using D(0,m) to sample to sample g[m] given g[m−1],g′[m],g
′
[m+1] for

m ≥ 2. Once the update terminates, we get the desired random element d ∈ G. The fact that the
sequence terminates is due to Lemma 7.4. The up operator U• is defined similarly by applying
the up Markov operator for swaps to each square of the tower from bottom of the diagram to the
top; see Definition 7.3

Lemma 7.4. Let g,d ∈ G and M > 1 + max {l ∈ Z≥1 : gl > 0 or dl > 0}. Then

B(g,d) =
M∏

m=1

P (0,m)(g[m−1],g[m]) (7.14)

and d = g[M ].

Lemma 4.6 essentially shows that for fixed g, the sum of (7.14) over all d is equal to 1. Since
M depends on d in (7.14), Lemma 7.4 does not imply Lemma 4.6.

Proof of Lemma 7.4. For all m ≥ M , we have hm = 0 by the lower bound on M . Hence,
g[m−1] = g[m] for m ≥ M . In particular, for m ≥ M , we have P (0,m)(g[m−1],g[m]) = 1g[m]=g[m−1]

since the path configuration, as in Figure 11, is empty to the right of location M . Thus, we may
truncate the infinite product of swap operators P (0,m) that define the operator B, see (4.6), to
the product of the swap operators P (0,m) in (7.14). Additionally, note that the g[m]’s stabilize to
d. This completes the proof.
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For g′,d′ with B(g′,d′) ̸= 0 and m ∈ Z≥0, define g′[m] in the same way as in (7.13)–(7.12).
The construction of the tower of intertwining relations given in Figure 14 follows from the repre-
sentation (7.14) of the shift operators together with (7.6). Note, in particular, that the tower is
finite since the g[m] and g′[m] stabilize as is shown below.

Lemma 7.5. Let g,g′,d,d′ ∈ G, and M > 1 + max {l ∈ Z≥1 : max(gl, g
′
l, dl, d

′
l) > 0}. Then, for

any m ≥M , we have

Tσm−2σm−3...σ1σ0(g[m−1],g
′
[m−1]) = Tσm−1σm−2σm−3...σ1σ0(g[m],g

′
[m]), (7.15)

and

D(0,m)(g′[m−1] → g[m] | g[m−1],g′[m]) = 1g[m]=g[m−1]
,

U (0,m)(g[m] → g′[m−1] | g[m−1],g′[m]) = 1g′
[m−1]

=g′
[m]

.
(7.16)

Proof. Observe that the transfer matrices Tσm−2...σ1σ0 and Tσm−1σm−2...σ1σ0 differ only by the
location of the parameter s0. Moreover, for m ≥M , the action of the these transfer matrices on
the configuration g[m] does not depend on s0 since the configuration is empty to the right of M .
Therefore, the action is the same. This proves (7.15).

Next, notice that P (0,m) acts as identity on our elements for m ≥ M , see the proof of
Lemma 7.4. Then, along with (7.15), this implies that the detailed balance equation forD(0,m), U (0,m)

has a unique solution given by (7.16). This completes the proof.

Definition 7.6 (Down operator for shift). Let g,g′,d′ ∈ G be such that T (g,g′)B(g′,d′) ̸= 0.
The down Markov operator corresponding to the shift operator B is defined as follows:

D•(g′ → d | g,d′) :=
∞∏

m=1

D(0,m)(g′[m−1] → g[m] | g[m−1],g′[m]), d = lim
m→+∞

g[m] ∈ G. (7.17)

Due to Lemma 7.5, the product is actually finite and the limit stabilizes. See Figures 13 and 14
for an illustration

Note that for any g,g′,d′ ∈ G, there are only finitely many d ∈ G for which (7.17) is nonzero.
This is due to the fact that there are only finitely many d for which Tsh(d,d

′) ̸= 0, see the desired
detailed balance equation (7.10).

Definition 7.7 (Up operator for shift). Let g,d,d′ ∈ G be such that B(g,d)Tsh(d,d
′) ̸= 0. The

up Markov operator corresponding to the shift operator B is defined as follows:

U•(d→ g′ | g,d′) :=
∞∏

m=1

U (0,m)(g[m] → g′[m−1] | g[m−1],g′[m]), g′ = g′[0] ∈ G. (7.18)

Due to Lemma 7.5, the product is actually finite. See Figures 13 and 14 for an illustration.

We assume that the bijectivisation at the left boundary is well-defined, so that the whole up
operator U• is also well-defined. In contrast with the down operator D•, in (7.18), the number
of possible outcomes g′ for any fixed g,d,d′ may be infinite. These infinitely many choices arise
at the left boundary, for m = 1, as explained in Remark 7.1.
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One readily sees that the operators D• and U• from Definitions 7.6 and 7.7 satisfy the detailed
balance equation (7.10) involving the shift operator B and the stochastic higher spin six vertex
model transfer matrices T and Tsh. This follows directly from the detailed balance equations for
the Markov swap operators D(0,n) and U (0,n) given by (7.11).

Remark 7.8. Here, and in Section 7.3, we argued in terms of the space G of vertex model con-
figurations. Note that we may define corresponding down and up Markov operators to act on the
space X of exclusion process configurations via the gap-particle transformation (Definition 2.4).
Following our convention so far, we use the notation D̃(n), D̃(0,n), D̃•, and so on, to denote these
operators acting on X.

7.5 Coupling of measures on trajectories via rewriting history

We couple together trajectories of two instances of the stochastic higher spin six vertex model with
different parameters through the use of the down and up Markov operators defined in Sections 7.3
and 7.4. Here, we only consider this construction for the swap operator P (n) and the operators
D(n), U (n) from Section 7.3. The couplings involving the shift operator B work very similarly,
and they will be discussed in a continuous time limit in Section 10 below.

Fix n ∈ Z≥1 and take parameters (u, s) ∈ T such that
(

un
un−1

, sn−1, sn
)
∈ R. That is, we

assume that the parameters satisfy the conditions of Proposition 4.2, so that the Markov operators
T, Tσn−1 , P

(n) (7.5) are well-defined. LetD(n) and U (n) be the operators from Section 7.3 providing
a bijectivisation of the intertwining relation TP (n) = P (n)Tσn−1 from Proposition 4.2.

Fix M ≥ 1 and an initial configuration ĝ ∈ G. Denote by {g(t)}0≤t≤M the stochastic higher
spin six vertex model with parameters (u, s) started from ĝ. Also, denote by {d(t)}0≤t≤M the
vertex model with parameters (σn−1u, σn−1s) started from a random initial configuration δĝP

(n).
Let T and Tσn−1 , respectively, denote the measures on trajectories of these processes on G. Then,
in particular, the probability weights for these measures are given by

T(g(0),g(1), . . . ,g(M)) = 1g(0)=ĝT (g(0),g(1))T (g(1),g(2)) . . . T (g(M − 1),g(M)),

Tσn−1(d(0),d(1), . . . ,d(M)) = P (n)(ĝ,d(0))Tσn−1(d(0),d(1)) . . . Tσn−1(d(M − 1),d(M)).

(7.19)

The iterated intertwining relation TMP (n) = P (n)(Tσn−1)
M implies that the distribution of the

final state d(M) of Tσn−1 is the same as the distribution of δg(M)P
(n), obtained by applying

P (n) to the final state of T (see Figure 15 for an illustration). The next statement extends this
identity in distribution to couplings between joint distributions in time; this is the main result of
the current Section 7. These couplings have a sequential nature (where the time t runs through
t ∈ {0, 1, . . . ,M}), and may be thought of as “rewriting the history” of a vertex model. There
are two distinct sequential couplings corresponding to the direction in which the time t is varied.

Theorem 7.9. 1. (Rewriting history from future to past) Fix ĝ ∈ G. Let {g(t)}0≤t≤M be dis-
tributed according to T. First, apply P (n) to g(M), and denote this random configuration by
d′(M). Sequentially in the order t = M − 1,M − 2, . . . , 1, 0, let d′(t) be sampled from

D(n)(g(t+ 1)→ d′(t) | g(t),d′(t+ 1)). (7.20)

Then, the joint distribution of {d′(t)}0≤t≤M is equal to Tσn−1.
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g(0) g(1) g(2) g(M − 1) g(M)

d(0) d(1) d(2) d(M − 1) d(M)

T T T T T

Tσn−1
Tσn−1

Tσn−1
Tσn−1

Tσn−1

P (n) P (n) P (n) P (n) P (n)

Figure 15: The chain of intertwining relations providing the coupling of trajectories (Theorem 7.9)
of the two processes in (7.19).

2. (Rewriting history from past to future) Fix ĝ ∈ G. Let {d(t)}0≤t≤M be distributed according
to Tσn−1, where now the initial condition is random and depends on ĝ. Sequentially in the
order t = 1, 2, . . . ,M , let g′(t) be sampled from

U (n)(d(t− 1)→ g′(t) | g′(t− 1),d(t)), (7.21)

where, by agreement, g′(0) = ĝ. Then, the joint distribution of {g′(t)}0≤t≤M is equal to T.

Proof. The results follow by iterating the detailed balance equation (7.8) involving T, Tσn−1 , and
P (n). Moreover, by the Markov property, it suffices to consider joint distributions at adjacent
time moments t, t + 1, and use induction in t. This induction is descending or ascending in the
first or the second part, respectively. See Figure 15 for an illustration of the notation employed
throughout the proof. We give more details below.

Consider the first part. Inductively, we show that the transition probability d′(t)→ d′(t+1)
is equal to Tσn−1(d

′(t),d′(t + 1)) if the transition probability for g(t) → g(t + 1) is equal to
T (g(t),g(t+1)). Additionally, for the induction argument, we show that the transition probability
for g(t)→ d′(t) is equal to P (n)(g(t),d′(t)) if the transition probability for g(t+ 1)→ d′(t+ 1)
is equal to P (n)(g(t+1),d′(t+1)). We start the induction by noting that the conditions are true
for the first step when t+1 = M by assumption. In the following, we carry out the computations
for the induction step.

