
The Annals of Probability
2019, Vol. 47, No. 5, 2686–2753
https://doi.org/10.1214/18-AOP1315
© Institute of Mathematical Statistics, 2019
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We consider the N -particle noncolliding Bernoulli random walk—a dis-
crete time Markov process in Z

N obtained from a collection of N inde-
pendent simple random walks with steps ∈ {0,1} by conditioning that they
never collide. We study the asymptotic behavior of local statistics of this pro-
cess started from an arbitrary initial configuration on short times T � N as
N → +∞. We show that if the particle density of the initial configuration
is bounded away from 0 and 1 down to scales D � T in a neighborhood
of size Q � T of some location x (i.e., x is in the “bulk”), and the initial
configuration is balanced in a certain sense, then the space-time local statis-
tics at x are asymptotically governed by the extended discrete sine process
(which can be identified with a translation invariant ergodic Gibbs measure
on lozenge tilings of the plane). We also establish similar results for certain
types of random initial data. Our proofs are based on a detailed analysis of the
determinantal correlation kernel for the noncolliding Bernoulli random walk.

The noncolliding Bernoulli random walk is a discrete analogue of the
β = 2 Dyson Brownian motion whose local statistics are universality gov-
erned by the continuous sine process. Our results parallel the ones in the
continuous case. In addition, we naturally include situations with inhomoge-
neous local particle density on scale T , which nontrivially affects parameters
of the limiting extended sine process, and in a particular case leads to a new
behavior.
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1. Introduction. Our main object is a discrete time Markov chain in the N -
dimensional lattice Z

N which is called the noncolliding Bernoulli random walk.
At N = 1, by a single-particle chain, we mean the simple random walk on Z which
at each time step jumps by 1 in the positive direction with probability β ∈ (0,1), or
stays put with the complementary probability 1−β . For N > 1, we consider N in-
dependent identical particles on Z evolving according to the single-particle chain,
and condition them to never collide (i.e., never occupy the same location of Z at
the same time). Note that the condition has probability zero and, therefore, needs
to be defined through a limit procedure which is performed in, for example, [46]
(based on a classical result of [40]). The result is a time and space homogeneous
Markov chain �X(t) living in the Weyl chamber

(1.1) W
N = {

(x1, . . . , xN) ∈ Z
N : x1 < x2 < · · · < xN

}
,
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FIG. 1. Noncolliding Bernoulli random walk of N = 4 particles started from the configuration
�X(0) = (1,3,4,6) ∈W

4.

with transition probabilities

P
( �X(t + 1) = �x′ | �X(t) = �x)

=
⎧⎪⎨
⎪⎩

V(�x′)
V(�x)

β |�x′|−|�x|(1 − β)N−|�x′|+|�x| if x′
i − xi ∈ {0,1} for all i,

0 otherwise,
(1.2)

where for �x = (x1, . . . , xN) we denote |�x| = x1 + · · · + xN and

(1.3) V(�x) = ∏
1≤j<i≤N

(xi − xj ).

We refer to Figure 1 for an illustration.
If instead of the simple random walk we start from the Brownian motion, then

the same conditioning would lead to the celebrated (β = 2) Dyson Brownian mo-
tion, which plays a prominent role in the random matrix theory [1, 25, 30].3 There-
fore, the noncolliding Bernoulli random walk can be viewed as a discrete version
of the Dyson Brownian motion. There exists also an intermediate semi-discrete
version related to the Poisson process; see Appendix A.

3The β = 2 Dyson Brownian motion is naturally associated to the Gaussian Unitary Ensemble
(GUE)—one of the most classical objects in the study of random matrices. There is an extension
of the ensemble and of the Dyson Brownian motion depending on a continuous parameter β > 0
(sometimes referred to as the inverse temperature). The noncolliding Brownian motions correspond
to β = 2. The random-matrix parameter β has no connection to our β of Bernoulli random walk. It is
inevitable for us to use both betas, as the latter β is rooted in the traditional notation in the asymptotic
representation theory.
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On the other hand, the noncolliding Bernoulli random walk can be coupled with
a (2 + 1)-dimensional interacting particle system with local push/block interac-
tions [6]. The latter is linked to the totally asymmetric simple exclusion process
and its relatives and to random lozenge and domino tilings. We refer to [6, 7, 13,
51] for details.

From yet another side, fixed time distributions of �X(t) can be identified with
coefficients in decompositions of tensor products of certain representations of uni-
tary groups, which are of interest in the asymptotic representation theory; see Ap-
pendix B for details.

We concentrate on the local (“bulk”) limits of �X(T ) as both N and T tend to
infinity. More precisely, we assume that T � N , which implies that the global pro-
file �X(T ) is almost indistinguishable from the initial condition �X(0). On the other
hand, our main results, Theorems 2.7 and 2.10, show that under mild conditions
on �X(0) (see Assumptions 1, 2 in Section 2.3), the local characteristics of �X(T )

(such as, e.g., the asymptotic distribution of the distance between two adjacent par-
ticles) become universal: they depend on two real parameters which are computed
by explicit formulas involving �X(0).

In more detail, we prove that the one-dimensional point process describing the
particles of �X(T ) as T ,N → ∞ converges to the discrete sine process of [10] (we
recall its definition in Section 2.2). The two-dimensional point process describing
the behavior of { �X(T + t)}t (where t is kept finite as T → ∞) asymptotically
becomes the extended discrete sine process [55], which can also be identified with
a translation invariant ergodic Gibbs measure on lozenge tilings of the plane [43,
60].

As far as we know, in the discrete setting general results on the universal ap-
pearance of the discrete sine process were not available previously, and we are
aware only of [31] where a related theorem is proven for random lozenge tilings.
However, for specific examples (in our context this would mean considering very
special initial conditions �X(0) rather than general ones; note that the existing lit-
erature was mostly dealing with other, yet related discrete random systems) the
appearance of the extended discrete sine process was observed by many authors;
cf. [2, 9, 10, 16, 33, 38, 55, 56]. We expect that our results on local behavior of the
noncolliding Bernoulli random walk can serve as a step toward establishing more
general bulk universality results in discrete random systems.

Comparison with Dyson Brownian motion. In the continuous setting, the uni-
versal appearance of the continuous sine kernel process in bulk local limits of the
Dyson Brownian motion is relatively well understood. It was first conjectured by
Dyson [25] in the early 1960s that the universal statistics should already appear
after short times. The first mathematical results in this direction were developed
much later in [37], where the universal local behavior on large times was proven
(using the contour integral formulas of [17] as an important ingredient). For the
strongest results in this direction, see [59] and references therein.
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The rigorous treatment of the short times is even more recent, with the best
results appearing in [29, 47]. It should be noted that these results include cases
other than the GUE (β = 2) one, and do not rely on explicit formulas specific to
β = 2.

A detailed understanding of the bulk local behavior of the Dyson Brownian
motion became a crucial step toward establishing bulk universality of generalized
Wigner matrices and other random matrix ensembles; see [15, 29, 47], references
therein, and the review [30]. See also [63] for an alternative approach to bulk uni-
versality of random matrices.

From this point of view, our results are parallel to the β = 2 Dyson Brownian
motion developments as we prove a discrete analogue of the Dyson’s conjecture.
We also provide a generalization in a different direction and study the case when
the local density of particles is not restricted to be the Lebesgue measure (as was
usually assumed in the study of the Dyson Brownian motion), but can be quite
general instead. This leads to new phenomena; see the end of Section 2.4 for one
example.

Method. On the technical side, our approach starts from the double contour in-
tegral representation for the correlation kernel for the determinantal point process
of uniformly random Gelfand–Tsetlin patterns of [56] (see also [23, 49]). We find
a limit transition which turns these random Gelfand–Tsetlin patterns into �X(t),
and leads to formulas for the correlation functions of the latter process. These for-
mulas are then analyzed using the steepest descent method. For this, we develop
arguments working for general initial conditions �X(0) rather than specific ones,
and this requires a significant technical effort.

Outline. In Section 2, we formulate our main results and discuss their appli-
cations. In Section 3, we show how the noncolliding Bernoulli random walk can
be obtained via a limit transition from the ensemble of uniformly random lozenge
tilings of certain polygons. This leads to a double contour integral expression for
the correlation kernel of the noncolliding Bernoulli random walk. Sections 4, 5
and 6 form the main technical part of the work and are devoted to the asymptotic
analysis of the correlation kernel and of the noncolliding Bernoulli random walk.
In Section 7, we prove the remaining statements from Section 2 which deal with
various applications of our main bulk limit theorems.

We discuss degenerations of our kernel to the kernels for noncolliding Poisson
processes and for the Dyson Brownian motion with arbitrary initial configurations
in Appendix A. In Appendix B, we explain a representation-theoretic interpreta-
tion of discrete-space noncolliding random walks, and formulate a more general
conjecture.

2. Main results.

2.1. Determinantal structure. Our first result is a formula for the determinan-
tal correlation kernel of the noncolliding Bernoulli random walk. Recall that a par-
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ticle dynamics �X(t) is said to be a (dynamically) determinantal point process if its
space-time correlations are given by determinants of a certain kernel K(t, x; s, y):

P
(
the particle configuration �X(ti) on Z contains the point yi

for all i = 1, . . . , k
)

= det
[
K(tα, yα; tβ, yβ)

]k
α,β=1,(2.1)

for any collection of pairwise distinct space-time points (ti, yi) ∈ Z≥0 × Z, i =
1, . . . , k. In particular, when all ti are the same (and are equal to t), we get a
determinantal point process on Z with the kernel Kt(x;y) = K(t, x; t, y). General
details on determinantal point processes can be found in, for example, the surveys
[5, 34, 62].

THEOREM 2.1. The noncolliding Bernoulli random walk with parameter β ∈
(0,1) started from any initial configuration �X(0) = �a = (a1 < · · · < aN) ∈ W

N is
determinantal in the sense of (2.1), and its correlation kernel has the following
form for x1,2 ∈ Z, t1,2 ∈ Z≥1:4

KBernoulli
�a;β (t1, x1; t2, x2)

= 1x1≥x21t1>t2(−1)x1−x2+1

(
t1 − t2

x1 − x2

)

+ t1!
(t2 − 1)!

1

(2π i)2

∫ x2−t2+ 1
2 +i∞

x2−t2+ 1
2 −i∞

dz

∮
allw poles

dw
(z − x2 + 1)t2−1

(w − x1)t1+1

× 1

w − z

sin(πw)

sin(πz)

(
1 − β

β

)w−z N∏
r=1

z − ar

w − ar

.(2.2)

The z integration contour is the straight vertical line Re z = x2 − t2 + 1
2 traversed

upward, and the w contour is a positively (counterclockwise) oriented circle or a
union of two circles (this depends on the ordering of t1, x1, t2 and x2) encircling
all the w poles {x1 − t1, x1 − t1 +1, . . . , x1 −1, x1}∩ {a1, . . . , aN } of the integrand
(except w = z); see Figure 2.

REMARK 2.2. When the N -point noncolliding Bernoulli random walk starts
from the densely packed configuration �a = (0,1,2, . . . ,N − 1), the distribution
of the N -point configuration �X(t) ⊂ Z at any time t ∈ Z≥0 is the Krawtchouk

4Throughout the text, 1A stands for the indicator function of an event A, i = √−1, and we will em-

ploy the Pochhammer symbols (z)k = �(z+k)
�(z)

= z(z+1) · · · (z+k−1) and the binomial coefficients(k
a

) = (−1)a
(−k)a

a! , where k, a ∈ Z≥0.
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FIG. 2. Integration contours in (2.2). The w poles are highlighted by crosses.

orthogonal polynomial ensemble [46]. Orthogonal polynomial ensembles are de-
terminantal, and their correlation kernels are expressed through the corresponding
univariate orthogonal polynomials—in our case, the Krawtchouk polynomials.5

This correlation kernel is explicit enough to be suitable for asymptotic analysis;
see, for example, [35, 36]. The corresponding time-dependent kernel as in (2.1)
is also explicitly known; it is the extended Krawtchouk kernel [38]. Theorem 2.1
generalizes these results to an arbitrary initial configuration �X(0) = �a ∈ W

N .

We prove Theorem 2.1 in Section 3 below. In Appendix A, we also discuss two
limits of the noncolliding Bernoulli random walk and the kernel (2.2):

• Noncolliding Poisson random walk—independent Poisson processes condi-
tioned to never collide. This limit is obtained by rescaling time from discrete
to continuous, and sending β → 0.

• Dyson Brownian motion—independent Brownian motions conditioned to never
collide. This process (introduced in [25]) is a diffusion limit of the noncolliding
Bernoulli random walk. The correlation kernel for the Dyson Brownian motion
started from an arbitrary initial configuration was first obtained in [37] (see also
[59]). When the Dyson Brownian motion starts from a special initial condition
(0,0, . . . ,0), its determinantal correlation kernel can be expressed through the
Hermite orthogonal polynomials [48, 50].