Let us assume that g(t) is known. That is, the following computations are conditioned on
g(t). Then, we have the following chain of expressions for the joint distribution of d′(t),d′(t+1)
conditioned on g(t):

Prob
(
d′(t+ 1),d′(t) | g(t)

)
= Prob

(
d′(t) | g(t)

)
Prob

(
d′(t+ 1) | d′(t),g(t)

)
=

∑
g(t+1)

Prob(g(t+ 1),d′(t+ 1),d′(t) | g(t))

=
∑

g(t+1)

Prob(g(t+ 1) | g(t))Prob(d′(t+ 1) | g(t+ 1),g(t))Prob(d′(t) | g(t+ 1),g(t),d′(t+ 1))

=
∑

g(t+1)

T (g(t),g(t+ 1))P (n)(g(t+ 1),d′(t+ 1))D(n)(g(t+ 1)→ d′(t) | g(t),d′(t+ 1))

=
∑

g(t+1)

P (n)(g(t),d′(t))Tσn−1(d
′(t),d′(t+ 1))U (n)(d′(t)→ g(t+ 1) | g(t),d′(t+ 1))

= P (n)(g(t),d′(t))Tσn−1(d
′(t),d′(t+ 1)).
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We used the induction hypothesis on the fourth equality, detailed balance equation for the fifth
equality, and the stochasticity for the sixth equality. From the identity above we see that the
conditional distribution of d′(t+ 1) given d′(t) is Tσn−1(d

′(t),d′(t+ 1)), which is independent of
g(t). Moreover, the marginal distribution of d′(t) is P (n)(g(t),d′(t)), which allows to continue
the induction. Thus, the result for the first part follows.

The second part is proven similarly, with a simplification that we do not need to condition
the computations on d(t) due to the other direction of the Markov step P (n). This completes the
proof.

Definition 7.10 (Markov operators for rewriting history). Fix a trajectory {g(t)}0≤t≤M of the
stochastic higher spin six vertex model with some initial data ĝ, and also fix an arbitrary con-
figuration d′(M) at the final time such that P (n)(g(M),d′(M)) ̸= 0. Given d′(M), denote by
H←n the Markov operator that maps the trajectory {g(t)}0≤t≤M to the trajectory {d′(t)}0≤t≤M
by the sequential application of D(n) as in the first part of Theorem 7.9. The operator H←n may
be viewed as a Markov process with initial condition d′(M) and running backwards in time, from
future to past.

Similarly, fix a trajectory {d(t)}0≤t≤M with some initial data d̂, and fix an arbitrary config-
uration ĝ such that P (n)(ĝ, d̂) ̸= 0. Given ĝ, denote by H→n the Markov operator that maps the
trajectory {d(t)}0≤t≤M to the trajectory {g′(t)}0≤t≤M by the sequential application of U (n) as
in the second part of Theorem 7.9. The operator H→n may be viewed as a Markov process with
initial condition ĝ and running forward in time, from past to future.

We call H←n and H→n the Markov operators for rewriting history corresponding to the swap
operator P (n).

Note that both H←n and H→n act locally and change only the components gn−1, gn along the
trajectory of the stochastic history of the spin six vertex model. This locality comes from the
same feature of the Markov swap operator P (n).

We reformulate Theorem 7.9, with this definition. Recall that measures on trajectories are
defined by (7.19).

Corollary 7.11. 1. If a trajectory {g(t)}0≤t≤M has distribution T and d′(M) has distribution
δg(M)P

(n), then the application of H←n (with initial condition d′(M)) to {g(t)}0≤t≤M produces
a trajectory with distribution Tσn−1.

2. If a trajectory {d(t)}0≤t≤M has distribution Tσn−1 (in particular, its initial condition d̂ has
distribution δĝP

(n), where ĝ is fixed), then the application of H→n (with initial condition ĝ) to
{d(t)}0≤t≤M produces a trajectory with distributed T.

8 Application to discrete-time particle systems

We now consider the simplest bijectivisation for a subfamily of stochastic higher spin six vertex
models We call this the independent bijectivisation. The advantage of this subfamily is that the
cross vertex weights factorize into the q-beta-binomial form. The subfamily of stochastic higher
spin six vertex models is still quite general and, in particular, includes q-TASEP and TASEP. In
the following, we also translate the Markov operators H←n and H→n for rewriting history in these
vertex models into the language of particle systems.
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8.1 Notation and independent bijectivisation

Consider the setting of Section 7.2 (bijectivisation of a single Yang-Baxter equation) and take
J = 1, u1 = −βs1, u2 = −βs2, where s1, s2 ∈ (−1, 0) with |s2| ≤ |s1|, and β > 0. Then, the
vertex weights in the Yang-Baxter equation (3.3) become as in Figure 16. In particular, the cross
vertex weights factorize into the q-beta-binomial form, see Proposition 3.5. Our conditions on the
parameters make all the terms in the Yang-Baxter equation, i.e. the weights (7.3), nonnegative.

i2 j1

j2i1

φq,s22/s
2
1,s

2
2
(j2 | j1)1j2≤j1

00
g

g

1 + βqgs21
1 + βs21
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g

g − 1
βs21(1− qg)

1 + βs21
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g

g + 1
1− qgs21
1 + βs21
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g

g

s21(β + qg)

1 + βs21

00
g

g

1 + βqgs22
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g

g − 1
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1 + βs22
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g

g + 1
1− qgs22
1 + βs22

11
g

g

s22(β + qg)

1 + βs22

Figure 16: Vertex weights entering the Yang-Baxter equation considered in the current Section 8.

Recall that the boundary conditions for the Yang-Baxter equation are encoded by i1, j1 ∈
{0, 1, . . . , J} and i2, i3, j2, j3 ∈ Z≥0, see Figure 9. There are only four possible values for the pair
(i1, j1) ∈ {0, 1}2 encoding the horizontal boundary conditions since we are taking J = 1. Fixing
i1, j1, let us employ the shorthand notation

i2 = a, i3 = b, j2 = c. (8.1)

We always have 0 ≤ c ≤ b + 1, otherwise the cross vertex weight vanishes. The value of j3 is
recovered from the path conservation property:

j3 = a+ b− c+ i1 − j1. (8.2)

Assuming that a, b, c are also fixed, the terms (7.3) in both sides of the Yang-Baxter equation, as
well as the transition probabilities (7.4), may all be encoded by the numbers of paths through the
internal horizontal edge k1, k

′
1 ∈ {0, 1}, see Figures 9 and 12. Indeed, given k1, we may reconstruct

k2, k3 from a, b, c, i1, j1, and similarly for k′2, k
′
3 given k′1. We use the following shorthand notation

for the corresponding weights and transition probabilities:

wLHS
i1,j1(k1), wRHS

i1,j1 (k
′
1), p↓i1,j1 [k1 → k′1], p↑i1,j1 [k

′
1 → k1]. (8.3)
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The Yang-Baxter equation thus takes the form

wLHS
i1,j1(0) + wLHS

i1,j1(1) = wRHS
i1,j1 (0) + wRHS

i1,j1 (1). (8.4)

To simplify the constructions of our couplings, throughout the rest of the paper we consider
the so-called independent bijectivisation so that the transition, say k1 → k′1, depends only on the
end state k′1 and the boundary conditions, and not on k1. More specifically, we give the following
definition:

Definition 8.1. For a fixed set of boundary parameters a ∈ Z≥0 ∪ {+∞}, b, c ∈ Z≥0 and
i1, j1 ∈ {0, 1}, the transition probabilities for the independent bijectivisation are given by:

p↓i1,j1 [k1 → k′1] :=
wRHS
i1,j1

(k′1)

wRHS
i1,j1

(0) + wRHS
i1,j1

(1)
p↑i1,j1 [k

′
1 → k1] :=

wLHS
i1,j1

(k1)

wLHS
i1,j1

(0) + wLHS
i1,j1

(1)
, (8.5)

with k1, k
′
1 ∈ {0, 1}.

Remark 8.2. Note that the denominator is nonzero in each of the two expressions in (8.5).
Otherwise, there is no Yang-Baxter equation with the given boundary conditions a, b, c, i1, j1 and,
correspondingly, there is no bijectivisation. One readily sees that the transition probabilities in
(8.5) are always nonnegative and satisfy the detailed balance equation (7.2). Observe that this
bijectivisation corresponds to taking the coupling of measures on A and B described in Section 7.1
to be simply the product measure. For this reason we call (8.5) the independent bijectivisation.

The case a = +∞ in (8.5) corresponds to having infinitely many paths through the leftmost
vertical edges, but this does not present an issue since J = 1; see Remark 7.1. In other words, the
limits of p↓i1,j1 [k1 → k′1] and p↑i1,j1 [k

′
1 → k1] as a→ +∞ exist and give a well-defined bijectivisation

of the Yang-Baxter equation with i2 = j3 = +∞.

Formulas arising from (8.5) do not have factorized denominators and, in general, can have a
rather complicated form despite the simplicity of the general definition. For example, we have

p↓0,0[0→ 1] = p↓0,0[1→ 1]

=
(1− qc−1s21)βs

2
2(1− qa+b−c+1)φ(c− 1 | b)

(1 + qcβs21)(1 + qa+b−cβs22)φ(c | b) + (1− qc−1s21)βs
2
2(1− qa+b−c+1)φ(c− 1 | b) ,

where we abbreviated φ = φq,s22/s
2
1,s

2
2
. Note that this expression admits a straightforward limit as

a→ +∞, making the bijectivisation at the left edge well-defined.

8.2 Rewriting history in particle systems from future to past

Let us now take the full stochastic higher spin six vertex model with J = 1, ui = −βsi, i ∈ Z≥0,
where the parameters of the model are

β > 0, s = (s0, s1, s2, . . .), −1 < si < 0.

This vertex model corresponds to a discrete time stochastic particle system {x(t)}t∈Z≥0
on the

space X of particle configurations on Z, via the gap-particle transformation (Definition 2.4).
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For any n ≥ 1, the bijectivisation defined in Section 8.1 gives rise to the Markov operators for
rewriting history as in Definition 7.10. We denote the corresponding operators by H̃←n and H̃→n ,
following the convention that operators on X include a tilde.

Fix n ≥ 1 and assume that |sn−1| ≥ |sn|. In this subsection, we describe the Markov operator
H̃←n and, in the following Section 8.3, we describe the Markov operator H̃→n . We first consider
the down Markov operator D̃(n) from Definition 7.2. For a fixed time 0 ≤ t ≤M − 1, the action
of D̃(n) as in (7.20) depends on the trajectories of the neighboring particles around the n-th one:

xn−1 := xn−1(t+ 1) > xn+1 := xn+1(t+ 1), xn−1 − i1 = xn−1(t) > xn+1 − j1 = xn+1(t),

where i1, j1 ∈ {0, 1}. Given the new location x′n of the n-th particle at time t+1, D̃(n) maps the
two-time trajectory of the n-th particle,

xn − k1 = xn(t) ≤ xn = xn(t+ 1),

where k1 ∈ {0, 1}, into a random new trajectory

x′n − k′1 ≤ x′n, k′1 ∈ {0, 1} .

See Figure 17, left, for an illustration. The coordinates introduced above must satisfy

xn−1 > xn > xn+1, xn−1 − i1 > xn − k1 > xn+1 − j1,

xn−1 > x′n > xn+1, xn−1 − i1 > x′n − k′1 > xn+1 − j1,

xn ≥ x′n > xn+1, xn − k1 ≥ x′n − k′1 > xn+1 − j1.

(8.6)

The inequalities on the last line in (8.6) come from the q-beta-binomial specialization of the cross
vertex weights Rsn/sn−1,sn−1,sn(i1, i2; j1, j2), which contain the indicator 1j2≤j1 , see Proposition 3.5.

The probability to select k′1 ∈ {0, 1} is p↓i1,j1 [k1 → k′1] from (8.5) with parameters (s1, s2)
replaced by (sn−1, sn), horizontal edge occupation numbers i1, j1, k1 specified above, and

a = xn−1 − xn − 1− i1 + k1, b = xn − xn+1 − 1− k1 + j1, c = x′n − xn+1 − 1,

as indicated in Figure 17, left.
Under the independent bijectivisation, the probabilities p↓i1,j1 [k1 → k′1] are chosen to be in-

dependent (as much as possible) of the old trajectory of the n-th particle. More precisely, they
depend on the old state xn − k1 at time t through a, b, but not on the old state xn at time t+ 1.
There are, however, two cases when the value of k′1 is deterministically prescribed by the last
inequality in (8.6):

• (blocking) If c = 0 and j1 = 0, then k′1 = 0 with probability 1. This means that x′n is blocked
by xn+1 from going down due to close proximity.

• (pushing down) If c = b+1− j1, then k1 = 1 and, additionally, k′1 = 1 with probability 1. This
means that x′n is pushed down by xn due to close proximity.

We see that in the pushing case, the independent bijectivisation cannot ignore k1 which encoded
the old trajectory of the n-th particle.
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Figure 17: Left: Action of D̃(n) with boundary conditions i1 = 0, j1 = 1. Given the location
at time t+ 1, the particle x′n randomly chooses its location at time t from the possible locations
{x′n, x′n − 1} with probabilities determined by p↓i1,j1 , independent of k1 unless x′n is pushed down
or blocked.
Right: Action of Ũ (n) with boundary conditions i1 = 1, j1 = 0. Similarly, given the location at
time t, the particle y′n randomly chooses its location at time t + 1 from the possible locations
{y′n, y′n + 1} with probabilities determined by p↑i1,j1 , independent of k

′
1 unless y′n is pushed up or

blocked.

Applying the operators D̃(n) sequentially for t = M − 1,M − 2, . . . , 1, 0, we arrive at the
operator H̃←n for rewriting history. The action of H̃←n may be viewed as a Markov process running
backwards in time, which replaces the old trajectory {xn(t)}0≤t≤M by the new one, {x′n(t)}0≤t≤M .
The Markov process for building {x′n(t)}0≤t≤M starts from a fixed initial condition x′n(M) such
that xn+1(M) < x′n(M) ≤ xn(M), and evolves in the chamber

xn+1(t) < x′n(t) ≤ xn(t), 0 ≤ t ≤M.

The trajectory of the upper neighbor {xn(t)}0≤t≤M affects the transition probabilities of x′n(t)
due to the push rule described above. We refer to Figure 18, left, for an illustration.

Thus, the operator H̃←n satisfies the first part of Corollary 7.11, where all vertex configura-
tions and operators are replaced by their exclusion process counterparts using the gap-particle
transformation. Below, in Section 8.4, we explicitly describe the Markov process H̃←n for n = 1
when there is no upper neighbor and the transition probabilities are simpler.

8.3 Rewriting history in particle systems from past to future

The Markov operator H̃→n for rewriting history from past to future is treated very similarly to
Markov operator H̃←n for rewriting history from future to past, as described in Section 8.2. Here,
we only indicate the main notation and definitions. For instance, we denote particle coordinates
by yj instead of xj to distinguish from the previous subsection.
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Figure 18: Left: Rewriting history from future to past using the operator H̃←n . Right: Rewriting
history from past to future using the operator H̃→n . In both cases the allowed chamber for the
new trajectory of the n-th particle is shaded. When the new trajectory reaches the boundary of
this chamber, it is pushed or blocked depending on the type of the boundary.

Let n ≥ 1 and |sn−1| ≥ |sn| in the stochastic higher spin six vertex model with J = 1 and
ui = −βsi. We first describe the up Markov operator Ũ (n) from the independent bijectivisation.
For time 0 ≤ t ≤M − 1, it depends on the two-time trajectories

yn−1 := yn−1(t) > yn+1 := yn+1(t), yn−1 + i1 = yn−1(t+ 1) > yn+1 + j1 = yn+1(t+ 1),

where i1, j1 ∈ {0, 1}. Given the new location y′n, the operator Ũ (n) maps the two-time trajectory
of the n-th particle, yn ≤ yn + k′1, where k′1 ∈ {0, 1}, into a random new trajectory y′n ≤ y′n + k1,
where k1 ∈ {0, 1}. See Figure 17, right, for an illustration. All the coordinates must satisfy

yn−1 > yn > yn+1, yn−1 + i1 > yn + k′1 > yn+1 + j1,

yn−1 > y′n > yn+1, yn−1 + i1 > y′n + k1 > yn+1 + j1,

yn−1 > yn
′ ≥ yn, yn−1 + i1 > yn

′ + k1 ≥ yn + k′1.

(8.7)

The probability to select k1 ∈ {0, 1} is p↑i1,j1 [k
′
1 → k1] given in (8.5) with parameters (s1, s2)

replaced by (sn−1, sn), horizontal edge occupation numbers i1, j1, k
′
1 specified above, and

a = yn−1 − y′n − 1, b = y′n − yn+1 − 1, c = yn − yn+1 − 1 + k′1 − j1

as indicated in Figure 17, right. There are also blocking and pushing mechanisms present:

• (blocking) If a = 0 and i1 = 0, then k1 = 0 with probability 1. This means that y′n is blocked
and cannot go up due to close proximity to yn−1.

• (pushing up) If c = b + 1 − j1, then k′1 = 1 and, additionally, k1 = 1 with probability 1. This
means that y′n is pushed up by yn due to close proximity.

Applying the operators Ũ (n) sequentially for t = 0, 1, . . . ,M − 1, we arrive at the Markov
operator H̃→n for rewriting history from past to future. Its action may be viewed as a Markov
process which builds the new trajectory {y′n(t)}0≤t≤M of the n-th particle which lies in the
chamber

yn(t) ≤ y′n(t) < yn−1(t), 0 ≤ t ≤M.
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This new trajectory, which replaces the old trajectory {yn(t)}0≤t≤M , starts from a fixed initial
condition y′n(0), and its law depends on the trajectories of the particles with numbers n−1, n, n+1.
See Figure 18, right, for an illustration.

Thus, the operator H̃→n satisfies the second part of Corollary 7.11, where all vertex configu-
rations and operators are replaced by their exclusion process counterparts using the gap-particle
transformation. Below, in Section 8.4, we explicitly describe H̃→n for n = 1 when the transition
probabilities are simpler.

8.4 Resampling the first particle

Let us illustrate the general results of the previous Sections 8.2 and 8.3 and consider the case
n = 1, that is, the system of two particle. Let x(t) = (x1(t), x2(t)), x1(t) > x2(t), be the first two
particles in the system given at the beginning of Section 8.2. More precisely, x(t) corresponds
(via the gap-particle transformation, see Definition 2.4) to the stochastic higher spin six vertex
model with J = 1 and the parameters

ui = −βsi, β > 0, |s0| > |s1|. (8.8)

We will omit J and β in the notation and simply say that x(t) has parameters (s0, s1). Let
also y(t) = (y1(t), y2(t)) be the process with the swapped parameters (s1, s0). We will describe
two couplings between x(t) and y(t). Similar couplings may be explicitly written down for any
number of particles, but the advantage for n = 1 is that the transition probabilities have a simple
form.

We start with rewriting history from future to past. Let us denote

d0b,c =
(1 + βs20q

c)(1− qb+1−c)
β(s20 − s21q

b−c)(1− qc)
, d1b,c =

(1− s20q
c)(1− qb−c)

(β + qc)(s20 − s21q
b−c−1)

, (8.9)

where b, c ∈ Z≥0. The quantities (8.9) take values in [0,+∞]. In particular, we may have
d0b,0 = +∞ and d0b,b+1 = d1b,b = 0, which will respectively correspond to blocking and pushing
down as in Section 8.2.

Fix M ∈ Z≥1. Assume that we are given a chamber {x1(t) > x2(t)}0≤t≤M , and also x′1(M)
with x1(M) ≥ x′1(M) > x2(M). The process H̃←1 is a random walk x′1(t) in a chamber (i.e. x1(t) ≥
x′1(t) > x2(t) for all t) which is started from x′1(M) and runs in reverse time t = M − 1,M −
2, . . . , 1, 0. See Figure 18, left with n = 1 and x0 = +∞, for an illustration. During time step
t+ 1→ t, this random walk takes steps 0 or −1 with probabilities

d
j1
b,c

1 + d
j1
b,c

and
1

1 + d
j1
b,c

, (8.10)

respectively, where

b = x1(t)− x2(t)− 1, c = x′1(t+ 1)− x2(t+ 1)− 1, j1 = x2(t+ 1)− x2(t) ∈ {0, 1} ,

as in Figure 17, left, with a = +∞.
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Proposition 8.3. Fix M ∈ Z≥1. Let x(t) be the system as above, with parameters (s0, s1)
satisfying (8.8) and initial conditions so that x1(0) > x2(0). Also, let x′1(M) be chosen from the
probability distribution

φq,s1/s20,s
2
1
(x′1(M)− x2(M)− 1 | x1(M)− x2(M)− 1). (8.11)

Moreover, let x′1(t) be the random walk in the chamber, x1(t) ≥ x′1(t) > x2(t), with transition
probabilities (8.10) as above. Then, the joint distribution of the new process {(x′1(t), x2(t))}0≤t≤M
is equal to the distribution of the process y(t) with parameters (s1, s0) started from the initial
condition y′1(0) > x2(0), where y′1(0) is random and chosen from

φq,s1/s20,s
2
1
(y′1(0)− x2(0)− 1 | x1(0)− x2(0)− 1). (8.12)

Proof. First, note that the distributions (8.11), (8.12) are precisely given by the corresponding
application of the Markov swap operator P̃ (1). Then, by the first part of Theorem 7.9, it suffices
to show that

d0b,c =
wRHS
∗,0 (0)

wRHS
∗,0 (1)

, d0b,c =
wRHS
∗,1 (0)

wRHS
∗,1 (1)

, (8.13)

using the notation of Section 8.1. These identities are checked in a straightforward way using the
vertex weights in Figure 16 with (s1, s2) renamed to (s0, s1). Thus, we have

d
j1
b,c

1 + d
j1
b,c

= p↓∗,j1 [k1 → 0],
1

1 + d
j1
b,c

= p↓∗,j1 [k1 → 1]. (8.14)

Recall that star in (8.13), (8.14) means that there is no dependence on i1 since a = +∞. It
follows that the random walk x′1(t) with transition probabilities (8.10) is indeed the process H̃←1 .
This completes the proof.