2.2. Extended discrete sine kernel. Let us now discuss the point process de-
scribing the local asymptotic behavior the noncolliding Bernoulli random walk.

DEFINITION 2.3. By the extended discrete sine process6 of slope u ∈ C,
Im(u) > 0, we mean the determinantal point process on Z×Z with the correlation

5See Section 1.10 in [44] for definitions and basic properties of the Krawtchouk orthogonal poly-
nomials, and [45] for a survey of orthogonal polynomial ensembles.

6Since in this paper we only discuss convergence to the discrete sine process and do not deal with
its continuous counterpart, we often drop the word “discrete.”
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kernel:

(2.3) Ku(t, x; s, y) = − 1

2π i

∫ u

ū
(1 − z)t−sz−(x−y)−1 dz,

where the integration path crosses (0,1) for t > s and (−∞,0) for t ≤ s.

The extended sine process was first introduced in [55] in relation to the bulk
limit of random lozenge tilings (equivalently, 3D Young diagrams). In that paper,
the kernel (2.3) was called the incomplete beta kernel. When t = s, the kernel (2.3)
simplifies, after conjugation by the function x �→ (−1)x |u|−x ,7 to the discrete sine
kernel of [10]:

(2.4) Ksine
φ (x;y) = sin(φ(x − y))

π(x − y)
, x, y ∈ Z, φ = π − arg(u),

with the agreement that Ksine
φ (x, x) = φ/π . The quantity φ/π ∈ (0,1) is the den-

sity along the x direction of particles in the random configuration from the (ex-
tended) discrete sine process.

There exist other extensions of the discrete sine kernel (2.4); see [4, 11, 14]. In
Appendix A.1, we briefly discuss the noncolliding Poisson random walk whose
local statistics should be universally governed by an extension of (2.4) other than
(2.3).

REMARK 2.4. The extended sine kernel was introduced in [55] in terms of
complementary (to Z×Z) configurations. The relation between kernels describing
a configuration and its complement is ([10], Appendix A.3)

Kcomplement(t, x; s, y) = 1x=y1t=s − K(t, x; s, y).

In the case of the extended sine kernel, the above delta function can be incorporated
inside the contour integral by dragging for t = s the contour through zero and
picking the residue of z−(x−y)−1, which is exactly 1x=y .

The extended sine process is translation invariant in both directions (t and x),
and it describes asymptotic bulk distribution of discrete two-dimensional determi-
nantal point processes when both dimensions stay discrete in the limit. A charac-
terization of the measure determined by Kz as a unique translation invariant Gibbs
measure of a given complex slope was obtained in [43, 60].

7Transformations of a correlation kernel of the form K(x,y) �→ f (x)
f (y)

K(x, y) (where f is nowhere
zero) not changing the correlation functions are sometimes referred to as the gauge transformations.



2694 V. GORIN AND L. PETROV

2.3. Bulk limit theorems. Here, we formulate our main asymptotic results—an
approximation of the correlation kernel of the noncolliding Bernoulli random walk
by the extended sine kernel (2.3), and a corresponding bulk local limit theorem.

Assume that N (the number of noncolliding particles) is our main parameter go-
ing to infinity, and that the time scale T (N) � N , T (N) → +∞ is fixed.8 For each
N = 1,2, . . . , we also fix an initial condition �X(0) = A(N) = (a1(N) < a2(N) <

· · · < aN(N)). We will often omit the dependence on N and simply write T (mean-
ing T (N)) and ai (meaning ai(N), 1 ≤ i ≤ N ), etc., when it leads to no confusion.

In what follows, we are describing the behavior of �X(T + t) near the point
x = 0. Since the definition of the noncolliding Bernoulli random walk is translation
invariant, one can readily extract similar results on the behavior near an arbitrary
point x = x(N) by shifting A(N) appropriately.

The following two assumptions will be imposed on A(N) throughout the text.

ASSUMPTION 1 (Local density). There exist scales D = D(N) satisfying
D(N) � T (N) and Q = Q(N) satisfying T (N) � Q(N) � N , and absolute
constants9 0 < ρ• ≤ ρ• < 1, such that in every segment of length D(N) inside
[−Q(N),Q(N)] ⊂ R there are at least ρ•D(N) and at most ρ•D(N) points of the
initial configuration A(N).

ASSUMPTION 2 (Intermediate scales). For all δ > 0, R > 0 and N large
enough, one has

(2.5)
∣∣∣∣ ∑
i : RT (N)≤|ai(N)|≤δN

1

ai(N)

∣∣∣∣ ≤ AR,δ,

where AR,δ > 0 are absolute constants.

REMARK 2.5. Note that if (2.5) holds for some δ0 > 0, R0 > 0, then it holds
for all other δ > 0, R > 0 because the difference of the sums in the left-hand side
of (2.5) can be bounded by a part of the harmonic series (between R0T and RT ,
etc.), which is bounded by a constant independent of N .

Both Assumptions 1 and 2 serve the same goal: we want to guarantee that the av-
erage density of particles in �X(T ) near x = 0 is bounded away from 0 and from 1,
as otherwise the universal local behavior might fail. Assumption 1 simply bounds
the density of the initial configuration A(N), while Assumption 2 requires that the
“densities” of the configuration A(N) far (at scales from RT (N) to δN ) to the
right and to the left of 0 (our point of observation) are “comparable.”

8Throughout the paper by A(N) � B(N), we mean that limN→+∞ A(N)/B(N) = 0, and simi-
larly for �.

9Here and below by an absolute constant, we mean a certain constant which does not depend on
N , T (N), or the initial configuration A(N).
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We do not impose any other requirements on particles far away from x = 0. We
remark that one can easily cook up (e.g., using an intuition coming from the study
of frozen boundaries in random tiling models) a situation in which Assumption 1
fails, and yet the average density of particles in �X(T ) close to 0 is still bounded
away from 0 and 1, and the universal local behavior holds. In other words, As-
sumption 1 is not necessary. On the other hand, Assumption 2 is close to being
necessary; see the discussion after Theorem 2.12 below. Overall, our Assumptions
1 and 2 are simple to state and straightforward to check in applications, while a full
necessary and sufficient condition would be much more technical and involved. We
refer to detailed analysis in models of random tilings performed in [21, 23, 24, 31,
56].

The following function of z ∈ C will play a prominent role in our asymptotic
analysis:

(2.6) S′(z) =
N∑

r=1

1

T z − ar

− p.v.
∑

j∈LT

1

T z − j
− log

(
β−1 − 1

)
,

where

(2.7) LT = LT (N) = {. . . ,−T − 2,−T − 1,−T } ∪ {0,1,2, . . .},
and the infinite sum should be understood as its principal value, that is,

(2.8) p.v.
∑

j∈LT

1

T z − j
= lim

M→∞
∑

j∈LT|j |<M

1

T z − j
.

We can alternatively write

(2.9) S′(z) =
N∑

r=1

1

T z − ar

+
T −1∑
i=1

1

T z + i
− π cot(πT z) − log

(
β−1 − 1

)
using the fact that

(2.10) π cot(πz) = p.v.
∑
k∈Z

1

z − k
,

which follows from the Euler’s product formula for the sine function

(2.11) sin(πz) = πz

∞∏
k=1

(
1 − z2

k2

)
.

PROPOSITION 2.6. Under Assumptions 1 and 2 there exists N0 such that for
all N > N0 the equation S′(z) = 0 has a unique root zc = zc(N) in the upper half-
plane (i.e., satisfying Im(zc) > 0). Moreover, there exists a compact set Z ⊂ {z ∈
C : Im(z) > 0} such that zc ∈ Z for all N > N0. The set Z and the constant N0
may depend on constants in Assumptions 1 and 2 but not on the choice of A(N).
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THEOREM 2.7. Under Assumptions 1 and 2, for any fixed t1, x1, t2, x2 ∈ Z we
have

KBernoulli
A(N);β

(
t1 + T (N), x1; t2 + T (N), x2

) = Kzc(N)/(zc(N)+1)(t1, x1; t2, x2) + o(1)

as N → ∞, where zc(N) is the unique root provided by Proposition 2.6. The
remainder o(1) admits a tending to 0 bound which may depend on constants in
Assumptions 1 and 2 but not on the choice of A(N).

REMARK 2.8. Since all probabilities describing the local behavior of �X(T +
t) near x = 0 (with t kept finite) are expressed through KBernoulli

A(N);β (t1 + T ,x1; t2 +
T ,x2) via (2.1), Theorem 2.7 means that as N → +∞, locally near x = 0 the
distribution of { �X(T + t)}t becomes indistinguishable from the one corresponding
to the extended sine process.

If A(N) depends on N in a regular way, then Theorem 2.7 leads to a conver-
gence statement.

DEFINITION 2.9. We say that a sequence μk , k = 1,2, . . . of σ -finite mea-
sures on R vaguely converges to μ, if for any continuous function f with compact
support, we have

lim
k→∞

∫ +∞
−∞

f (x)μk(dx) =
∫ +∞
−∞

f (x)μ(dx).

Let us also denote

(2.12) dN(R) = ∑
i : |ai(N)|≥RT (N)

1

ai(N)
.

Assumption 2 is equivalent to the boundedness of the dN(R)’s for fixed R, uni-
formly in N .

THEOREM 2.10. Suppose that a sequence A(N), N = 1,2, . . . is such that
Assumptions 1 and 2 hold, there exists a σ -finite measure μloc for which vaguely

lim
N→+∞

1

T (N)

N∑
i=1

δai(N)/T (N) = μloc,

and there exists a limit d(R) = limN→+∞ dN(R).
Then the point process describing { �X(T (N) + t)}t near x = 0 converges in

distribution to the extended sine process of complex slope u∗, in the sense that for
each t1, x1, t2, x2 ∈ Z we have

lim
N→∞KBernoulli

A(N);β
(
t1 + T (N), x1; t2 + T (N), x2

) = Ku∗(t1, x1; t2, x2),
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where u = u∗ ∈C is a unique root in the upper half-plane of the equation10

∫ +∞
−∞

(
1 − u

u − (1 − u)v
+ 1|v|>R

v

)
μloc(dv) − log u

= d(R) + log
(
β−1 − 1

)− iπ.(2.13)

In fact, the additional hypotheses in Theorem 2.10 as compared to Theorem 2.7
are not too restrictive; see Remark 6.10 below.

The condition that the quantities (2.12) converge can sometimes be not easy to
verify, and the determination of the limit d(R) could be even harder. Let us present
a sufficient condition and a way to compute d(R) which involves the global profile
�X(0).

THEOREM 2.11. Suppose that a sequence A(N), N = 1,2, . . . is such that
Assumptions 1 and 2 hold and, moreover, limδ→0 AR,δ = 0 in Assumption 2. Next,
let there exist a σ -finite measure μloc and a probability measure μglob for which
vaguely

(2.14)

lim
N→+∞

1

T (N)

N∑
i=1

δai(N)/T (N) = μloc,

lim
N→+∞

1

N

N∑
i=1

δai(N)/N = μglob,

and the principal value integral p.v.
∫∞
−∞ v−1μglob(dv) exists. Then the quantities

dN(R) converge to this integral (so d(R) = d is independent of R), and the conclu-
sion of Theorem 2.10 holds with

(2.15) d = p.v.

∫ ∞
−∞

μglob(dv)

v
.

In many applications μloc is a multiple of the Lebesgue measure on R, in which
case u∗ is more explicit.

THEOREM 2.12. Assume that Theorem 2.10 holds with μloc being q ∈ (0,1)

times the Lebesgue measure on R. Then d(R) = d does not depend on R, and the
complex slope of the limiting extended sine process is given by

(2.16) u∗ = βe−d

1 − β
eiπ(1−q).

10The equation and the root u∗ do not depend on R > 0.



2698 V. GORIN AND L. PETROV

Let us make some remarks about the elegant formula (2.16). First, the
(same-time) density of particles under the limiting extended sine process is
1 − arg(u∗)/π = q , as it should be. In particular, this density does not depend on
the “speed” β of the noncolliding random walk, or on the parameter d capturing
the effect of the global profile.

To isolate the effect of the global profile, observe that the second parameter |u∗|
of the extended sine kernel can be rewritten as

(2.17) |u∗| = βeff

1 − βeff
, βeff = 1

1 + ed(β−1 − 1)
.

That is, for fixed q the bulk local distribution is the same as if the parameter β was
replaced by βeff, while the contribution from the global profile (encoded by d) was
not present.

The quantity βeff increases in β and decreases in d. The dependence on d can
be interpreted as an effect of repulsion. For example, having much more particles
of the initial configuration to the right of 0 than to the left corresponds to larger
values of d, which leads to a decrease in βeff.

Moreover, if d is very large or very small, then βeff is close to 0 or 1, respec-
tively, leading to an almost deterministic behavior of the noncolliding paths in the
bulk local limit. This suggests that our Assumption 2 is close to being necessary
for the universal local bulk behavior. Namely, if it is violated, then d = ±∞ along
a subsequence {Nk}, and so the local bulk distribution is not described by the uni-
versal extended sine kernel. However, we will not pursue this analysis further.

2.4. Applications. Let us give several examples which demonstrate that As-
sumptions 1 and 2 are checkable in applications. The first example deals with an
arbitrary smooth deterministic initial configuration �X(0).

THEOREM 2.13. Take a twice continuously differentiable function f on
[−1

2 , 1
2 ] such that f ′(x) > 1 for all x ∈ [−1

2 , 1
2 ], and f (−1

2) < 0 < f (1
2). Let

χ ∈ (−1
2 , 1

2) be the unique point where f (χ) = 0. Assume for simplicity that N

is odd, and let the initial configuration of the noncolliding Bernoulli random walk
be11

ai(N) = ⌊
Nf (i/N)

⌋
,

i = −N − 1

2
,−N − 1

2
+ 1, . . . ,

N − 1

2
− 1,

N − 1

2
.(2.18)

Fix any 0 < η < 1, and let T (N) = �Nη�. Then Theorem 2.12 is applicable, where
μloc is the Lebesgue measure on R times q = 1/f ′(χ), and d has the form

(2.19) d = p.v.

∫ 1
2

− 1
2

dx

f (x)
.

11Throughout the text, �· · ·� denotes the integer part.
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REMARK 2.14. In the situation of Theorem 2.13, the global probability mea-
sure exists and has the form μglob(dv) = dv/f ′(f −1(v)). The expression (2.15)
for d is equivalent to (2.19) via a change of variables.

The next two examples deal with random initial configurations �X(0).

THEOREM 2.15. Fix 0 < p < 1 and 0 < α < 1. For M = 1,2, . . . , con-
sider a particle configuration on {−�M(1 − α)�,−�M(1 − α)� + 1, . . . , �Mα� −
1, �Mα�} obtained by putting a particle at each location with probability p in-
dependently of all others. Let N be the (random) number of particles in this con-
figuration, and A(N) denote the configuration itself. By �X(t), denote the non-
colliding Bernoulli random walk started from A(N). Choose 0 < η < 1 and set
T (M) = �Mη�.

Then the point process { �X(T (M) + t)}t converges near x = 0 to the extended
sine process as in Theorem 2.10, where μloc is p times the Lebesgue measure on
R, and d(R) = d = p log( α

1−α
). That is, the complex slope of the limiting extended

sine process is

u∗ = β

1 − β

(
1 − α

α

)p

eiπ(1−p).

PROPOSITION 2.16. Fix 0 < φ < π and 0 < α < 1. For M = 1,2, . . . , let
the initial particle configuration of the noncolliding Bernoulli random walk be
obtained by restricting the configuration of the discrete sine process of density
φ/π (i.e., with the correlation kernel Ksine

φ given by (2.4)) to {−�M(1 − α)�,
−�M(1 − α)� + 1, . . . , �Mα� − 1, �Mα�}.

With other notation the same as in Theorem 2.15, the point process { �X(T (M)+
t)}t describing the configuration of the noncolliding walk started from the sine
process initial configuration converges near x = 0 to the extended sine process as
in Theorem 2.10, where μloc is φ

π
times the Lebesgue measure on R, and d(R) =

d = φ
π

log( α
1−α

), so

u∗ = β

1 − β

(
1 − α

α

) φ
π

ei(π−φ),

is the complex slope of the limiting extended sine process.

REMARK 2.17. Proposition 2.16 is formulated for time T (M) = �Mη� going
to infinity. However, it is probably true even for T (M) = 0 because the initial
configuration is already close to the same-time configuration of the extended sine
process. Here, we do not pursue in this direction.

For the last example, let us consider an initial configuration �X(0) for which μloc
differs from the Lebesgue measure.
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FIG. 3. Initial condition in Proposition 2.18. Black dots mean particles.

PROPOSITION 2.18. Fix two parameters 0 < η < 1 and h > 0. Set T (N) =
�Nη�. For N = 1,2, . . . , let A(N) be the N -particle configuration defined by the
following three conditions (cf. Figure 3):

• There are �N/2� particles to the left from the origin and they occupy every
second lattice site;

• �hT (N)� particles adjacent to the origin from the right occupy every third lat-
tice site;

• The remaining particles are to the right from 3�hT (N)� and they occupy every
second lattice site.

Then the point process { �X(T (M) + t)}t converges near x = 0 to the extended sine
process as in Theorem 2.10. The complex slope u∗ of the limiting extended sine
process is a unique point in the upper half-plane satisfying

(2.20) 6

√
1 − 3h

1 − u∗
u∗

= iu∗
(
1 − β−1),

where the 6th degree root is understood in the sense of the principal branch.

The behavior of u∗ given by (2.20) as a function of h is quite interesting. When
h is small, u∗ ≈ i β

1−β
, matching Theorem 2.12. On the other hand, as h → +∞, u∗

goes to infinity in the direction +i∞. This leads to a behavior which seems new.
Namely, as h → +∞, the same-time local configuration around zero is still gov-
erned by the discrete sine kernel (2.4) (with φ = π/2), while the time-dependent
extension of this process is deterministic: at each discrete time step each particle
always goes to the right by 1 and does not stay put. Heuristically, for very large h

the repelling force coming from the higher density region to the left of the origin
is so large that this creates a deterministic flow of particles.

It is likely that with a proper time rescaling one can find a more delicate h →
+∞ limit in which the paths make rare jumps, as in the classical transition from
the random walk to the Poisson process. We will not pursue this direction here.

REMARK 2.19. In this observation, we first took the large N limit, and then
a degeneration in the parameter h. This is the reason why the same-time distri-
bution stays universal as h → +∞. We believe that if instead h = h(N) goes to
infinity in a certain way, then the limiting local configuration around zero would
become completely deterministic: particles would occupy every other site, and at
each time step go to the right by 1. This combined limit does not follow from
Proposition 2.18, and we will not consider it further.
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Notation. Throughout the paper, C stands for positive constants whose values
may change from line to line. These constants might depend on the parameters of
the model (and our assumptions about them), but not on variables going to zero or
infinity.

3. From lozenge tilings to noncolliding walks: Proof of Theorem 2.1.

3.1. Random lozenge tilings. Consider uniformly random tilings (by lozenges
of three types) of polygons drawn on the triangular lattice; see Figure 4, left. The
asymptotic behavior of such tilings in various regimes has been studied in [8, 20,
32, 33, 41, 42, 52, 56, 58].12

We will employ a result of [56] (see also [23]) on the determinantal structure
of uniformly random lozenge tilings of polygons such as in Figure 4, left. That
is, consider a trapezoid TN,L of height L ∈ Z≥1 with vertices (1

2 ,0), (1
2 ,L), (1

2 −
N,L) and (1

2 − N − L,0). Fix (y1 < · · · < yL) ∈ {0,−1, . . . ,−N − L + 1} and
put lozenges of type at each of the yi’s cutting L small triangles at the base of
the trapezoid. We will consider tilings of the resulting figure by lozenges of three
types. The assumption that the yi ’s belong to {0,−1, . . . ,−N −L+ 1} (and hence
are all negative) is not essential since the whole situation is translation invariant.
However, this will be convenient in Section 3.3 when discussing the limit as L →
+∞.

REMARK 3.1. Putting the lozenges at the yi ’s fixes locations of some other
of the lozenges of the same type (the darker ones in Figure 4, left). In this way, the

FIG. 4. A lozenge tiling of (left) and its bijective encoding as a collection of noncolliding paths
(right). The trapezoid T4,13 has height L = 13, and the number of paths (N = 4) is the same as the
length of the top side of T4,13.

12Note that we are using an affine transform of the regular triangular lattice, thus our picture differs
from some of the references cited. This is done for a better coordinate notation in our situation.
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tiling that we are describing can be alternatively interpreted at a lozenge tiling of
a certain polygon.

The total number of such tilings is equal to (e.g., see Section 2 in [13])

(3.1) Z
N,L
{y1,...,yL} = ∏

1≤i<j≤L

yj − yi

j − i
.

We interpret the uniformly random tiling as a random particle configuration by
looking at centers of the lozenges of type (there are L(L + 1)/2 lozenges in
total). The centers have integer coordinates (x, t) ∈ Z≤0 ×Z≥0.

THEOREM 3.2. The uniformly random tiling described above gives rise to a
determinantal point process, that is,

P
(
there are lozenges at locations (xi, ti), i = 1, . . . , k

)
= det

[
K

tilings
N;{y1,...,yL}(tα, xα; tβ, xβ)

]k
α,β=1,

with the correlation kernel

K
tilings
N;{y1,...,yL}(t1, x1; t2, x2)

= −1t1<t21x2≤x1

(x1 − x2 + 1)t2−t1−1

(t2 − t1 − 1)!
+ t1!

(t2 − 1)!
1

(2π i)2

∮
c(x2−t2+1)

dz

∮
C(∞)

dw
(z − x2 + 1)t2−1

(w − x1)t1+1

× 1

w − z

L∏
r=1

w − yr

z − yr

.(3.2)

Here, x1, x2 ∈ Z, 0 ≤ t1 ≤ L−1, 1 ≤ t2 ≤ L−1, and the integration contours look
as in Figure 5:

• The z contour c(x2 − t2 + 1) is positively oriented and encircles the points x2 −
t2 + 1, x2 − t2 + 2, . . . , yL, and does not encircle x2 − t2, x2 − t2 − 1, . . . ;

• The w contour C(∞) is positively oriented and encircles c(x2 − t2 + 1) and is
sufficiently large so that to include all w poles x1, x1 − 1, . . . , x1 − t1.

This is the same kernel as in [56], Theorem 5.1, up to the change of coordinates
t1,2 = L − n1,2.

3.2. Noncolliding paths of length L. Let us keep L and y1, . . . , yL fixed and
consider another interpretation of a lozenge tiling in terms of noncolliding paths as
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FIG. 5. Integration contours for the kernel K
tilings
N;{y1,...,yL} (3.2). The poles at

w = x1 − t1, x1 − t1 + 1, . . . , x1 − 1, x1 are highlighted in black.

in Figure 4, right. There are N such paths; they trace lozenges of two types other

than , start at points

(3.3) �a = (a1 < · · · < aN) = {0,−1, . . . ,−N − L + 1} \ {y1, . . . , yL}
on the t = 0 horizontal, and end at points −N + 1, . . . ,−1,0, respectively, on the
t = L horizontal. Denote the path configuration at height t by X

(L)
1 (t) < · · · <

X
(L)
N (t). Thus, we obtain a random path ensemble { �X(L)(t)}Lt=0 corresponding to

our random tiling.
The correlation kernel for the paths �X(L) (whose configuration is complemen-

tary to the configuration of the lozenges) can be obtained from the one for the
tilings (3.2) by a particle-hole involution (e.g., see [10], Appendix A.3):

P
(
paths �X(L) pass through points (xi, ti), i = 1, . . . , k

)
= det

[
K

paths
L;�a (tα, xα; tβ, xβ)

]k
α,β=1

with

(3.4) K
paths
L;�a (t1, x1; t2, x2) = 1x1=x21t1=t2 − K

tilings
N;{y1,...,yL}(t1, x1; t2, x2),

as long as the pairwise distinct points (xi, ti), i = 1, . . . , k, are inside the trapezoid
TN,L defined in Section 3.1 above.

REMARK 3.3. The reason for the last restriction (that the observation points
(xi, ti) belong to TN,L) is because the particle-hole involution of the configura-
tion of lozenges gives rise not only to the N noncolliding paths �X(L) but also
to infinitely many trivial paths connecting (j,0) to (j,L), j ≥ 1, and (j,0) to
(j + L,L), j ≤ −N − L. These paths correspond to a unique way of extending
the lozenge tiling of our polygon to the infinite horizontal strip of height L with L

small triangles added at the bottom. Therefore, to capture the correlation structure
of the nontrivial paths �X(L), the points (xi, ti) should be inside TN,L.
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REMARK 3.4. When the starting configuration �a is the densely packed one
(0,1, . . . ,N − 1), the polygon which is tiled reduces to the hexagon. In this
case, the distribution of the Markov process { �X(L)(t)}Lt=0 is described by the ex-
tended Hahn kernel expressed through the Hahn orthogonal polynomials; see [39].
Asymptotic analysis of the noncolliding paths in the hexagon utilizing this repre-
sentation of the kernel was performed in [2, 33].

3.3. Limit L → ∞ of noncolliding paths. We will now perform a limit transi-
tion of our uniformly random tilings to the noncolliding Bernoulli random walks.
Fix β ∈ (0,1), N ∈ Z≥1, and �a = (a1 < · · · < aN) ∈ W

N . Start the path ensemble
{ �X(L)(t)}Lt=0 from the points

(3.5) �a(L) = (
a1 − �βL�, . . . , aN − �βL�).