Let us similarly write down the transition probabilities for the random walk H̃→1 in the
chamber {y1(t) > y2(t)}0≤t≤M started from an initial condition y′1(0). For b, c ∈ Z≥0, denote:

u0b,c =
(1 + βs21q

b)(1− qb+1−c)
β(s20 − s21q

b−c)(1− qb+1)
, u1b,c =

(1− s21q
b−1)(1− qb−c)

(β + qb)(s20 − s21q
b−c−1)

. (8.15)

These quantities take values in [0,+∞). There is no +∞ values since there is no blocking because
a = +∞ or, equivalently, y0 = +∞. In particular, we have u0b,b+1 = u1b,b = 0, corresponding to
pushing up rules as in Section 8.3.

Fix a trajectory of the two-particle system {(y1(t), y2(t))}t≥0, where y1(t) > y2(t). Moreover,
fix y′1(0) such that y′1(0) ≥ y1(0). The process H̃→1 is a random walk y′1(t) with y′1(t) ≥ y1(t) for
all t, which runs in forwards time t = 0, 1, . . .. See Figure 18, right with n = 1 and y0 = +∞, for
an illustration. The walk starts from y′1(0) and, for the transition t → t + 1, it takes steps 0 or
+1 with probabilities

u
j1
b,c

1 + u
j1
b,c

and
1

1 + u
j1
b,c

, (8.16)
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respectively, where

b = y′1(t)− y2(t)− 1, c = y1(t+ 1)− y2(t+ 1)− 1, j1 = y2(t+ 1)− y2(t),

as in Figure 17, right, with a = +∞. The next statement is proven in the same way as Proposi-
tion 8.3:

Proposition 8.4. Let y′1(0) > y2(0) be fixed, and take y1(0), with y2(0) < y1(0) ≤ y′1(0), to be
random and with distribution given by

φq,s1/s20,s
2
1
(y1(0)− y2(0)− 1 | y′1(0)− y2(0)− 1).

Let y(t) be the two-particle system with initial condition (y1(0), y2(0)) and parameters (s1, s0)
satisfying (8.8). Given the trajectory {y(t)}≥0, construct the random walk {y′1(t)}t≥0 from the
initial condition y′1(0) with y′1(t) ≥ y1(t) and transition probabilities given by (8.16). Then, the
joint distribution of the new process {(y′1(t), y2(t))}t≥0 is equal to the joint distribution of the
process x(t) with parameters (s0, s1) with initial condition y′1(0) > y2(0).

We generalize a certain parameter symmetry for the partincle systems using the couplings
between the two-particle systems x(t) with parameters (s0, s1) and y(t) with parameters (s1, s0)
in Propositions 8.3 and 8.4. For instance, take both x(t) and y(t) with step initial conditions
xstep, i.e. x1(0) = y1(0) = −1 and x2(0) = y2(0) = −2. Then, the distributions of the trajectories
of the second particle, {x2(t)}t≥0 and {y2(t)}t≥0, are the same. In particular, one may show that
the distribution of the the second particle is a symmetric function on the parameters (s0, s1),
without using a coupling argument, making the previous statement true. On the other hand, this
symmetry breaks when the initial configuration is not xstep. The following statement restores (in
a stochastic way) the symmetry for general initial configurations:

Corollary 8.5. Fix x1(0) > x2(0). Let x(t) be the two-particle system with parameters (s0, s1),
|s0| > |s1|, started from (x1(0), x2(0)). Let y′1(0), where x2(0) < y′1(0) ≤ x1(0) be random and
distributed as

φq,s1/s20,s
2
1
(y′1(0)− x2(0)− 1 | x1(0)− x2(0)− 1).

Start y(t) with parameters (s1, s0) from the random initial configuration (y′1(0), x2(0)). Then
the distributions of the trajectories second particle in both systems, {x2(t)}t≥0 and {y2(t)}t≥0,
coincide.

Proof. This follows from the history rewriting processes in either of Propositions 8.3 and 8.4 since
both of these processes keep the trajectory of the second particle intact.

Let us specialize to q = 0. We consider the random walk H̃←1 for rewriting history from future
to past, described before Proposition 8.3. One may similarly specialize H̃→1 , but we omit this for
brevity. The quantities (8.9), for q = 0, specialize as follows

d0b,c
∣∣
q=0

=


+∞, c = 0;
1

βs20
, 1 ≤ c ≤ b− 1;

1
β(s20−s21)

, c = b;

0, c = b+ 1,

d1b,c
∣∣
q=0

=



1−s20
(1+β)s20

, c = 0;

1
βs20

1 ≤ c ≤ b− 2;

1
β(s20−s21)

c = b− 1;

0, c = b.

(8.17)
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It follows that x′1(t), the process in reversed time living in the chamber x1(t) ≥ x′1(t) > x2(t),
is a simple random walk with location-dependent transition probabilities. Namely, in the bulk

of the chamber, it takes a step −1 with probability 1
1+1/(βs20)

=
βs20

1+βs20
and a step 0 with the

complementary probability 1
1+βs20

. At the boundary of the chamber, the probabilities need to be

suitably modified, see Figure 19 for an illustration of all cases which are determined from (8.17).

x2

x1

t

M0

block

push P(←) = 1
1+βs20

P(←) = 1
1+β(s20−s21)

P(←) =
1−s20
1+βs20

bulk

upper boundary

lower boundary

Figure 19: Transition probabilities for the simple random walk x′1(t) for rewriting history from
future to past in the specialization q = 0. This walk runs in reverse time inside the chamber
x1(t) ≥ x′1(t) > x2(t). Its transition probabilities differ on the boundary of the chamber, compared
to the bulk. In the figure, we only list the probability of the step 0, with the probability of the
step −1 determined by the complement formula.

9 Bijectivisation and rewriting history in continuous time

In this section, we construct the rewriting history processes for q-TASEP and TASEP evolving in
continuous time using a bijectivisation. We view the q-TASEP as a continuous time limit of the
system with J = 1 and ui = −βsi considered in Section 8. Thus, we deal with is a specialization
of the independent bijectivisation in Section 8.1.

9.1 Limit to continuous time q-TASEP

Let us take a continuous time limit of the vertex model from Section 8.2. Recall that we had set
J = 1 and ui = −βsi, where β > 0. For this model, the stochastic vertex weights and the cross
vertex weights for the vertical Yang-Baxter equation are given in Figure 16. Now, consider the
following limit of the parameters:

• First, set βs2i = εαi, for all i, where αi > 0, and ε > 0 is fixed for now.

• Send β → +∞ and si → 0 so that εαi > 0 is fixed.

• After this, take the limit as ε → 0 and rescale time from discrete to continuous as t = ⌊t/ε⌋,
where t ∈ R≥0 is the new continuous time.

57



These operations turn the stochastic higher spin six vertex model into the continuous time stochas-
tic q-Boson model [SW98], [BC14], [BCPS15] with inhomogeneous rates αi. Indeed, the ε → 0
expansions of all the vertex weights in the last operation are given in Figure 20. We see that the
cross vertex weights do not depend on ε, while the weights in the vertex model itself are of order
O(ε) or 1−O(ε). The weights of type (g, 0; g− 1, 1) correspond to the jump rates in the q-Boson
model. More precisely, each stack of gn vertical arrows at location n ∈ Z≥0 (with the agreement
g0 = +∞) emits one horizontal arrow at rate αn(1− qgn). This horizontal arrow instantaneously
travels horizontal distance 1 and joins the next stack of arrows at location n + 1. This is be-
cause the probability to travel distance at least 2 is proportional to ε2, which is negligible in the
continuous time limit.

The q-Boson system corresponds to the continuous time q-TASEP, where the particle xn has
speed αn−1 for n ∈ Z≥0, via the gap-particle transformation given in Definition 2.4. That is, each
xn jumps to the right by one at rate αn−1(1− qgn−1), where gn−1 = xn−1 − xn − 1.

i2 j1

j2i1

φq,α2/α1,0(j2 | j1)1j2≤j1

00
g

g

1− ε · α1(1− qg) +O(ε2)

10
g

g − 1

ε · α1(1− qg) +O(ε2)

01
g

g + 1

1− ε · α1 +O(ε2)

11
g

g

ε · α1 +O(ε2)

00
g

g

1− ε · α2(1− qg) +O(ε2)

10
g

g − 1

ε · α2(1− qg) +O(ε2)

01
g

g + 1

1− ε · α1 +O(ε2)

11
g

g

ε · α2 +O(ε2)

Figure 20: Expansions as ε → 0 of the vertex weights entering the Yang-Baxter equation for
the continuous time q-TASEP, where the time is scaled proportionally to ε−1. The cross vertex
weights are nonnegative when α1 ≥ α2 > 0.

9.2 Independent bijectivisation in continuous time

Let us now write down the ε → 0 expansions, under the setting of Section 8.1, of the transition
probabilities

p↓i1,j1 [∗ → 0], p↓i1,j1 [∗ → 1], p↑i1,j1 [∗ → 0], p↑i1,j1 [∗ → 1] (9.1)
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given by (8.5), after performing the first two steps of the specialization from Section 9.1. Here and
below “∗” means that the transition does not depend on the previous state as much as possible,
which is a feature of the independent bijectivisation. However, see the blocking and pushing
mechanisms described in Sections 8.2 and 8.3. The resulting expansions of (9.1) would depend
on q and the spectral parameters α1 ≥ α2 > 0. We also continue to use the notation (8.1)–(8.3)
for the boundary conditions in the Yang-Baxter equation.