Clearly, for L large enough we have

−N − L + 1 < ai − �βL� < 0

for all i; cf. (3.3). Thus, for any fixed �a ∈ W
N the uniformly random tiling and the

path ensemble { �X(L)(t)}Lt=0 are well defined for large L.
The above shifting of the initial configuration of �X(L) forces the N noncolliding

paths to have asymptotic speed β . This leads to the noncolliding Bernoulli random
walk with parameter β:

PROPOSITION 3.5. As L → ∞, all finite-dimensional distributions of the path
ensemble { �X(L)(t) + �βL�}Lt=0

converge to those of the noncolliding Bernoulli random walk �X(t) (defined in the
Introduction) started from the configuration �a.

PROOF. Because the random lozenge tiling used to construct the path ensem-
ble �X(L) is picked uniformly, { �X(L)(t)}Lt=0 can be viewed as a Markov process
(with time bounded by L). Indeed, the uniformity ensures that the past and the
future are conditionally independent given the present configuration ([61], Chap-
ter I.12).

Observe that each conditional probability

(3.6) P
( �X(L)(t + 1) = �b′ | �X(L)(t) = �b), �b, �b′ ∈ W

N

is simply the ratio of the number of lozenge tilings of a polygon of height L− (t +
1) with the bottom boundary determined by �b′ similar to (3.3), and the number of
tilings of a polygon of height L − t with the bottom boundary corresponding to �b.
It suffices to show that the transition probabilities (3.6) converge to the transition
probabilities (1.2) of the noncolliding Bernoulli random walk.
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Let us fix �b, �b′ ∈ W
N such that b′

i − bi ∈ {0,1} for all i. (Clearly, if these
conditions do not hold, then the transition probabilities from �b to �b′ in both
�X(L)(t) + �βL� and �X(t) vanish.) We have

P
( �X(L)(t + 1) = �b′ − �βL� | �X(L)(t) = �b − �βL�)

=
Z

N,L−t−1
{m′

1,...,m
′
L−t−1}

Z
N,L−t
{m1,...,mL−t }

= ∏
1≤i<j≤L−t−1

m′
j − m′

i

j − i

∏
1≤i<j≤L−t

j − i

mj − mi

= (L − t − 1)!
∏

1≤i<j≤L−t−1(m
′
j − m′

i )∏
1≤i<j≤L−t (mj − mi)

,

where we used (3.1), and

{m1, . . . ,mL−t }
= {0,−1, . . . ,−N − L + t + 1} \ {b1 − �βL�, . . . , bN − �βL�},{

m′
1, . . . ,m

′
L−t−1

}
= {0,−1, . . . ,−N − L + t + 2} \ {b′

1 − �βL�, . . . , b′
N − �βL�}.

Above we have assumed that L is large enough so that all polygons are well de-
fined. We can write (using the notation of (1.3))

∏
1≤i<j≤L−t−1(m

′
j − m′

i )∏
1≤i<j≤L−t (mj − mi)

= V(−N − L + t + 2, . . . ,−1,0)

V(−N − L + t + 1,−N − L + t + 2, . . . ,−1,0)

V(�b)

V(�b′)

×
N∏

i=1

( ∏
−N−L+t+2≤j≤0

j /∈�b′−�βL�

∣∣b′
i − �βL� − j

∣∣−1

× ∏
−N−L+t+1≤j≤0

j /∈�b−�βL�

∣∣bi − �βL� − j
∣∣).

We have V(−N−L+t+2,...,−1,0)
V(−N−L+t+1,−N−L+t+2,...,−1,0)

= 1
(N+L−t−1)! . Next, let us insert the

products over i �= j of |bi − bj |/|b′
i − b′

j | into the big product in the previous
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formula. We obtain

V(�b)

V(�b′)

N∏
i=1

( ∏
−N−L+t+2≤j≤0

j /∈�b′−�βL�

∣∣b′
i − �βL� − j

∣∣−1

× ∏
−N−L+t+1≤j≤0

j /∈�b−�βL�

∣∣bi − �βL� − j
∣∣)

= V(�b′)
V(�b)

N∏
i=1

0∏
j=−N−L+t+2

|bi − �βL� − j |1bi−�βL��=j

|b′
i − �βL� − j |1b′

i
−�βL��=j

×
N∏

i=1

∣∣bi − �βL� + N + L − t − 1
∣∣.

Using the well-known asymptotics for the Gamma function ([28], 1.18.(5)),

(3.7)
�(L + α)

�(L)
∼ Lα, L → +∞

(where α is fixed), let us collect the last product and the factors involving factorials
and write

lim
L→+∞

(L − t − 1)!
(N + L − t − 1)!

N∏
i=1

∣∣bi − �βL� + N + L − t − 1
∣∣ = (1 − β)N .

Let us turn to the remaining factors. We have to following equivalence as L →
+∞:

N∏
i=1

0∏
j=−N−L+t+2

|bi − �βL� − j |1bi−�βL��=j

|b′
i − �βL� − j |1b′

i
−�βL��=j

∼
N∏

i=1

�(βL − bi)�(bi + (1 − β)L)

�(βL − b′
i )�(b′

i + (1 − β)L)
.

If b′
i = bi , the corresponding term is simply 1, and otherwise it converges to β/(1−

β) due to (3.7).
Collecting all the terms we see that the transition probabilities of �X(L) converge

to those of the noncolliding random walk. This completes the proof. �

3.4. Limit L → ∞ in the kernel. Let us now take the L → ∞ limit in the
kernel for the process �X(L)(t) coming from the uniformly random tilings. The
latter kernel is given by (3.2) and (3.4).

PROPOSITION 3.6. Fix β ∈ (0,1) and �a ∈ W
N , and consider the correlation

kernel of the process �X(L)(t) started from the shifted initial configuration �a(L)
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as in (3.5). Then for any fixed13 t1 ∈ Z≥0, t2 ∈ Z≥1, and x1,2 ∈ Z we have the
convergence

lim
L→+∞K

paths
L;�a(L)

(
t1, x1 − �βL�; t2, x2 − �βL�) = KBernoulli

�a;β (t1, x1; t2, x2),

where KBernoulli
�a;β is given by (2.2).

Proposition 3.6 together with Proposition 3.5 will imply Theorem 2.1.

PROOF OF PROPOSITION 3.6. We first focus on the part of K
paths
L;�a(L)(t1, x1 −

�βL�; t2, x2 − �βL�) containing the double contour integral. By substituting the
shifted parameters �a(L) and x1,2 − �βL� into the kernel given by (3.2), (3.4) and
at the same time shifting both integration variables z,w by �βL� turns the double
contour integral into

I paths = t1!
(t2 − 1)!

1

(2π i)2

∮
c(x2−t2+1)

dz

∮
C(∞)

dw
(z − x2 + 1)t2−1

(w − x1)t1+1

× 1

w − z

(w − �βL�)N+L

(z − �βL�)N+L

N∏
r=1

z − ar

w − ar

.(3.8)

(Note that this integral enters K
paths
L;�a(L) with a negative sign which we ignore for

now.) Here, the z contour c(x2 − t2 + 1) encircles the points x2 − t2 + 1, x2 −
t2 + 2, . . . , �βL� and not x2 − t2 − 1, x2 − t2 − 2, . . . , while the w contour C(∞)

encircles c(x2 − t2 + 1) and all the w poles of the integrand. For large enough L,
these w poles are contained inside the intersection {x1 − t1, x1 − t1 + 1, . . . , x1 −
1, x1} ∩ {a1, . . . , aN }; see Figure 6.

Let us split the w integration over C(∞) into integration over two contours:
one encircling all the w poles outside the z contour c(x2 − t2 + 1) (denote it by
c′(x2 − t2)), and the other one encircling just the z contour c(x2 − t2 + 1) (denote
it by cout(x2 − t2 + 1)). In this second integral, we will drag the w contour inside
the z contour at the cost of picking the residue at w = z. Denote the resulting w

contour by cin(x2 − t2 + 1); see Figure 7. Thus, (3.8) can be rewritten as follows:

I paths = t1!
(t2 − 1)!

1

(2π i)2

∮
c(x2−t2+1)

dz

∮
c′(x2−t2)∪cin(x2−t2+1)

dw
1

w − z

× (z − x2 + 1)t2−1

(w − x1)t1+1

(w − �βL�)N+L

(z − �βL�)N+L

N∏
r=1

z − ar

w − ar

+ t1!
(t2 − 1)!

1

2π i

∮
c(x2−t2+1)

(z − x2 + 1)t2−1

(z − x1)t1+1
dz.(3.9)

13Clearly, under our scaling the restrictions on the variables in the kernel K
paths
L;�a(L) imposed in Sec-

tion 3.2 (cf. Remark 3.3) will eventually disappear.



2708 V. GORIN AND L. PETROV

FIG. 6. Integration contours for Ipaths (3.8). Note that the z contour grows with L but the w poles
(highlighted by crosses) do not depend on L.

The single integral in (3.9) can be evaluated using the results of Section 6.2 in
[56]. It is equal to

(3.10) 1x1≥x2

(t2 − t1)x1−x2

(x1 − x2)! .

In the double contour integral in (3.9), we first note that for L fixed but large
enough, due to the presence of the polynomial (z−�βL�)N+L in the denominator,
the integrand decays rapidly as z → ∞. Thus, the z integration contour can be re-
placed by the vertical line from x2 − t2 + 1

2 − i∞ to x2 − t2 + 1
2 + i∞ traversed from

bottom to top, yielding a new minus sign in front of the double contour integral
(cf. Figure 2).

The z integral over the vertical line converges uniformly in L. Indeed, observe
that ∣∣∣∣ w + k

x + iy + k

∣∣∣∣ < 1

1 + C|y|/|k| , k ∈ Z,

FIG. 7. Integration contours in the double integral in (3.9).
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for some C > 0, where z = x + iy, and C is uniform in w belonging to a bounded
contour. For large |y| and L > L0, the product of the above quantities over k as in
(3.9) can be bounded by a constant independent of L times a fixed (but arbitrarily
large) negative power of |y|. Here, we also used the fact that for fixed y the infinite
product over k diverges to infinity.

Thus, the integration contours do not depend on L, and we can pass to a point-
wise limit as L → ∞ in the integrand. Since w,z /∈ Z on our contours, we can
write

(w − �βL�)N+L

(z − �βL�)N+L

= �(w + L − �βL� + N)

�(z + L − �βL� + N)

�(z − �βL�)
�(w − �βL�)

= �(w + L − �βL� + N)

�(z + L − �βL� + N)

�(−w + 1 + �βL�)
�(−z + 1 + �βL�)

sin(πw)

sin(πz)
,(3.11)

where in the second equality we used

(3.12) �(u) = π

sin(πu)�(1 − u)
.

Let us employ the Stirling asymptotics for the Gamma function ([28], 1.18.(2)–
(3)), which can be formulated as

�(L + α) = (
1 + O

(
L−1))√2π exp

((
L + α − 1

2

)
logL − L

)
,

L → +∞,(3.13)

where α ∈ C if fixed and the remainder O(L−1) is uniform in α belonging to
compact subsets of C. Thus, continuing (3.11),

(w − �βL�)N+L

(z − �βL�)N+L

= sin(πw)

sin(πz)

(
1 − β

β

)w−z(
1 + O

(
L−1)).

Finally, the summands not involving contour integrals coming from (3.2), (3.4)
and (3.10) can be simplified as

1x1=x21t1=t2 + 1t1<t21x2≤x1

(x1 − x2 + 1)t2−t1−1

(t2 − t1 − 1)! − 1x1≥x2

(t2 − t1)x1−x2

(x1 − x2)!

= 1x1≥x21t1>t2(−1)x1−x2+1

(
t1 − t2

x1 − x2

)

(note that all of them involve only the difference x1 − x2 which is not affected by
the shift by �βL�). This coincides with the summand not containing integrals in
(2.2). This completes the proof of Proposition 3.6, and hence of Theorem 2.1. �
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REMARK 3.7. The argument in the above proof implies in particular that the
integration in KBernoulli

�a;β (2.2) can be alternatively performed over a shifted con-
tour z. This contour can be shifted as far as to the vertical line traversed from
x2 − 1

2 − i∞ to x2 − 1
2 + i∞. Indeed, the difference between the two expressions

is equal to the residue at z = w integrated over a certain part of the w contour; it is
the same as the single integral in (3.9) but over a contour which does not contain
any poles inside, and thus vanishes.

4. Setup of the asymptotic analysis. Here, we explain the relevance of the
function S′(z) defined in (2.6) for the asymptotics of the correlation kernel of the
noncolliding Bernoulli random walks.

4.1. A change of variables. Changing the variables as z = t2z+x2, w = t2w+
x2 and employing the shorthand notation

(4.1) �t = t1 − t2, �x = x1 − x2

turns the kernel (2.2) of the noncolliding Bernoulli random walk into

KBernoulli
�a;β (t1, x1; t2, x2)

= 1�x≥01�t>0(−1)�x+1

(
�t

�x

)

+ 1

(2π i)2

∫ −1+ 1
2 t−1

2 +i∞
−1+ 1

2 t−1
2 −i∞

dz
∮

all w poles
dw

(t2 + �t)! · t2
(t2 − 1)!

× (t2z + 1)t2−1

(t2w − �x)t2+�t+1

× 1

w − z

sin(πt2w)

sin(πt2z)

(
1 − β

β

)t2(w−z) N∏
r=1

t2z + x2 − ar

t2w + x2 − ar

.(4.2)

Here, z is integrated over a vertical line (which crosses the real line to the right of
−1), and the w integration contour (a circle or a union of two circles, cf. Figure 2)
must encircle all the w poles of the integrand except w = z. Note that now these
poles all belong to {−1 + t−1

2 (�x − �t), . . . , t−1
2 (�x − 1), t−1

2 �x}.
From (4.2), we see that by shifting the initial data �a ∈ W

N it is possible
to take x2 = 0. Since the initial data is arbitrary and its finite shifts do not
change our Assumptions 1 and 2, throughout the sequel without loss of general-
ity we may and will assume that x2 = 0, and so x1 = �x ∈ Z is fixed through-
out the analysis. Moreover, since we aim to study the asymptotic behavior of
KBernoulli

A(N);β (t1 + T (N), x1; t2 + T (N),0) (cf. Theorem 2.7) and finite shifts in the t

parameters can be incorporated into T = T (N), we may also assume that t2 = T

and t1 = �t + T , where �t ∈ Z is fixed.
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4.2. Definition of the function S(z). With the notation explained in Sec-
tion 4.1, rewrite the integrand in (4.2) (without 1/(w − z)) as follows:

(T + �t)! · T
(T − 1)!

(T z + 1)T −1

(T w − �x)T +�t+1

sin(πT w)

sin(πT z)

(
1 − β

β

)T (w−z) N∏
r=1

T z − ar

T w − ar

= exp
{
T
(
S(z) − S(w)

)}(T + �t)! · T
(T − 1)!

(T w + 1)T −1

(T w − �x)T +�t+1
,(4.3)

where

S(z) = 1

T

N∑
r=1

log
(

z − ar

T

)
+ 1

T

T −1∑
i=1

log
(

z + i

T

)

− 1

T
log

(
sin(πT z)

)− z log
(
β−1 − 1

)
.(4.4)

Let us discuss the choice of branches of the logarithms. Because S(z) is expo-
nentiated in (4.3), different choices of branches lead to the same integrand. How-
ever, a certain particular choice makes S(z) holomorphic in the upper half-plane
H = {z ∈ C : Im z > 0}, which will be convenient in Section 6. Let us restrict our
attention to H, the situation in the lower half-plane is analogous (however, one
clearly cannot choose a branch making S(z) holomorphic in the whole complex
plane).

The standard branch of the logarithm, denoted by log z, has the cut along the
negative real axis, and takes positive real values for real z > 1. Let logH z denote a
branch in the upper half-plane which extends holomorphically to R \ {0} and has
the cut along the negative imaginary axis:

logH z = log
(
ze−iπ/2)+ iπ/2.

For z ∈ H, the branches log z and logH z coincide. We will use logH for the loga-
rithms of z − ar/T and z + i/T in (4.4). Next, simply plugging sin(πT z) into any
of these logarithms does not produce a continuous function in H. Let us use (2.11)
instead, and define

(4.5) log(sinπz)H = log(πz) +
∞∑

k=1

(
log(1 + z/k) + log(1 − z/k)

)
.

In the right-hand side, the logarithms are standard, and we mean direct substitution.
The series in k converges for any fixed z ∈ H because it is bounded by the sum of
C/k2. One can check that alternatively (4.5) can be written as

(4.6) log(sinπz)H = logH(sinπz) − 2π i
⌊

1

2
Re(z) + 1

2

⌋
,

where logH(sinπz) is the direct substitution. This expression provides a holomor-
phic continuation of log(sinπz)H into R \Z. From (4.6), it readily follows that

(4.7) log
(
sin

(
π(x + iy)

))
H

= −iπ(x + iy)+ iπ/2− log 2+o(1), y → +∞,

uniformly in x ∈R (the remainder o(1) is periodic in x).
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Therefore, the function S(z) takes the form

S(z) = 1

T

N∑
r=1

logH

(
z − ar

T

)
+ 1

T

T −1∑
i=1

logH

(
z + i

T

)

− 1

T
logH

(
sin(πT z)

)+ 2π i
T

⌊
1

2
Re(T z) + 1

2

⌋
− z log

(
β−1 − 1

)
.(4.8)

With these choices of branches it becomes holomorphic in H, and extends to z ∈R

everywhere except the singularities. Recall the notation LT = LT (N) (2.7) and
A= A(N), and denote

(4.9)
lT = lT (N) =

{
. . . ,−1 − 2

T
,−1 − 1

T
,−1

}
∪
{

0,
1

T
,

2

T
, . . .

}
,

a = a(N) =
{
a1

T
,
a2

T
, . . . ,

aN

T

}
.

The set of (nonremovable) singularities of S(z) is lT �a (the symmetric difference)
because of the cancellations in (4.8) with the help of (4.5).

The function S′(z) defined by (2.6) is simply the derivative of S(z). Note that
this derivative does not depend on choices of the branches.

We will study the asymptotic behavior of the kernel (4.2) by means of the steep-
est descent method. That is, we will find critical points of the function S(z) (i.e.,
where S′(z) = 0) and deform the contours so that they pass through these crit-
ical points and are steepest descent for Re S(z) (i.e., Re S(z) on these contours
decreases or increases the most). As was first noted in [53], Section 3.2, having
a pair of nonreal complex conjugate simple critical points zc and z̄c (plus certain
properties of the integration contours) leads to the discrete sine kernel.

5. Existence of nonreal critical points: Proof of Proposition 2.6. In this
section, we deal with properties of S′(z) (2.6), and prove Proposition 2.6 (stating
that the equation S′(z) = 0 has a unique root zc = zc(N) in H, and it is uniformly
bounded away from the real line and infinity) through a series of lemmas.

LEMMA 5.1. The equation S′(z) = 0 has at most one pair of nonreal complex
conjugate roots.

PROOF. The sum over |j | < M in (2.8) converges, as M → +∞, uniformly
on compact sets in C to the corresponding principal value sum (i.e., the left-hand
side of (2.8)). Therefore, by Hurwitz’s theorem, for the purpose of counting critical
points it is enough to prove that the following equation (approximating S′(z) = 0):

(5.1)
N∑

r=1

1

T z − ar

− ∑
j∈LT ∩{−M,...,M}

1

T z − j
= log

(
β−1 − 1

)
,

has at most one pair of nonreal complex roots for all large enough M .



UNIVERSALITY OF LOCAL STATISTICS 2713

FIG. 8. Plot of the left-hand side of (5.1) as a function of z ∈ R. The parameters are
A = (−5,−3,−2,4,6,7,8), T = 7, M = 10 and d = 14. Note that for β �= 1

2 equation (5.1) has
one extra real root belonging to one of the semi-infinite rays.

Let d be the size of (LT �A) ∩ {−M, . . . ,M}, this is the number of poles in
the left-hand side of (5.1) after canceling out equal terms with opposite signs.
Multiplying by the common denominator turns equation (5.1) into a polynomial
equation of degree d if β �= 1

2 , and of degree d − 1 otherwise (when the logarithm
in the right-hand side vanishes).

Let us demonstrate that (5.1) already has at least d − 3 real roots. The left-hand
side of (5.1) has d poles which divide the real line onto d − 1 segments of finite
length, plus two semi-infinite rays. These d poles are of two types (see Figure 8
for an example):

• For all ai ∈ {−T + 1, . . . ,−1}, the pole comes from the term 1
T z−ai

.
• For points of {−M, . . . ,−T − 1,−T } ∪ {0,1, . . . ,M} which are not equal to

any ai the pole comes from the term − 1
T z−�

of the opposite sign.

Clearly, on a segment between any two poles of the same sign the left-hand side of
(5.1) takes all values between −∞ and +∞, and thus equation (5.1) has at least
one root on this segment. Among the d − 1 segments of finite length, at most two
have endpoints which are singularities of different types, and thus the presence of
a root there is not guaranteed. Thus, there are at least d − 3 real roots. Because the
coefficients of (5.1) are real, its nonreal roots come in complex conjugate pairs,
and so this equation cannot have more than one such pair of nonreal roots. �

Lemma 5.1 implies that there is at most one critical point in the upper half-
plane. In the rest of this section, we show its existence, and obtain a more precise
control on the position of this critical point. The complex equation S′(z) = 0 (2.6)
is equivalent to a pair of real equations in z = x + iy, x ∈R, y ∈ R>0:

0 = Im S′(x + iy)

= − 1

T

N∑
r=1

y

y2 + (x − ar/T )2 + 1

T

∑
j∈LT

y

y2 + (x − j/T )2 ,(5.2)

0 = Re S′(x + iy)
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=
N∑

r=1

1

T

x − ar/T

y2 + (x − ar/T )2

− p.v.
∑

j∈LT

1

T

x − j/T

y2 + (x − j/T )2 − log
(
β−1 − 1

)
.(5.3)

Note that the infinite sum in (5.2) is absolutely convergent, while in (5.3) we need
to use the principal value summation.

We start from (5.2), and rewrite it in a more compact form. For a discrete subset
U ⊂ R, define the atomic measure

(5.4) MT [U ] = 1

T

∑
u∈U

δu

(note that it is not necessarily a probability or even a finite measure), and denote
by

(5.5) Cy(u) = y

π(y2 + u2)

the Cauchy probability density on R rescaled by y > 0. Using this notation, rewrite
(5.2) as

(5.6) 0 = 1

π
Im S′(x + iy) = −(

MT [a] ∗ Cy

)
(x) + (

MT [lT ] ∗ Cy

)
(x),

where “∗” means the usual convolution of measures.

LEMMA 5.2. Under Assumptions 1 and 2, for each 0 < δ < 1 there exists
ε0 > 0 (which may depend on constants in our assumptions but not on the choice
of A(N)), such that for any 0 < ε < ε0 there is N0 ∈ Z≥1, and for all N > N0 (see
Figure 9):

FIG. 9. Signs of Im S′(z) along the curves described in Lemma 5.2. Blue dashed curves represent
a possible part of the boundary of the set U inside D; see Lemma 5.4 below.
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• Im S′(x + iy) > 0 for all (x, y) such that
√

x2 + y2 = ε−1 and y ≥ ε, and for

all (x, y) = (x, ε), where x ∈ [−ε−1,−1 − εδ) ∪ (εδ, ε−1];
• Im S′(x + iy) < 0 for all (x, y) = (x, ε), where x ∈ (−1 + εδ,−εδ).

REMARK 5.3. The presence of δ in this lemma and Lemma 5.4 below is not
essential. However, δ is put here to better link these statements with Lemma 5.5
below where δ plays an important role.

PROOF OF LEMMA 5.2. Fix ε > 0. As N (and thus T ) grows, the absolutely
convergent sum (MT [lT ] ∗ Cy)(x) is a Riemann sum for the corresponding inte-
gral, and it approximates the integral uniformly on compact subsets of the upper
half-plane (and in particular, for (x, y) in each of the sets described in the hypothe-
ses of the lemma). Thus, for any c > 0 there exists N0 such that for all N > N0,

∣∣∣∣(MT [lT ] ∗ Cy

)
(x) − 1

π

(∫ −1

−∞
+
∫ ∞

0

)
y du

y2 + (x − u)2

∣∣∣∣ < c.

The integral above can be explicitly evaluated, it is equal to

1 + 1

π
tan−1

(
x

y

)
− 1

π
tan−1

(
x + 1

y

)
.

For small y, this expression is close to 1 if x ∈ (−∞,−1)∪ (0,+∞), and close to

0 if x ∈ (−1,0). Moreover, for
√

x2 + y2 = ε−1 and y ≥ ε this expression is close
to 1, too.