Proposition 9.1. Given the conventions explained before the proposition, we have the following
ε→ 0 expansions of the down transition probabilities:

p↓00[∗ → 1] = 1c=b+1 + ε1c≤b
(α1 − α2q

b−c)(1− qa+b+1−c)(1− qc)

1− qb−c+1
+O(ε2). (9.2)

p↓01[∗ → 1] = 1c=b + ε1c≤b−1
(α1 − α2q

b−c−1)(1− qa+b−c)
1− qb−c

+O(ε2); (9.3)

p↓10[∗ → 1] = 1c=b+1 + ε1c≤b
(α1 − α2q

b−c)(1− qc)

1− qb+1−c +O(ε2); (9.4)

p↓11[∗ → 1] = 1c=b + ε1c≤b−1
α1 − α2q

b−c−1

1− qb−c
+O(ε2). (9.5)

For the up transition probabilities, we have

p↑00[∗ → 1] = 1c=b+1 + ε1c≤b
(α1 − α2q

b−c)(1− qa)(1− qb+1)

1− qb−c+1
+O(ε2); (9.6)

p↑01[∗ → 1] = 1c=b + ε1c≤b−1
(α1 − α2q

b−c−1)(1− qa)

1− qb−c
+O(ε2); (9.7)

p↑10[∗ → 1] = 1c=b+1 + ε1c≤b
(α1 − α2q

b−c)(1− qb+1)

1− qb−c+1
+O(ε2); (9.8)

p↑11[∗ → 1] = 1c=b + ε1c≤b−1
α1 − α2q

b−c−1

1− qb−c
+O(ε2). (9.9)

In all cases, the complementary probabilities follow and are determined by the complement for-
mula, e.g. p↓i1,j1 [∗ → 0] = 1− p↓i1,j1 [∗ → 1]. The parameters a, b, c in formulas (9.2)–(9.9) satisfy
a, b ≥ 0 and 0 ≤ c ≤ b+min(a+ i1, 1)− j1.

Proof. These expansions are obtained in a straightforward way using Definition 8.1 and the
explicit formulas for the vertex weights after performing the first two steps of the specialization
from Section 9.1; see Figure 20.

In continuous time, note that during each time moment there is at most one jump of any of
the particles, both before and after applying a rewriting history operator. This means that we
can eliminate the boundary conditions i1 = j1 = 1 which never occur in continuous time.

Next, consider the case when i1 + j1 = 1. The order 1 terms in (9.3)–(9.4) and (9.7)–(9.8)
occur only when both the old trajectory of the n-th particle, and one of the particles xn±1 jump
at the same time, which is impossible in continuous time. The order ε terms in (9.3)–(9.4) and
(9.7)–(9.8) correspond to both the new trajectory of xn and one of the particles xn±1 jumping
at the same time, which is also impossible in continuous time. It follows multiple events with
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probability of order ε occur when i1 + j1 = 1. Thus, we have that the case i1 + j1 = 1 cannot
lead to new jump in the new trajectory of the n-th particle since such a jump would be an event
of probability O(ε2), which vanishes in the continuous time limit.

Therefore, the independent bijectivisation in the continuous time limit is completely deter-
mined by the expansions (9.2) and (9.6) for i1 = j1 = 0. In the rest of the current Section 9,
we use this fact to describe the rewriting history processes H̃←n and H̃→n for the continuous time
q-TASEP and TASEP.

9.3 Rewriting history from future to past for a parameter swap in q-TASEP

Here and in the next Section 9.4, we describe the q-TASEP’s rewriting history processes H̃←n and
H̃→n from Definition 7.10. These processes are based on the independent bijectivisation and are
determined by the jump rates coming from (9.2) and (9.6), respectively.

Let us start with the process H̃←n of rewriting history from future to past. Fix M ∈ R≥0,
n ∈ Z≥1, and two speeds αn−1 > αn > 0. Assume we have three trajectories of consecutive
particles,

xn−1(t) > xn(t) > xn+1(t), 0 ≤ t ≤ M

and a starting point x′n(M) with

xn(M) ≥ x′n(M) > xn+1(M).

The process x′n(t) starts from x′n(M) and runs in reverse time in the chamber xn(t) ≥ x′n(t) >
xn+1(t), making jumps down by 1 in continuous time with rate

rate←n;αn−1,αn
=

(αn−1 − αnq
b−c)(1− qa+b+1−c)(1− qc)

1− qb−c+1
, (9.10)

where (cf. Figure 17, left)

a := xn−1(t−)− xn(t−)− 1, b := xn(t−)− xn+1(t−)− 1, c := x′n(t)− xn+1(t)− 1. (9.11)

Note that the rate (9.10) is a piecewise constant function of the time t, and the rate changes
whenever one of the particles xn−1, xn, or xn+1 makes a jump. The particle x′n is blocked from
jumping down by xn+1, i.e. rate

←
n;αn−1,αn

= 0, when c = 0. The particle x′n is pushed down by a
jump of xn, i.e. rate

←
n;αn−1,αn

= +∞, when c = b+ 1. Note that a+ b+ 1− c is always positive,

so the factor 1− qa+b+1−c does not vanish. The blocking and pushing mechanisms are similar to
the discrete time case from Section 8.2. See Figure 21 for an illustration.

The process H̃←n described above produces a coupling of the trajectories of the q-TASEPs with
speed sequences differing by the swap αn−1 ↔ αn. Recall that, for the q-TASEP, the Markov
swap operator P̃ (n) depending on the ratio 0 ≤ αn/αn−1 ≤ 1 acts on X by moving the single
particle xn into a random new location x′n with probability

φq,αn/αn−1,0(x
′
n − xn+1 − 1 | xn − xn+1 − 1). (9.12)

Let x(0) ∈ X be an initial condition, and α = (α0, α1, . . .) be a sequence of particle speeds
such that αn−1 > αn. Let {x(t)}0≤t≤M be the continuous time q-TASEP started from x(0)
with speeds α. Let also {y(t)}0≤t≤M be the continuous time q-TASEP started from the random
initial condition δx(0)P̃

(n) and evolving with the speeds σn−1α, where σn−1 is the elementary
transposition αn−1 ↔ αn.

60



t

M0

xn+1

xn

xn−1

x′
n

a

b c

Figure 21: The process H̃←n of rewriting history from future to past for the continuous time q-
TASEP and the parameter swap αn−1 ↔ αn. The allowed chamber for the new trajectory x′n(t)
is shaded. The quantities (9.11) indicated in the figure for a particular time interval are equal
to a = 1, b = 5, c = 3 so that the jump rate (9.10) at that particular time interval is equal to
(αn−1 − αnq

2)(1− q4).

Proposition 9.2. Given the notation above, let x′(M) be obtained from x(M) by the action of
P̃ (n), that is, by randomly moving xn(M) to x′n(M) with probability (9.12). Given the trajectories
of the particles xj(t), j = n − 1, n, n + 1, replace the old trajectory xn(t) by the new one x′n(t)
constructed from the process H̃←n started from x′n(M) and running in reverse time. Then, the
resulting trajectory of the whole process {x1(t), . . . , xn−1(t), x′n(t), xn+1(t), . . .}0≤t≤M is equal in
distribution to the trajectory of the process {y(t)}0≤t≤M.

Proof. This is a continuous time limit of the general Theorem 7.9 and Corollary 7.11.

Remark 9.3 (TASEP specialization of H̃←n ). The q-TASEP turns into the TASEP when q = 0.
In that case, the dynamics H̃←n simplifies. Namely, the blocking and pushing mechanisms stay
the same, and the jump rates (9.10) become

rate←n;αn−1,αn

∣∣∣
q=0

= αn−1 − αn1b=c. (9.13)

Thus, the process x′n(t) is a Poisson random walk in the chamber xn(t) ≥ x′n(t) > xn+1(t),
running in reverse time and jumping down with rate αn−1 in the bulk and αn−1 − αn at the top
boundary of the chamber.

Clearly, Proposition 9.2 for q = 0 holds for the process H̃←n with the jump rates (9.13). This
proposition for q = 0 and n = 1 immediately implies Theorem 1.2 from the Introduction.

9.4 Rewriting history from past to future for a parameter swap in q-TASEP

Let us now consider the process H̃→n of rewriting history from past to future. Fix n ∈ Z≥1 and
two speeds αn−1 > αn > 0. Assume we have three trajectories of consecutive particles,

yn−1(t) > yn(t) > yn+1(t),
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where t runs over R≥0, and a starting point y′n(0) so that yn(0) ≤ y′n(0) < yn−1(0). The process
y′n(t) starts from y′n(0) and runs in forward time t ∈ R≥0 in the chamber yn(t) ≤ y′n(t) < yn−1(t).
In continuous time, the location of y′n(t) jumps up by 1 with rate

rate→n;αn−1,αn
=

(αn−1 − αnq
b−c)(1− qa)(1− qb+1)

1− qb−c+1
, (9.14)

where (cf. Figure 17, right)

a := yn−1(t−)− y′n(t−)− 1, b := y′n(t−)− yn+1(t−)− 1, c := yn(t)− yn+1(t)− 1. (9.15)

The rate (9.14) is a piecewise constant function of the time t, and the rate changes whenever
one of the particles yn−1, yn, or yn+1 makes a jump. The particle y′n is blocked from jumping
up by yn−1, i.e. rate→n;αn−1,αn

= 0, when a = 0. The particle y′n is pushed up by a jump of yn,
i.e. rate→n;αn−1,αn

= +∞, when c = b + 1. The blocking and pushing mechanisms are similar to
the discrete time ones from Section 8.3. See Figure 22 for an illustration.

t
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b c

Figure 22: The process H̃→n of rewriting history from past to future for the continuous time
q-TASEP and the parameter swap αn−1 ↔ αn. The allowed chamber for the new trajectory
y′n(t) is shaded. The quantities (9.15) indicated in the figure for a particular time interval are
equal to a = 1, b = 4, c = 3 so that the jump rate (9.14) at the indicated time is equal to
(αn−1 − αnq)(1− q)(1− q5)/(1− q2).

The process H̃→n produces a coupling of the trajectories of the q-TASEPs in which speeds
differ by the swap αn−1 ↔ αn. Recall the notation before Proposition 9.2. The process x(t) is
the continuous time q-TASEP started from a fixed initial configuration x(0) ∈ X and evolves with
the particle speeds α so that αn−1 > αn, Also, the process y(t) is the continuous time q-TASEP
started from the random initial condition δx(0)P̃

(n) and evolves with the particle speeds σn−1α.

Proposition 9.4. Fix n ≥ 1. Given the trajectories of the particles yj(t), j = n − 1, n, n +
1, in {y(t)}t≥0, replace the old trajectory yn(t) by the new one y′n(t) constructed from the
process H̃→n started from y′n(0) = xn(0). Then, the resulting trajectory of the whole process
{y1(t), . . . , yn−1(t), y′n(t), yn+1(t), . . .}0≤t≤M is equal in distribution with the trajectory of the pro-
cess {x(t)}0≤t≤M.
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Proof. This statement is also a continuous time limit of the general Theorem 7.9 and Corol-
lary 7.11, as it was for Proposition 9.2.

Remark 9.5 (TASEP specialization of H̃→n ). The q-TASEP turns into the TASEP when q = 0,
and the dynamics H̃→n simplifies in that case. Namely, the blocking and pushing mechanisms
stay the same, and the jump rates (9.14) become

rate→n;αn−1,αn

∣∣∣
q=0

= αn−1 − αn1b=c. (9.16)

Note that here the meaning of b, c differs from that in (9.13), as the process evolves forward in
time t instead of backwards in time. Thus, the process y′n(t) is a Poisson random walk in the
chamber yn(t) ≤ y′n(t) < yn−1(t) running in forward in time and jumping up with rate αn−1 in
the bulk and with rate αn−1 − αn at the bottom boundary of the chamber.