Let us now deal with (MT [a] ∗ Cy)(x), which enters (5.2) with a negative sign.
We aim to show that this sum is bounded away from 0 and 1, which will imply
the claim. Use Assumption 1 and take N so large that Q > 2T ε−1. Throw away
summands for which |ai | > 2T ε−1, and then split the segment (−2T ε−1,2T ε−1)

into 4T ε−1/D segments of the form (−2T ε−1 + jD,−2T ε−1 + (j + 1)D), each
of which contains at least ρ•D points from the configuration A. On each of these
segments, replace the summands 1

πT
y

y2+(x−ar/T )2 by ρ•D times the minimum of
1

πT
y

y2+(x−a/T )2 over a belonging to the corresponding segment. This allows us to
estimate (MT [a] ∗ Cy)(x) from below by a Riemann sum of the integral

ρ•
∫ 2ε−1

−2ε−1

1

π

y du

y2 + (x − u)2 = ρ•
π

[
tan−1

(
2ε−1 − x

y

)
+ tan−1

(
2ε−1 + x

y

)]

within error O(T −1ε−1) which goes to zero. For y = ε, the expression in the

square brackets is close to π , and for
√

x2 + y2 = ε−1 and y ≥ ε it is ≥ π
2 . There-

fore, (MT [a] ∗ Cy)(x) ≥ ρ•
2 .
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The other estimate is obtained in a similar manner but now we assume that all
locations outside (−2T ε−1,2T ε−1) are occupied by particles from the configura-
tion A. This allows us to write

(
MT [a] ∗ Cy

)
(x) ≤ ρ•

π

∫ 2ε−1

−2ε−1

y du

y2 + (x − u)2

+
∫
R\(−2ε−1,2ε−1)

1

π

y du

y2 + (x − u)2 + O

(
1

T ε

)

= ρ• − 1

π

[
tan−1

(
2ε−1 − x

y

)
+ tan−1

(
2ε−1 + x

y

)]

+ 1 + O

(
1

T ε

)
≤ 1 + ρ•

2

for large enough N . This completes the proof. �

LEMMA 5.4. Under Assumptions 1 and 2, for each 0 < δ < 1 there exists
ε0 > 0 (which may depend on constants in our assumptions but not on the choice
of A(N)), such that for any 0 < ε < ε0 there is N0 ∈ Z≥1, and for all N > N0 there
exists a curve γ = γ (N) in the upper half-plane with the following properties:

• For all z ∈ γ we have Im S′(z) = 0, Im(z) ≥ ε, and |z| < ε−1;
• The curve γ starts in the set {x + iε : −1 − εδ < x < −1 + εδ}, and ends in the

set {x + iε : −εδ < x < εδ}.

PROOF. Let D = {x + iy ∈ C : y > ε,
√

x2 + y2 < ε−1}, and denote

U = D ∩ {
x + iy ∈ C : Im S′(x + iy) < 0

}
.

By Lemma 5.2, the part of the boundary of U which lies inside the interior of D is
a union of several curves whose start and end points belong to{

x + iε ∈ C : − 1 − εδ < x < −1 + εδ or − εδ < x < εδ};
cf. Figure 9.14

By continuity and Lemma 5.2, on any path from the segment {x+ iε : −1+εδ <

x < −εδ} (where Im S′(z) < 0) to the curved boundary of D (where Im S′(z) > 0)
there exists a point where Im S′(z) = 0. Thus, as γ we can take any of the curves
forming the boundary of U inside D which starts to the left of −1 + εδ , ends to the
right of −εδ , and does not intersect the set {x + iε} except at its endpoints. This
implies the claim. �

14One can show that these curves do not intersect, that is, that S′′(z) cannot vanish where Im S′(z) =
0, but we do not need this fact.
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LEMMA 5.5. Under Assumptions 1 and 2, there exist 0 < δ < 1 and ε0 >

0, (which may depend on constants in our assumptions but not on the choice of
A(N)), such that for each 0 < ε < ε0 there exists N0 ∈ Z≥1, and for all N > N0
we have:

• Re S′(x + iε) < −1 for all −1 − εδ < x < −1 + εδ ;
• Re S′(x + iε) > 1 for all −εδ < x < εδ .

PROOF. We will prove only the second claim, as the first one is analogous.
We will specify the exact value of ε0 at the end of the proof, and for now let us
just fix arbitrary ε < ε0 < 1 and δ ∈ (0,1). In addition, take a large positive real
R. If R and N are large enough, then we can restrict the summation in the infinite
principal value sum in (5.3) to j ∈ LT ∩ [−RT ,RT ], so that∣∣∣∣p.v.

∑
j∈LT

1

T

x − j/T

y2 + (x − j/T )2 − ∑
j∈LT ∩[−RT ,RT ]

1

T

x − j/T

y2 + (x − j/T )2

∣∣∣∣ < 1,

y = ε.

In turn, the sum over j ∈ LT ∩[−RT ,RT ] is the Riemann sum for the correspond-
ing integral, so for large N we have∣∣∣∣p.v.

∑
j∈LT

1

T

x − j/T

y2 + (x − j/T )2 −
∫
u∈[−R,−1]∪[0,R]

(x − u)du

y2 + (x − u)2

∣∣∣∣ < 2,

y = ε.(5.7)

Let us now bound the sum over the configuration A(N) in (5.3). For that, we
split this sum into three parts:

∑
i∈A(N)

1

T

x − i/T

y2 + (x − i/T )2

= ∑
i∈A(N)∩[−RT ,RT ]

1

T

x − i/T

y2 + (x − i/T )2

+ ∑
i∈A(N)\[−RT ,RT ]

1

T

(
x − i/T

y2 + (x − i/T )2 + T

i

)

− ∑
i∈A(N)\[−RT ,RT ]

1

i
.(5.8)

The third sum in (5.8) is bounded due to Assumption 2. For the second sum, ob-
serve that

1

T

(
x − i/T

y2 + (x − i/T )2 + T

i

)
= 1

T

y2 + x2 − (i/T )x

(i/T )(y2 + (x − i/T )2)
,
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that is, the second sum over i converges absolutely. Moreover, we can estimate as
N → ∞: ∑

i∈A(N)\[−RT ,RT ]

∣∣∣∣ 1

T

(
x − i/T

y2 + (x − i/T )2 + T

i

)∣∣∣∣
≤ ∑

i∈Z\[−RT ,RT ]

∣∣∣∣ 1

T

y2 + x2 − (i/T )x

(i/T )(y2 + (x − i/T )2)

∣∣∣∣,
and the right-hand side is the Riemann sum for the integral∫

R\[−R,R]

∣∣∣∣ y2 + x2 − ux

u(y2 + (x − u)2)

∣∣∣∣du,

which is uniformly bounded for (x, y) in our segment (where x is around 0). Thus,
the second sum in (5.8) is uniformly bounded by a constant independent of ε.

Finally, for the first sum in (5.8) we use Assumption 1 and approximate sums
by integrals similarly to the proof of Lemma 5.2. To get a lower bound, first throw
away all nonnegative summands in this sum, and write for the remaining ones

(5.9)
∑

i∈A(N)∩[−RT ,RT ]
i/T >x

1

T

x − i/T

y2 + (x − i/T )2 >
1 + ρ•

2

∫ R

x

(x − u)du

y2 + (x − u)2 ,

where N is sufficiently large.
Combining all the estimates, we obtain the following bound. For each ε > 0,

there exists N0 such that for all N > N0 we have

Re S′(x + iy) >
1 + ρ•

2

∫ R

x

(x − u)du

y2 + (x − u)2

−
∫
u∈[−R,−1]∪[0,R]

(x − u)du

y2 + (x − u)2

− log
(
β−1 − 1

)+ “error”,(5.10)

where “error” is uniform in (x, y) in our segment and is independent of ε. Observe
that ∫ R

x

(x − u)du

y2 + (x − u)2 =
∫ R−x

0

−v dv

v2 + y2 >

∫ R+1

0

−v dv

v2 + y2

and

−
∫ R

0

(x − u)du

y2 + (x − u)2 =
∫ R−x

−x

v dv

v2 + y2 >

∫ R−1

−x

v dv

v2 + y2 .

At the same time,

−
∫ −1

−R

(x − u)du

y2 + (x − u)2 = −1

2
log

(
(R + x)2 + y2

(1 + x)2 + y2

)
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can be bounded by an absolute constant since both x and y are close to zero. Thus,
we can write

1 + ρ•

2

∫ R

x

(x − u)du

y2 + (x − u)2 −
∫
u∈[−R,−1]∪[0,R]

(x − u)du

y2 + (x − u)2

>
1 + ρ•

2

∫ R+1

0

−v dv

v2 + y2 +
∫ R−1

−x

v dv

v2 + y2 + C

= −1 + ρ•

4
log

(
(R + 1)2

y2 + 1
)

+ 1

2
log

(
(R − 1)2 + y2

x2 + y2

)
+ C.

Here and below, in this proof C stands for some real constant which is uniform in
x, y and does not depend on ε but may depend on R (but we fixed large R once
and for all in the beginning of the proof). The value of C can change from line to
line. Since y = ε is small, we have

−1 + ρ•

4
log

(
(R + 1)2

y2 + 1
)

= 1 + ρ•

2
logy + C + O

(
ε2).

We also have
1

2
log

(
(R − 1)2 + y2

x2 + y2

)
= 1

2
log

(
y2 + (R − 1)2)− log

√
x2 + y2 > C − δ logy

because x2 + y2 < ε2δ + ε2, which behaves as ε2δ(1 + o(1)) = y2δ(1 + o(1)).
When δ is close enough to 1,

1 + ρ•

2
logy − δ logy

tends to +∞ as y = ε → 0, and we are done. �

PROOF OF PROPOSITION 2.6. Fix ε > 0 and N0 ∈ Z≥1 depending on ε such
that Lemmas 5.2, 5.4 and 5.5 hold (recall that ε < ε0, where ε0 may depend on
constants in our assumptions but not on the choice of A(N)). Consider the curve γ

from Lemma 5.4. This is a continuous curve on which Im S′(z) = 0. Furthermore,
Lemma 5.5 guarantees that Re S′(z) has distinct signs at the endpoints of γ . Since
Re S′(z) is a continuous function on γ , we conclude that there exists zc ∈ γ for
which Re S′(zc) = 0, and so S′(zc) = 0 (as S′ depends on N , so does zc, and this
statement is valid for all N > N0). Lemma 5.1 then implies that there are no other
critical points in the upper half-plane and, therefore, zc is the desired unique one.

As the compact set Z capturing zc take {x + iy ∈ C : y ≥ ε,
√

x2 + y2 ≤ ε−1}. �

6. Asymptotics of the kernel: Proofs of Theorems 2.7, 2.10, 2.11 and 2.12.
In this section, based on the existence of nonreal critical points afforded by Propo-
sition 2.6, we establish the approximation of the correlation kernel (2.2) of the
noncolliding Bernoulli random walk by the extended sine kernel, and also the cor-
responding bulk limit theorems. That is, here we prove the remaining statements
from Section 2.3.
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6.1. Behavior of Im S(z) and Re S(z). We aim to describe the steepest descent
contours for Re S(z). For that, we need to analyze the behavior of Re S(z) and
Im S(z) in various parts of the upper half-plane H. Recall that we defined S(z)
in Section 4.2 so that it is holomorphic in H and extends to the real axis except
the singularities at lT �a (all other logarithmic singularities belonging to 1

T
Z are

removable).
We start by considering the behavior of Im S(z) close to the real line, and define

(6.1)
br

0 = min(Z≥0 \A), b�
0 = max

(
A∩ {−T + 1, . . . ,−1}),

b�−1 = max(Z≤−T \A), br−1 = min
(
A∩ {−T + 1, . . . ,−1}).

Clearly,

b�−1 ≤ −T < −T + 1 ≤ br−1 ≤ b�
0 ≤ −1 < 0 ≤ br

0.

LEMMA 6.1. For x ∈ R, x /∈ lT �a, the function Im S(x) is piecewise con-
stant, making jumps at points of lT �a. It weakly increases for x ∈ (−∞, br−1/T )∪
(b�

0/T ,+∞), and weakly decreases for x ∈ (b�−1/T , br
0/T ). See Figure 10 for an

example.

PROOF. This is straightforward from the definition of S(z) in Section 4.2 and
the observation that Im(logH(x)) = π1x<0, where x ∈ R \ {0}. �

LEMMA 6.2. Fix 0 < β < 1 and the constants in Assumption 2. There exists
C > 0 depending only on these choices, and such that for each T ,N = 1,2, . . . ,
x ∈ R, y > 0 we have (note that y2 − y logy in the right-hand side is positive for
y > 0)

(6.2)
∣∣Im S(x + iy) − Im S(x + i0)

∣∣ ≤ C ·
(
y log

(|x| + 1
)− y logy + y2 + 1

T

)
.

FIG. 10. Staircase-type plot of Im S(x) for x ∈R, with parameters as in Figure 8. The singularities
leading to the down steps are {− 6

7 , . . . ,− 1
7 } ∩ {− 5

7 ,− 3
7 ,− 2

7 , 4
7 , 6

7 ,1, 8
7 }.
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REMARK 6.3. The value of Im S(x + i0) when x ∈ lT �a (so that this piece-
wise linear function makes a jump) can be chosen arbitrarily (as long as Lemma 6.1
holds)—this introduces an error of at most 1/T which is included in the right-hand
side of (6.2).

PROOF OF LEMMA 6.2. Recall the definition (4.8) of the function S. Our aim
is to obtain a uniform bound on the increment Im S(x + iy) − Im S(x + i0).

We start from the second line in (4.8). For −z log(β−1 − 1) the increment is lin-
ear in y and fits into the right-hand side of (6.2). For 2π i

T
�1

2 Re(T z)+ 1
2�, the incre-

ment vanishes. For − 1
T

logH(sin(πT z)), the imaginary part of logH(·) is bounded,
since it is an argument of a complex number. Thus, the increment is bounded by
C/T .

We proceed to the first line of (4.8). Let us analyze the first term, 1
T

×∑N
r=1 logH(z − ar

T
). Choose a δ > 0, which will be later set to δ = 4y, and split

the sum into

1

T

N∑
r=1

logH

(
x + iy − ar

T

)

= 1

T

∑
1≤r≤N : |x−ar/T |<δ

logH

(
x + iy − ar

T

)

+ 1

T

∑
1≤r≤N : |x−ar/T |≥δ

logH

(
x + iy − ar

T

)
.(6.3)

The first term in (6.3) has at most 2δT summands, the increment of each one
between the points x + iy and x + i0 is bounded by a constant. Therefore, the
increment of the first term is bounded by C · δ = 4Cy.

For the second term in (6.3), we compute the increment directly as

(6.4) Im
1

T

∑
1≤r≤N : |x−ar/T |≥δ

logH

(
1 + iy

x − ar/T

)
.

By our choice of δ, | iy
x−ar/T

| ≤ 1/4. Therefore, we can Taylor expand each logH(·)
and bound the absolute value of (6.4) as

(6.5)
y

T

∣∣∣∣ ∑
1≤r≤N : |x−ar/T |≥δ

1

x − ar/T

∣∣∣∣+ C · y2

T

∑
1≤r≤N : |x−ar/T |≥δ

1

(x − ar/T )2 .

The second term in (6.5) is smaller than

Cy2
∫
|u|>δ

1

u2 = Cy · 2y

δ
< Cy,



2722 V. GORIN AND L. PETROV

and, therefore, fits into the right-hand side of (6.2). For the first term in (6.5), we
write 1

u−v
= u

(u−v)v
− 1

v
and bound from above as follows:

y

T

∣∣∣∣ ∑
1≤r≤N :

|x−ar/T |≥δ, |ar |>T

(
x

(x − ar/T )(ar/T )
− T

ar

)∣∣∣∣

+ y

T

∣∣∣∣ ∑
1≤r≤N :

|x−ar/T |≥δ, |ar |≤T

1

x − ar/T

∣∣∣∣

≤ y

∣∣∣∣ ∑
1≤r≤N : |ar |>T

1

ar

∣∣∣∣+ y

∣∣∣∣ ∑
1≤r≤N : |x−ar/T |<δ, |ar |>T

1

ar

∣∣∣∣
+ y

T

∣∣∣∣ ∑
1≤r≤N :

|x−ar/T |≥δ, |ar |>T

x

(x − ar/T )(ar/T )

∣∣∣∣

+ y

∣∣∣∣ ∑
1≤r≤N :

|x−ar/T |≥δ, |ar |≤T

1

T x − ar

∣∣∣∣.(6.6)

In the right-hand side of (6.6) the first term is bounded by C ·y due to Assumption 2
and Remark 2.5. The second term has at most 2δT summands, each of which
is at most 1/T . Therefore, the second term in (6.6) is bounded from above by
2yδ = 4y2. For the third term, we can replace the sum over ar by the sum over all
integers j satisfying the inequalities |x − j/T | ≥ δ, |j | > T , and then upper bound
the sum by the integral to get

y

∫
|u−x|≥δ, |u|>1

x du

(x − u)u
= y lim

M→+∞

∫
|u−x|≥δ,1<|u|<M

(
1

u
+ 1

x − u

)
du.

At this point, we need to consider several cases depending on the order of the
points x ± δ and ±1. In all of the cases, the integral evaluates into a combination
of the expressions of the form log |x ± δ|, log δ and log |x ± 1|. We conclude that
this term fits into the form of the right-hand side of (6.2).

For the fourth term on the right-hand side of (6.6), we again replace ar by all
integers and then use

∑θ2T
n=θ1T

n−1 ≈ log(θ2/θ1). As a result we get a bound of the
form C(logy + 1), which fits into the right-hand side of (6.2).

We have obtained a uniform bound for the increment of each term in (4.8) except
for 1

T

∑T −1
i=1 logH(x + iy + i

T
), and we proceed to bound this term. When x is

bounded away from 0 and −1, the argument is the same as we just had. However,
when x is close to 0 or −1, we need to proceed differently. Let us split the sum
into two according to the sign of x + i

T
. Each of them is analyzed in the same way,
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so we will only deal with one. This reduces the problem to bounding

1

T

T ′−1∑
i=1

Im
[
logH

(
x + i

T
+ iy

)
− logH

(
x + i

T
+ i0

)]
,

x ≥ − 1

T
,T ′ ≤ T .(6.7)

Each term in (6.7) has the form

Im
[
logH

(
1 + iy

x + i
T

)]
= arctan

(
y

x + i
T

)
.

For x = −1/T , i = 1, the corresponding term in (6.7) vanishes. For all other cases,
we note that arctan is monotone and use arctan(u) ≤ min(π/2, u), u ≥ 0. We thus
bound (6.7) by

π

2
· Ty + 1

T
+ 1

T

T ′−1∑
i=�Ty�+1

(
Ty

i − 1

)
≤ π

2
· Ty + 1

T
+ y

∫ T

T min(y,1)

1

u
du

≤ π

2
· Ty + 1

T
− y log

(
min(y,1)

)
.

Since the last expression fits into the right-hand side of (6.2), we are done. �

We now turn to the real part Re S(z).

LEMMA 6.4. Under Assumptions 1 and 2 and with constants depending only
on these assumptions, the following estimates hold:

1. For any k ∈ Z, N = 1,2, . . . , and y > 0 we have∣∣∣∣ ∂

∂y
Re S

(
k + 1/2

T
+ iy

)∣∣∣∣ ≤ π.

2. There exists Y > 0, N0 > 0, such that for any |x| < 1
2 · Q(N)

T (N)
, y > Y , and

N > N0 we have

∂

∂y
Re S(x + iy) = − ∂

∂x
Im S(x + iy) < −1

y
.

3. For each X > 0, there exist C,N0 > 0 such that for all 0 < y < 1/2, |x| < X

and all N > N0 we have∣∣∣∣ ∂

∂x
Re S(x + iy)

∣∣∣∣ =
∣∣∣∣ ∂

∂y
Im S(x + iy)

∣∣∣∣ < C

(
log

(
y−1)+ 1

y2T 2

)
.
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PROOF. Using (4.5), we see that, apart from the linear term −(Re z) log(β−1 −
1), the function Re S(z) is an infinite linear combination (with coefficients ±1) of
shifts of 1

T
log |z|. We have for any x, y ∈R

∂

∂y
log |x + iy| = y

x2 + y2 .

In particular, for j ∈ Z,∣∣∣∣ ∂

∂y

1

T
log

∣∣∣∣k + 1/2

T
+ iy + j

T

∣∣∣∣
∣∣∣∣ = 4T |y|

(2k + 2j + 1)2 + 4T 2y2 .

Thus, the absolute value of the derivative of Re S in the first claim can be bounded
in the absolute value by

∑
j∈Z

4T |y|
(2j + 1)2 + 4T 2y2 = π tanh

(
πT |y|) ≤ π,

this is summed with the help of a partial fraction expansion and (2.10), and tanh is
bounded by one. This establishes the first claim.

For the second claim, we need to be more careful with signs. Recalling that
A(N) is the initial condition and using notation (2.7), we write

∂

∂y
Re S(x + iy) = − 1

T

∑
a∈LT \A(N)

y

(x − a/T )2 + y2

+ 1

T

∑
a∈A(N)∩{1−T ,...,−1}

y

(x − a/T )2 + y2 .(6.8)

Our aim is to show that in the last sum the first term dominates. Using Assump-
tion 1 and replacing sums by integrals (with multiplicative error at most 2), we
upper bound (6.8) by

−1 − ρ•

2

(∫ −1

−Q(N)/T
+
∫ Q(N)/T

0

)
y dv

(v − x)2 + y2 + 2
∫ 0

−1

y dv

(v − x)2 + y2

= −1 − ρ•

2

(∫ (x−1)/y

−x/y−Q(N)/(T y)
+
∫ −x/y+Q(N)/(T y)

x/y

)
du

u2 + 1

+ 2
∫ −x/y

−(x+1)/y

du

u2 + 1

≤ −1 − ρ•

2

∫ Q(N)/(2Ty)

−Q(N)/(2Ty)

du

u2 + 1
+ 3

∫ −x/y

−(x+1)/y

du

u2 + 1

≤ −(
1 − ρ•) arctan

(
Q(N)

2Ty

)
+ 3

y
.(6.9)
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Considering separately the cases of small and large y, using Q(N)/T (N) → ∞
as N → ∞, we see that the last expression is smaller than −1/y for large N , and
the second claim is proven. (Notice that ∂

∂y
Re S(x + iy) = − ∂

∂x
Im S(x + iy) is the

Cauchy–Riemann equation.)
Let us turn to the third claim. Assume that x is fixed. We have

∂

∂x

1

T
log

∣∣∣∣x + iy + j

T

∣∣∣∣ = T x + j

y2T 2 + (T x + j)2 ,

so

∂

∂x
Re S(x + iy) =

N∑
r=1

T x − ar

y2T 2 + (T x − ar)2 +
T −1∑
i=1

T x + i

y2T 2 + (T x + i)2

− log
(
β−1 − 1

)− ∂

∂x

1

T
log

∣∣sin
(
πT (x + iy)

)∣∣.(6.10)

Fix sufficiently large R > 0, which might depend on x, but not on y. For the
first sum in (6.10) with |ar | < RT , and also for the second sum in (6.10) we upper
bound the absolute values of the sums by twice of

2RT∑
j=0

j + 1

j2 + y2T 2 ≤
2RT∑
j=0

j

j2 + y2T 2 + 1

y2T 2 +
∞∑

j=1

1

j2

≤
∫ 2R

0

v

v2 + y2 dv + 1

y2T 2 + C

= 1

2
log

(
1 + 4R2

y2

)
+ 1

y2T 2 + C.

Therefore, the contribution of these terms admits the desired bound. Next, for
|ar | > RT in the first sum in (6.10) we have

1

T x − ar

− T x − ar

y2T 2 + (T x − ar)2 = T 2y2

(T x − ar)(T 2y2 + (T x − ar)2)
,

and summing this over |ar | > RT has order y2/R2, which is bounded. Thus, the
contribution from |ar | > RT in the first sum in (6.10) is the same as if the sum-
mands were just 1/(T x − ar). Observe that

1

T x − ar

+ 1

ar

= T x

ar(T x − ar)

and the sum of these quantities over |ar | > RT with large R is bounded (recall that
|x| is bounded and R is chosen to be much larger than it). Thus, the sum of the
terms with |ar | > RT in the first sum in (6.10) has the same order as the sum of
1/ar over |ar | > RT , which is bounded by Assumption 2.
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Finally, for the last summand in (6.10) we have∣∣∣∣ ∂

∂x

1

T
log

∣∣∣sin
(
πT (x + iy)

)∣∣∣∣∣∣∣ = π

∣∣∣∣cos(πT (x + iy))

sin(πT (x + iy))

∣∣∣∣ ≤ C

(
1 + 1

T 2y2

)
,

where we used the bound | sin(α + iβ)| ≥ C · min(|β|2,1) for an absolute constant
C > 0. �

6.2. Steepest descent/ascent contours in a large rectangle. Our next aim is to
present a new set of contours for the double contour integral expression of Theo-
rem 2.15. In this section, we explain their geometry in a (sufficiently large) com-
pact subset of the upper half-plane. In discussion of integration contours in the rest
of this section, it suffices to argue in the upper half-plane: the contour configura-
tion in the lower half-plane (with a suitable choice of branches of logarithms, cf.
Section 4.2) is obtained by reflection with respect to the real line.

Recall the critical point zc = zc(N) afforded by Proposition 2.6. We need the
following statement which will be proven in Section 6.4 below.

LEMMA 6.5. Under Assumptions 1 and 2 there exists C > 0, such that C−1 <

|S′′(z)| < C for all z in the upper half-plane satisfying |z − zc| < C−1, and all
N = 1,2, . . . .

Fix three constants: small ε < 0 and large Rx,Ry > 0, which do not depend on
N or A(N), but might depend on the constants in Assumptions 1, 2. There are four
contours {z : Im S(z) = Im S(zc)} emanating from the critical point. Let us trace
these contours until they leave a rectangle R := {x + iy ∈ C : |x| < Rx, ε < y <

Ry} (for some Ry > ε > 0, Rx > 0). Let z1, z2, z3, z4 be the escape points where
the contours leave the rectangle.