Clearly, Proposition 9.4 holds when q = 0 for the process H̃→n with the jump rates (9.16). The
case n = 1 of this proposition with q = 0 immediately implies Theorem 1.3 from the Introduction.

10 Limit of rewriting history processes to equal particle speeds

In this section, we obtain the limits of the rewriting history processes from Section 9 as the
particle speeds αi become equal. The corresponding rewriting history processes are powered by
the independent bijectivisation for the intertwining relation from Theorem 5.6.

10.1 Space of q-TASEP trajectories

Markov operators for rewriting history, as well as their limits which are continuous time Markov
semigroups, act on the space of continuous time trajectories which we now describe.

Definition 10.1. Let X[0,M] be the space of trajectories of the continuous time q-TASEP over
time 0 ≤ t ≤ M. By definition, this space consists of trajectories x = {x(t)}0≤t≤M satisfying the
following conditions:

• For all t we have x(t) ∈ X (recall Definition 2.3).

• There exists N such that xn(t) = −n for all n > N and 0 ≤ t ≤ M.

• The trajectory of each particle xn(t) is weakly increasing, piecewise constant, and makes in-
crements of size 1.5

• At any time moment 0 ≤ t ≤ M, there is at most one such increment.

For each x ∈ X[0,M], we associate the finite set Tx ⊂ (0,M) of all t at which some particle has an
increment. The space X[0,M] has a natural topology in which x and x′ are close iff x(0) = x′(0),
x(M) = x′(M), all particles make all of their increments in the same order, and the increments’
times Tx, Tx′ are close in the corresponding finite-dimensional space. In this topology, X[0,M] has
countably many connected components each of which may be identified with an open subset of
Rd for a suitable d.

5The word jump refers to jumps under continuous time Markov processes on spaces of trajectories, throughout
the current Section 10. When a particle in a given trajectory changes its position (which is a piecewise constant
function of t), we refer to this as an increment of this particle’s coordinate.
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Markov operators Ξ̃ on X[0,M] which we consider in the current Section 10 can map a tra-
jectory x to a random new trajectory x′ such that Tx′ = (Tx \ T−) ∪ T+. That is, Ξ̃ removes a
random subset T− ⊂ Tx of the existing increment times, and adds random new increment times
belonging to T+. The new increment times belong to continuous intervals, and are chosen ran-
domly from probability densities with respect to the Lebesgue measure. Therefore, the operator
Ξ̃ is determined by the transition densities

Ξ̃(x, x′ + dT+)

dT+
, (10.1)

which also incorporate the probabilities for the removed increment times.

10.2 Slowdown operator for the q-TASEP

Assume now that the q-TASEP particle speeds are

αi = ri, i ∈ Z≥0, (10.2)

with 0 < r < 1. Taking r → 1 leads to equal particle speeds. We consider this limit below in
Section 10.3.

Recall from Section 5.3 that we denote the continuous time Markov semigroup of the q-TASEP
with speeds (10.2) by {T̃ qT

r (t)}t∈R≥0
, and the Markov shift operator for this process by B̃qT

r . All
these operators act on the space X of particle configurations. The (iterated) intertwining relation
reads

T̃ qT
r (t)

(
B̃qT

r

)m
=

(
B̃qT

r

)m
T̃ qT
r (rm t), (10.3)

where t ∈ R≥0 and m ∈ Z≥1 are arbitrary.

The action of B̃qT
r is, by definition, the sequential application of the Markov swap operators

(denote them by P̃
(0,n)
r ) over n = 1, 2, . . ., see (4.6). Each swap operator P̃

(0,n)
r acts by randomly

moving the particle xn backwards and depends on the parameter αn/α0 = rn. Additionally, each

swap operator P̃
(0,n)
r gives rise to two rewriting history processes which we denote by H̃←α0,αn

=

H̃←1,rn and H̃→α0,αn
= H̃→1,rn , see Section 9.2, by the independent bijectivisation. Note that these

processes depend not only on the ratio rn = αn/α0 but, also, on both these parameters separately,
see (9.10) and (9.14). In Sections 10.2 and 10.3, we focus on the processes H̃←α0,αn

of rewriting

history from future to past, and consider the processes H̃→α0,αn
below in Section 10.4.

Let us describe the slowdown Markov operators Ξ̃←m,r on the space X[0,M] (Definition 10.1).

Definition 10.2. Let x = {x(t)}0≤t≤M ∈ X[0,M] and m ∈ Z≥1 be fixed. The action of Ξ̃←m,r on

x is as follows. First, apply the Markov shift operator B̃qT
r to x(M) and denote the resulting

random configuration by x′(M). Then, apply the rewriting history Markov operator H̃←rm,rm+n ,

sequentially for n = 1, 2, . . ., to replace the old trajectory {xn(t)}0≤t≤M by the random new
trajectory {x′n(t)}0≤t≤M given the following data:

{x′n−1(t)}0≤t≤M, x′n(M), {xn+1(t)}0≤t≤M
with x′n−1(t) = +∞ for n = 1, by agreement. The updates, for n = 1, 2, . . ., eventually terminate

since xn(t) = −n for n > N if N is large enough (recall that this is the property of X[0,M]). The
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new random trajectory x′ = {x′(t)}0≤t≤M is, by definition, the result of applying the Markov
operator Ξ̃←m,r to x.

Let us make two comments regarding Definition 10.2. First, the new initial configuration x′(0)
in x′ is random and, for m = 1, it is distributed as δx(0)B̃

qT
r , due to the intertwining relation.

Second, there is an important difference between H̃←rm,rm+n and Ξ̃←m,r. The former assumes that

the new terminal configuration x′n(M) is fixed and, in the latter, the terminal configuration evolves
randomly. We use different letters for these operators because of this.

We now describe the action of the operators Ξ̃←i,r on the q-TASEP measures on trajectories.
Let x = {x(t)}0≤t≤M be the trajectory of the continuous time q-TASEP with particle speeds
(10.2) started from a fixed initial configuration x(0). Fix m ∈ Z≥0, and let y = {y(t)}0≤t≤M
be the continuous time q-TASEP with the same speeds (10.2) but, instead, with random initial
configuration δx(0)

(
B̃qT

r

)m
.

Proposition 10.3. Given the above notation, apply the Markov operators Ξ̃←0,r, Ξ̃
←
1,r, . . . , Ξ̃

←
m−1,r,

in this order, to the q-TASEP trajectory x. Then, the resulting trajectory has the same distribution
as {y(rmt)}0≤t≤M.

Note that the operators Ξ̃←i,r “slow down” the time evolution of q-TASEP by shrinking the

time variable. We call Ξ̃←i,r the slowdown operators on trajectories because of this.

Proof of Proposition 10.3. The result follows by iterating Proposition 9.2 over all n and, then, re-
peatingm times. The result, after the application of the composition of the operators Ξ̃←0,rΞ̃

←
1,r . . . Ξ̃

←
m−1,r,

is the q-TASEP with speeds (rm, rm+1, . . .) and initial configuration δx(0)
(
B̃qT

r

)m
. Additionally,

note that multiplying all speeds by rm is the same as slowing down the time by the overall factor
rm since our q-TASEP runs in continuous time. multiplying all speeds by rm is the same as
slowing down the time by the overall factor rm. Moreover, this does not affect the random initial
configuration y(0). This completes the proof.

10.3 Slowdown dynamics for the homogeneous q-TASEP

Let us now take the limit as in Section 5.4,

r ↗ 1, m = ⌊(1− r)−1τ⌋, (10.4)

where τ ∈ R≥0 is the continuous time parameter. In this limit, the q-TASEP becomes homoge-

neous with particle speeds αi = 1 for all i, and the operators
(
B̃qT

r

)m
turn into the continuous

time Markov semigroup {B̃qT(τ)}τ∈R≥0
on X. This semigroup corresponds to the backwards

q-TASEP dynamics [Pet21]; we recalled the definition in Section 5.4. Our aim now is to extend
the semigroup BqT(τ) on X to continuous time Markov dynamics on the space X[0,M] of trajec-
tories by taking the limit (10.4) of the slowdown operators. The latter dynamics are denoted
by Ξ̃←(τ). An interesting feature of Ξ̃←(τ), compared to BqT(τ), is that, while the former is a
time-inhomogeneous Markov process (its transitions depend on the time variable), the latter is
time-homogeneous. See Remark 10.6 below for more discussion.

Let us first define the dynamics Ξ̃←(τ). Then, in Proposition 10.5 below, we show that these
dynamics are the desired r → 1 limit of the sequential application of the operators Ξ̃←i,r.
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Definition 10.4. Fix M ∈ R≥0. The continuous time slowdown Markov dynamics Ξ̃←(τ) acting
on trajectories x = {x(t)}0≤t≤M ∈ X[0,M] possesses two sources of independent jumps and, also, a
random jump propagation mechanism. Almost surely there are only finitely many independent
jumps in finite time. The independent jumps are as follows:

• (terminal jumps) The terminal configuration x(M) in x evolves according to the backwards
q-TASEP B̃qT(τ). Recall, from Section 5.4, that this means that each particle xn(M), n =
1, 2, . . ., jumps down to a new location x′n(M), where xn+1(M) < x′n(M) < xn(M), with rate

n(q; q)x′
n(M)−xn+1(M)−1

(1− qxn(M)−x′
n(M))(q; q)xn(M)−xn+1(M)−1

.

• (bulk jumps) For all 0 < t < M, each particle xn(t) can jump down by 1 according to the
following mechanism. Let

Tx = {0 = t0 < t1 < t2 < . . . < tk < tk+1 = M}.
For n ≥ 1 and 1 ≤ j ≤ k + 1, attach to each segment [xn(tj−1), xn(tj)] an independent
exponential clock of (time-inhomogeneous) rate

(xn(tj)− xn(tj−1))
ne−τ (1− qxn−1(t)−xn(t))(1− qxn(t)−xn+1(t)−1)

1− q
, where t ∈ (tj−1, tj).

(10.5)
Here τ is the time variable in the dynamics Ξ̃←(τ). When the clock rings, place a uniformly
random point t∗ ∈ (tj−1, tj). Then, let the trajectory of xn make a new increment at t∗, so that
x′n(t∗) = xn(t∗) − 1 and x′n(t∗+) = xn(t∗+). Note that if xn(t∗) = xn+1(t∗) + 1, the particle
xn(t∗) is blocked from jumping down, and the rate (10.5) vanishes, as it should.

Let us now describe the jump propagation mechanism. Assume that a particle xn(t∗), t∗ ∈
(0,M], has jumped down to x′n(t∗) as described above. We either have a terminal jump with
t∗ = M or a bulk jump with a random t∗ < M. The jump then instantaneously propagates
left according to a, backwards in time, random walk in the chamber xn(t) ≥ x′n(t) > xn+1(t),
0 ≤ t ≤ t∗. This random walk makes jumps down by 1 in continuous time t with rate

e−τ (1− qb−c)(1− qa+b+1−c)(1− qc)

1− qb−c+1
, (10.6)

where a, b, c are given in (9.11). Note that (10.6) vanishes for b = c. This means that, during
the instantaneous jump propagation, x′n(t) either joins the old trajectory of xn and continues
to follow it until t = 0, or x′n(t) modifies the initial configuration x(0). In particular, the
new trajectory will not deviate from the old trajectory once it has deviated and joined the old
trajectory. The trajectories of all other particles xl, l ̸= n, do not change during this instantaneous
jump propagation.

We refer to Figure 23 for an illustration of the dynamics Ξ̃←(τ).

Proposition 10.5. Fix τ ∈ R≥0. Then, the limit

limr↗1 Ξ̃
←
0,rΞ̃

←
1,r . . . Ξ̃

←
m−1,r = Ξ̃←(τ), with m = ⌊(1− r)−1τ⌋,

converges in the sense of the transition densities (10.1) associated to Markov operators on X[0,M].
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Figure 23: The slowdown dynamics Ξ̃←(τ) acting on trajectories. In the figure there are four
possible transitions: one initiated at t = M by the backwards q-TASEP B̃qT, and three others
initiated by bulk independent jumps. Note that one of the jump propagations modifies the initial
configuration x(0).

Proof. Let m = ⌊(1− r)−1τ⌋, and consider the action of the slowdown operator Ξ̃←m,r on the n-th

particle. By Theorem 5.6, the action of the terminal jumps by B̃qT(τ) follows. In particular, we
note that the events of a terminal jump has probability of order O(1 − r) as r → 1. It remains
to consider bulk jumps and jump propagation.

Recall that H̃←rm,rm+n replaces the old trajectory xn(t) by a random walk x′n(t) in reverse

continuous time from M to 0 which makes steps down by 1 at rates rate←n;rm,rm+n , see (9.10).

If b = c, the rate rate←n;rm,rm+n is of order O(1 − r) as r → 1. Otherwise, if b > c, the rate

rate←n;rm,rm+n is of order O(1) as r → 1.

Note that only one event with probability O(1 − r) may happen in a single moment of the
new continuous time τ in the Poisson-type limit for Ξ̃←0,rΞ̃

←
1,r . . . Ξ̃

←
m−1,r as r → 1. It is either a

terminal jump or a bulk jump. Recall that a terminal jump happens according to B̃qT(τ).
For bulk jumps, observe that

rate←n;rm,rm+n =
ne−τ (1− qa+1)(1− qc)

1− q
(1− r) +O(1− r)2,

where a, c are given in (9.11). Therefore, during the continuous time dτ , on a segment of length
dt there is a new independent bulk jump with small probability

ne−τ (1− qxn−1(t)−xn(t))(1− qxn(t)−xn+1(t)−1)
1− q

dτ dt. (10.7)

Moreover, a bulk jump can happen on at most one interval. Averaging (10.7) over the segment
[xn(tj−1), xn(tj)] where this jump happens immediately leads to the desired jump rates (10.5).

Finally, once an event with probability O(1− r) occurred for a particle xn at t = t∗, the rest
of the xn’s trajectory to the left of t∗ needs to be instantaneously modified. This modification
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happens according to the random walk H̃←rm,rm+n . This leads to further nontrivial jumps down
by 1 when b > c. In the case that the new trajectory joins the old trajectory after a terminal or
bulk jump, we will have b = c and the probability that the new trajectory jumps down by one
again is of order O(1− r), with an overall probability of O((1− r)2) for this sequence of events.
Thus, the new trajectory will not deviate from the old trajectory after deviating once and joining
the old trajectory. Then, in the limit as r → 1, this jump propagation turns into the Poisson
random walk with rates (10.6). This completes the proof.

Remark 10.6. Notice that the time inhomogeneity in Ξ̃←(τ) is only present in the bulk jumps
and jump propagation, but not in the terminal jumps. From the proof of Proposition 10.5, this
is because the rates of bulk jumps for xn depend on both parameters αm = rm, αm+n = rm+n

before the r → 1 limit, while for the terminal jumps they only depend on the ratio αm+n/αm =
αn/α0 = rn.

From Propositions 10.3 and 10.5 we immediately get the following slowdown action of the
dynamics Ξ̃←(τ) on trajectories of the homogeneous continuous time q-TASEP with all particles
speeds equal to one:

Proposition 10.7. Fix τ ∈ R≥0, and let x = {x(t)}0≤t≤M and {y(t)}0≤t≤M be the homogeneous
continuous time q-TASEPs started from a fixed initial configuration x(0) and from the random
initial configuration δx(0)B̃

qT(τ), respectively. Apply Ξ̃←(τ) to x, that is, run the slowdown dy-
namics (Definition 10.4) for time τ started from x. Then, the resulting random trajectory is
distributed as {y(e−τ t)}0≤t≤M.

10.4 Speedup dynamics for the q-TASEP with step initial configuration

The slowdown process Ξ̃←(τ) constructed above in Section 10.3 provides a bijectivisation of the
intertwining relation of Theorem 5.6,

T̃ qT(t)B̃qT(τ) = B̃qT(τ) T̃ qT
(
e−τ t

)
. (10.8)

One can informally say that the slowdown process acts on identity (10.8) from the left-hand side
to the right-hand side, see Proposition 10.7. The slowdown process contains, in particular, the
backwards q-TASEP B̃qT(τ) running on the terminal configuration x(M) of the trajectory. In
this subsection we discuss a bijectivisation of (10.8) in another direction, from right to left, by
means of a speedup process Ξ̃→(τ). To simplify notation and formulations, we only consider the
action of the speedup process on trajectories with the step initial configuration

y(0) = xstep = {. . . ,−3,−2,−1}.

Remark 10.8. In the general case, the initial configuration y(0) must be random with distribu-
tion δx(0) B̃

qT(τ) where x(0) ∈ X is fixed. In particular, the speedup process itself would need as
its input a deterministic sequence of down particle jumps at the trajectory’s initial configuration.
That is, such a sequence would record the transition from x(0) to y(0) during time τ . These
deterministic jumps can be easily incorporated into the definitions and the results given below in
the current Section 10.4, similarly to the second part of Theorem 7.9 and Proposition 9.4. How-
ever, for simplicity, we omit the discussion of this more general case and focus only on trajectories
with the step initial configuration.
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The Markov operator Ξ̃→(τ) of the speedup process, on trajectories with the step initial
configuration, is constructed as the r ↗ 1 limit of the sequential application of the corresponding
speedup operators Ξ̃→0,rΞ̃

→
1,r . . . Ξ̃

→
m−1,r, where m = ⌊(1 − r)−1τ⌋. In contrast with the slowdown

operators (Definition 10.2), the action of Ξ̃→i,r is a sequential application of the history rewriting

processes H̃→
r−i;r−i+n , where n decreases from a suitably largeN down to 1. Here, N depends on the

trajectory y = {y(t)}0≤t≤M ∈ X[0,M] to which Ξ̃→i,r is applied. More precisely, N is determined so
that yk(t) = −k for all t ∈ [0,M] and k ≥ N−1, see Definition 10.1. Similarly to Proposition 10.3,
one can check that the action of Ξ̃→0,rΞ̃

→
1,r . . . Ξ̃

→
m−1,r on a trajectory y = {y(t)}t≥0 of the q-TASEP

with particle speeds (1, r, r2, . . .) results in a trajectory of the q-TASEP with particle speeds
(r−m, r−m+1, r−m+2, . . .); the initial configuration is xstep in both processes. Equivalently, one
can say that the action of the Markov operator Ξ̃→0,rΞ̃

→
1,r . . . Ξ̃

→
m−1,r speeds up the time t in the

q-TASEP with rates (1, r, r2, . . .) by the factor r−m > 1.
The r ↗ 1 limit of the operators Ξ̃→0,rΞ̃

→
1,r . . . Ξ̃

→
m−1,r in the sense of the transition densities

(10.1) is obtained very similarly to Section 10.3, with an additional simplification coming from
the step initial configuration. Therefore, here we will only define the resulting continuous time
speedup process Ξ̃→(τ), and formulate an analogue of Proposition 10.7.

Definition 10.9. Fix M ∈ R≥0. The continuous time speedup Markov dynamics Ξ̃→(τ) acting
on trajectories y = {y(t)}0≤t≤M ∈ X[0,M] with y(0) = xstep possesses one source of independent
jumps (the bulk jumps), and a mechanism of random jump propagation. Let

Ty = {0 = t0 < t1 < . . . < tk < tk+1 = M}.

For n ≥ 1 and 1 ≤ j ≤ k+1, attach to each segment [yn(tj−1), yn(tj)] an independent exponential
clock of (time-inhomogeneous) rate

(yn(tj)− yn(tj−1))
neτ (1− qyn(t)−yn+1(t))(1− qyn−1(t)−yn(t)−1)

1− q
, where t ∈ (tj−1, tj). (10.9)

Here, τ is the time variable in the dynamics Ξ̃→(τ). When the clock rings, place a uniformly
random point t∗ ∈ (tj−1, tj), and let the trajectory of yn make a new increment at t∗. In particular,
y′n(t∗) = yn(t∗)+ 1 and y′n(t∗−) = yn(t∗−). Note that if yn(t∗) = yn−1(t∗)− 1, the particle yn(t∗)
is blocked from jumping up, and the rate (10.9) vanishes, as it should. Almost surely there are
only finitely many independent jumps in finite time.

Let us now describe the jump propagation. If a particle yn(t∗) has jumped up to y′n(t∗), then
the new trajectory of y′n coincides with that of yn for t < t∗. To the right of t∗, instantaneously
(in τ) continue the new trajectory y′n according to a Poisson simple random walk in forward time
t in the chamber yn(t) ≤ y′n(t) < yn−1(t) which makes jumps up by 1 in continuous time t with
rate

eτ (1− qb−c)(1− qa)(1− qb+1)

1− qb−c+1
, (10.10)

where a, b, c are given in (9.15). During this instantaneous jump propagation, y′n(t) either joins the
old trajectory of yn and continues to follow it till t = M, or modifies the terminal configuration
y(M). In particular, the new trajectory will not deviate from the old trajectory once it has
deviated and joined the old trajectory. The trajectories of all other particles yl, l ̸= n, are no
affected by this instantaneous jump propagation.
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The jump rates (10.9) and (10.10) in the speedup process Ξ̃→(τ) are obtained in the r → 1
expansion of the jump rates (9.14) (with αn−1 = r−m, αn = r−m+n) for b = c and b > c,
respectively. The argument here is very similar to the proof of Proposition 10.5.

The speedup process acts on trajectories of the homogeneous q-TASEP with the step initial
configuration as follows:

Proposition 10.10. Let y = {y(t)}t≥0 be the homogeneous continuous time q-TASEP started
from xstep. Let τ,M ∈ R≥0. Apply the speedup operator Ξ̃→(τ) to y on [0,M]. Then, the resulting
random trajectory is distrubuted as {y(eτ t)}0≤t≤M.

10.5 Slowdown and speedup dynamics for the homogeneous TASEP

The slowdown and speedup processes Ξ̃←(τ) and Ξ̃→(τ) for the homogeneous TASEP, with
particle speeds αi = 1 for all i, are obtained by setting q = 0 in the processes from Definitions 10.4
and 10.9, respectively. This greatly simplifies the dynamics. In this subsection we provide the
necessary definitions.

We start with the slowdown process Ξ̃←(τ) acting on the space of trajectories X[0,M] (Defini-
tion 10.1), where M ∈ R>0 is fixed:

Definition 10.11. The continuous time slowdown Markov process {Ξ̃←(τ)}0≤τ≤τ0 for TASEP
acts on a trajectory x = {x(t)}0≤t≤M ∈ X[0,M] as follows:

• (terminal jumps) Run the backwards Hammersley dynamics at the terminal configuration x(M).
In particular, each particle xn(M), n = 1, 2, . . ., jumps down to a new location x′n(M), with
xn+1(M) < x′n(M) < xn(M) and rate n per available location to land. This process is time-
homogeneous in τ , and it is called the backwards Hammersley process.

• (bulk jumps) Take an independent two-dimensional Poisson process P[n] in [0,M] × [0, τ0], for
each n ≥ 1, with inhomogeneous rate e−τ . As τ increases from 0 to τ0, each point (t∗, τ∗) of
P[n] generates a jump down by 1 of the trajectory {xn(t)}0≤t≤M at t = t∗. This means that
we set x′n(t∗) = xn(t∗) − 1 and x′n(t∗+) = xn(t∗+) if xn(t∗) > xn+1(t∗) + 1. Otherwise, if
xn(t∗) = xn+1(t∗) + 1, the jump down is blocked, and the trajectory x is not changed.

• (jump propagation) Replace, instantaneously at the same moment τ = τ∗, the old trajectory
of xn by the new one, x′n, for all t ≤ t∗, where t∗ ≤ M is the time a terminal or a bulk jump
which occurred. The new trajectory x′n starts from x′n(t∗) and evolves in backwards time t
in the chamber xn(t) ≥ x′n(t) > xn+1(t), 0 ≤ t ≤ t∗. The dynamics of x′n(t) is that of the
Poisson simple random walk which makes jumps down at rate e−τ∗ , and gets absorbed by the
top wall xn(t) of the chamber once it reaches it. In other words, x′n(t) either joins the old
trajectory of xn and continues to follow it till t = 0, or it modifies the initial configuration
x(0). The trajectories of all other particles xl, l ̸= n, do not change during this instantaneous
jump propagation.

The slowdown process Ξ̃←(τ) satisfies the q = 0 version of Proposition 10.7, that is, where
the q-TASEP is replaced by the TASEP.

Let us now describe the speedup process for TASEP. As in Section 10.4, we restrict attention
only to trajectories y = {y(t)}0≤t≤M ∈ X[0,M] with the step initial configuration y(0) = xstep (see
Remark 10.8 for more discussion). The q = 0 speedup process is given as follows:
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Definition 10.12. The continuous time process Ξ̃→(τ) for TASEP acts on trajectories y =
{y(t)}0≤t≤M with the step initial configuration as follows:

• (bulk jumps) Take an independent two-dimensional Poisson process P[n] in [0,M] × [0, τ0], for
each n ≥ 1, of inhomogeneous rate eτ . As τ increases from 0 to τ0, each point (t∗, τ∗) of P[n]

generates a jump up by 1 of the trajectory {tn(t)}0≤t≤M at t = t∗. This means that y′n(t∗) =
yn(t∗) + 1 and y′n(t∗−) = yn(t∗−) unless this jump is blocked, when yn(t∗) = yn−1(t∗)− 1). In
the case of blocking, the trajectory of yn is not changed.

• (jump propagation) Replace, instantaneously at the same moment τ = τ∗, the trajectory of
yn with a new trajectory y′n. If a particle yn(t∗) has jumped up by 1 to y′n(t∗), then the new
trajectory of y′n coincides with that of yn for t < t∗. To the right of t∗, continue the new
trajectory y′n according to a Poisson simple random walk in forward time t in the chamber
yn(t) ≤ y′n(t) < yn−1(t). The random walk makes a jump up by 1 in continuous time t at rate
eτ∗ and gets absorbed by the bottom wall yn(t) of the chamber once it reaches it. In particular,
y′n either joins the old trajectory of yn and continues to follow it till t = M, or it modifies the
terminal configuration y(M). The trajectories of all other particles yl, l ̸= n, are no affected
by this instantaneous jump propagation.

The process Ξ̃→(τ) satisfies the q = 0 version of Proposition 10.10, that is, the same statement
where the word “q-TASEP” is replaced by “TASEP”.

The action of the speedup dynamics on the first particle produces an interesting coupling
between standard Poisson processes on the positive half-line with different slopes (here by “slope”
we mean the slope of the counting function of the Poisson process, which is usually referred to as
“rate”, “intensity”, or “density”). First, observe that the trajectory {y1(t)}t≥0 of the first TASEP
particle is the continuous time Poisson simple random walk with slope 1. By Proposition 10.10 for
q = 0, after running the speedup process Ξ̃→ for time τ > 0, the resulting trajectory {y′1(t)}t≥0
of the first particle is the continuous time Poisson simple random walk with slope eτ . Moreover,
note that the trajectory of the first particle evolves independently from all other particles, under
the speedup dynamics. This independence is a result of setting q = 0, since for q > 0 the jump
rates in Ξ̃→ depend on the second trajectory y2(t).

Let us now describe the evolution of the trajectory for the first particle. We may assume that
M = +∞ and give the description for the full trajectories, that is, where t ∈ [0,+∞). Change
the time of the speedup process as τ̂ = eτ − 1. Then, the two-dimensional Poisson process P[1]

of rate eτ , with 0 ≤ τ ≤ τ0, turns into the homogeneous two-dimensional Poisson process P̂[1] of
rate 1, with 0 ≤ τ ≤ τ̂0 = eτ0 − 1.

For each point (t∗, τ̂∗) of P̂[1], set y
′
1(t∗) = y1(t∗)+1. Then, instantaneously replace a piece of

the trajectory of the first particle for t ≥ t∗ by an independent Poisson random walk in continuous
time t of slope τ̂∗ + 1. In particular, y′1 is started from y′1(t∗), and the new walk continues until
it reaches the old trajectory of y1 at some time t◦ ∈ [0,+∞]. Note that the case t◦ =∞ happens
with positive probability. Then, if t◦ =∞, we independently resample the whole trajectory to the
right of t∗ by a trajectory with the new slope (jump rate) τ̂∗+1. We may think that each jump of
the trajectory is an instantaneous “avalanch” whose slope τ̂∗+1 grows with time. This resembles
the avalanch processes in, e.g., [PPH03], [LD22], but we will not explore this connection further
in the present paper. See Figure 24 for an illustration of the process.
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Proposition 10.10 for q = 0 immediately implies the following coupling of Poisson processes
with different slopes:

Proposition 10.13. Take a Poisson simple random walk of slope 1. Apply the dynamics on
single-particle trajectories described above, evolving in continuous time τ̂ . Then, the distribution
of the resulting trajectory at each time τ̂ is the Poisson simple random walk of slope τ̂ + 1.

0

t∗,1

t◦,1

t∗,2

t◦,2

· · ·

t∗,3
y1(t)

Figure 24: Three consecutive jumps in the process Ξ̃→ acting on the Poisson simple random walk
y1(t). Each i-th jump originates from t∗,i, which are the horizontal coordinates of the points of

a two-dimensional Poisson process P̂[1], and terminates at t◦,i ∈ [0,+∞]. One can say that the
trajectory grows by instantaneous “avalanches”.

We obtain a Markov chain which preserves the Poisson process on [0, 1] as a corollary. The
construction of this Markov process is based on the fact that, after one jump in the process Ξ̃→,
we can dilate the horizontal line to decrease the slope of the Poisson simple random walk back
to slope 1.

Definition 10.14 (Markov chain preserving the Poisson random walk on [0, 1]). Let y1(t) be
a trajectory of the Poisson random walk of slope 1 on [0, 1] with y1(0) = 0. Independently,
sample two random variables: t∗ ∈ [0, 1] with uniform distribution, and ζ > 0 with exponential
distribution with parameter 1.

1. If t∗ > 1/(1+ ζ), do nothing and denote Y1(t) = y1(t). This event happens with probability
1− eΓ(0, 1) ≈ 0.4, where Γ(0, 1) =

∫∞
1 e−tt−1dt is the incomplete Gamma function.

2. If t∗ ≤ 1/(1+ζ), start a new independent Poisson random walk y′1(t) of slope ζ+1 from the
location (t∗, y1(t∗) + 1) and running in forward time t ∈ [t∗, 1/(1+ ζ)]. When the new walk
reaches the old trajectory of y1(t) or t reaches the coordinate 1/(1 + ζ), stop the update.
Denote the resulting trajectory by Y1(t), 0 ≤ t ≤ 1.

Forget the configuration of Y1(t) for t ∈ (1/(1+ ζ), 1] after the update in both cases. Then, dilate
the segment [0, 1/(1 + ζ)] by means of multiplication by 1 + ζ. In particular, the result of the
application of the Markov transition operator is, by definition, the trajectory Z1(t) = Y1(t/(1+ζ)),
0 ≤ t ≤ 1.

Corollary 10.15. Let {y1(t)}0≤t≤1, be a trajectory of the Poisson simple random walk on [0, 1]
with y1(0) = 0. Then, the trajectory {Z1(t)}0≤t≤1 described in Definition 10.14 has the same
distribution as {y1(t)}0≤t≤1.
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To the best of our knowledge, Proposition 10.13 and Corollary 10.15 are new. It is possible
to isolate the proof of Proposition 10.13 from the rest of the paper. That proof would essen-
tially follow by iterating the Yang-Baxter equation and taking Poisson-type limits. It would be
interesting to find direct proofs of Proposition 10.13 and Corollary 10.15 which would not rely
on discrete models and Poisson limits.
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