PROPOSITION 6.6. There exist Ry > ε > 0, Rx > 0, such that for all large
enough N :

1. Three escape points, z1, z2, z3 (ordered as Re z1 < Re z2 < Re z3) are on the
lower side Im z = ε, and z4 is on the upper side Im z = Ry .

2. The real part Re S(z) grows along the contours escaping through z1 and z3,
and decays along the contours escaping through z2, z4.

3. The escape points on the lower sides of the rectangle satisfy

(6.11)

Re z1 ∈ (−∞,−1 + ε log2 ε
)
,

Re z2 ∈ (−1 − ε log2 ε, ε log2 ε
)
,

Re z3 ∈ (−ε log2 ε,+∞)
.

4. Ry > Y , where Y is from the second claim of Lemma 6.4.
5. ε < 1

10 mini=1,2,3 |Re S(zi) − Re S(zc)|.
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PROOF. First, Re S(z) can not have local extrema on the contours {z :
Im S(z) = Im S(zc)} inside the rectangle (expect at point zc), as any such extremum
would be a new critical point for S(z) contradicting Proposition 2.6. Therefore,
Re S(z) is monotone along these contours. This also means that these contours
cannot intersect anywhere in the rectangle except at zc. Out of these four con-
tours, along two the real part Re S(z) grows, and along other two it decays. Since
the growth/decay types interlace as the contours leave zc, we conclude that the
growth/decay types also interlace along the boundary of the rectangle.

We now fix arbitrary Ry > Y , such that Im(zc) < Ry/2. The second claim of
Lemma 6.4 implies that (for large N ) Im S(z) is monotone along the top side
Im z = Ry of the rectangle. Therefore, at most one of the points zi , 1 ≤ i ≤ 4,
can be there.

Next, Lemma 6.1 combined with Assumption 1 implies that there exists R > 0
such that Im S(x + i0) > R−1x for x > R and Im S(x + i0) < −R−1x for x < −R.
Thus, Lemma 6.2 implies that we can choose large enough Rx > R, such that

Im S(Rx + iy) > 2
∣∣Im S(zc)

∣∣, Im S(−Rx + iy) < 2
∣∣Im S(zc)

∣∣
for all 0 ≤ y ≤ Ry . We fix such Rx and notice that this choice implies that zi ,
1 ≤ i ≤ 4 do not belong to the vertical sides of the rectangle.

Thus, either three or four of the points zi belong to the bottom horizontal side of
the rectangle. It remains to specify ε > 0, so that there are exactly three and their
positions satisfy (6.11).

By Lemma 6.5, we have a uniform control over the growth/decay of Re S(z)
in a small (but fixed size) neighborhood of zc. Thus, when the contours reach
the boundary of the rectangles, the values of Re S(z) are separated by a constant.
Combining this fact with interlacing of the growth/decay contours and the bound
of the third statement of Lemma 6.4 we conclude that there exists δ > 0 such that
for each 0 < ε < 1/2 and T > ε−1 we have |zi − zj | > δ

log(1/ε)
for all i �= j .

Next, let U ⊂ R denote the set of points x such that Im S(x + 0i) = Im S(zc).
According to Lemma 6.1, U splits into three disjoint sets U1, U2, U3 (some of
which might be empty): U1 ⊂ (−∞,−1], U2 ⊂ [−1,0], U3 ⊂ [0,+∞). Using As-
sumption 1, we see that the diameter of each set Ui is at most D(N)

T (N)
which tends to

0 as N → ∞.
We further would like to show that zi is close to Ui , i = 1,2,3. For that note

that by Assumption 1, the function x �→ Im S(x + i0) has growth bounded away
from 0 in the sense that for some c > 0 we have∣∣Im(

S(x + i0)
)− Im

(
S(x′ + i0)

)∣∣

≥ c · ∣∣x − x′∣∣ if
∣∣x − x′∣∣ ≥ D(N)

T (N)
and

⎧⎪⎪⎨
⎪⎪⎩

x, x′ ∈ [−Rx,−1] or

x, x′ ∈ [−1,0] or

x, x ′ ∈ [0,Rx].
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Thus, using Lemma 6.2 we conclude that for fixed ε > 0 and large N , T (com-
pared to that ε) the real part of each point zi (out of those lying in the bot-
tom horizontal side of the rectangle) should be in Cε log(ε−1)-neighborhood of
U1 ∪ U2 ∪ U3, where C does not depend on T or N . On the other hand, the diam-
eter of each Ui is small and |zi − zj | > δ

log(1/ε)
. Since δ

log(1/ε)
� Cε log(ε−1), we

conclude that the only possibility is that there are precisely three points zi on the
bottom horizontal side of the rectangle (which means that z4 is on the upper hor-
izontal side) and each zi is in Cε log(ε−1) neighborhood of Ui , respectively, for
i = 1,2,3. For small enough ε, we would have Cε log(ε−1) < ε log2(ε), which
completes the proof. �

6.3. Completing the proof of Theorem 2.7. Here, we describe how the new
contours in a large rectangle constructed in Section 6.2 should be continued out-
side the rectangle. (Recall that by symmetry, it suffices to argue in the upper half-
plane only.) We then rewrite the correlation kernel KBernoulli

�a;β in terms of these new
contours, and complete the proof of Theorem 2.7 on approximation of KBernoulli

�a;β
by the extended discrete sine kernel.

Fix Ry > ε > 0, Rx > 0 as in Proposition 6.6. Define the new z contour
Cε

z = Cε
z (N) as follows.15 Inside the rectangle R it coincides with the union of

the steepest descent (for Re S) contours {z : Im S(z) = Im S(zc)} escaping through
the points z2 and z4. After the point z4, we continue the contour vertically so that
it escapes to infinity. Inside the ε-neighborhood of the real line, we have to mod-
ify the steepest descent contour so that it crosses R strictly between −1 and 0. To
achieve that, we add to this contour a horizontal segment of the line Im z = iε, and
then a vertical segment connecting it to the real line such that Cε

z crosses R at a
point of the form (k + 1/2)/T for some k ∈ {−T , . . . ,−1} which is close to z2

within C · (ε log2 ε + T −1). The contour Cε
z is oriented upward.

Next, by Cε
w = Cε

w(N) denote the closed positively oriented contour which in-
side the rectangle R coincides with the union of the steepest ascent (for Re S)
contours {z : Im S(z) = Im S(zc)} escaping through the points z1 and z3. Outside
R we modify the steepest ascent contour so that it encircles {−1 + T −1(�x −
�t), . . . , T −1(�x − 1), T −1�x}, and crosses R at two points of the form (k +
1/2)/T , k ∈ Z, close to z1 and z3 within C · (ε log2 ε + T −1). This is achieved
by adding horizontal and vertical segments similar to Cε

z . See Figure 11 for an
illustration of the new contours Cε

z and Cε
w.

15This contour, as well as Cε
w defined below, also depends on the constants Rx , Ry and other data

in Assumptions 1 and 2. We suppress all this dependence in the notation.
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FIG. 11. Left: Steepest descent/ascent contours {z : Im S(z) = Im S(zc)} for the function Re S(z)
in the upper half-plane. Regions where Re S(z) < Re S(zc) are shaded. The parameters A and T are
as in Figure 8, and β = 0.4. Right: Modification of the contours in an ε-neighborhood of the real
line.

PROPOSITION 6.7. With the above definitions and conventions, for any N >

N0 the kernel (4.2) can be written as

KBernoulli
�a;β (T + �t,�x;T ,0)

= Kzc/(zc+1)(T + �t,�x;T ,0) + 1

(2π i)2

∫
Cε

z

dz
∮
Cε

w

dw
1

w − z

× (T + �t)! · T
(T − 1)!

(T z + 1)T −1

(T w − �x)T +�t+1

sin(πT w)

sin(πT z)

(
1 − β

β

)T (w−z)

×
N∏

r=1

T z − ar

T w − ar

+ O
(
T −1).(6.12)

PROOF. All poles of the integrand in (4.2) are on the real line. This integrand
has no poles at z ∈ {b�−1/T , . . . , br

0/T } (recall the notation (6.1)), and thus we can
drag the point of intersection of the z contour with the real line to the desired
location dictated by the contour Cε

z . Hence we can deform the whole z contour
to coincide with Cε

z without crossing any poles. Next, let us unite the two circles
comprising the w contour in (4.2) into the contour Cε

w intersecting with Cε
z at the

critical points zc and z̄c. This leads to an additional integral of the residue at w = z
over the arc of Cε

z from z̄c to zc crossing the real line between −1 and 0; see
Figure 12. This deformation of the w contour does not cross any other w poles of
the integrand.16

16The desire that these deformations do not cross any real poles is the reason why the contours Cε
z

and Cε
w should differ from the steepest descent/ascent ones close to the real line.
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FIG. 12. Unifying two circles into a single w contour.

The expression coming from the residue of the integrand at w = z behaves as

− 1

2π i
(T + �t)! · T

(T − 1)!
(T w + 1)T −1

(T w − �x)T +�t+1

= − 1

2π i

(
1 + O

(
T −1))T �t+2

× �(T w + T )�(T w − �x)

�(T w + 1)�(T w − �x + T + �t + 1)

= − 1

2π i

(
1 + O

(
T −1))w−�x−1(1 + w)−�t+�x−1,(6.13)

where we used (3.13), and the asymptotic expression is valid for all w ∈ Cε
w (for

real w < −1 one should apply (3.12) to all four gamma functions before using
(3.13)).

The right-hand side of (6.13) above has singularities at w = −1 and w = 0, and
the arc of the contour Cε

z between the critical points z̄c and zc crosses (−1,0). The
integral of the error O(T −1) in (6.13) over the arc from z̄c to zc is bounded by
O(|zc|/T ), which is O(1/T ) because zc belongs to a compact set Z .

Let us now identify the extended sine kernel (2.3) in the remaining terms outside
the double contour integral over Cε

z and Cε
w. Observe that for �t ≥ 0 we have

Res
w=0

(
w−�x−1(1 + w)−�t+�x−1) = −(−1)�x+1

(
�t

�x

)
1�x≥0.

By dragging the integration arc through 0 for �t > 0, we obtain

1�x≥01�t>0(−1)�x+1

(
�t

�x

)
− 1

2π i

∫ z̄c

zc

w−�x−1(1 + w)−�t+�x−1 dw

= − 1

2π i

∫ z̄c

zc

w−�x−1(1 + w)−�t+�x−1 dw,
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where in the right-hand side the arc crosses (−1,0) for �t ≤ 0 and (0,+∞) for
�t > 0. Changing the variables in the right-hand side as w = z

1−z
(so z = w

1+w )
turns the above integral into Kzc/(zc+1)(T + �t,�x;T ,0) (2.3), as desired. �

To complete the proof of Theorem 2.7 it remains to show that the double contour
integral in (6.12) is negligible as N → +∞. It has the form (cf. (4.3), (4.8))

1

(2π i)2

∫
Cε

z

dz
∮
Cε

w

dw
1

w − z
exp

{
T
(
S(z) − S(w)

)}

× (T + �t)! · T
(T − 1)!

(T w + 1)T −1

(T w − �x)T +�t+1
.(6.14)

We need the following statement which we prove later in Section 6.4.

LEMMA 6.8. Under Assumptions 1 and 2 the length of Cε
w is bounded uni-

formly in N .

This fact together with (6.13) implies that that the parts in (6.14) outside the
exponent are bounded by a constant depending on �x, �t .

For z and w in a fixed small neighborhood of the critical point zc = zc(N) which
is bounded away from R, we can Taylor expand the function S(z). Because the
second derivative of S is nonzero by Lemma 6.5, this leads to a convergent integral

times T − 1
2 which goes to zero. This is a standard part of the steepest descent

analysis, and we refer to, for example, [53], Section 3, for details.
Consider the situation when z and w are outside of this neighborhood of zc. On

the parts of the contours Cε
z and Cε

w inside the rectangle R, we have the steepest
descent/ascent properties. Together with Lemma 6.5, they imply that outside a
sufficiently small neighborhood of zc and for a sufficiently small fixed δ > 0 (both
depend only on the constants in Assumptions 1 and 2):

Re S(z) − Re S(zc) < −δ,

Re S(w) − Re S(zc) > δ.

Along the part of the z contour escaping to infinity Re S(z) cannot increase due to
the second claim of Lemma 6.4.

Let us consider the possible change of Re S along Cε
z and Cε

w close to the real
line. The vertical segments crossing the real line at points (k + 1/2)/T , k ∈ Z,
have length 2ε, and due to the first claim of Lemma 6.4 we see that the change of
Re S is of order ε. The horizontal segments have length C · (ε log2 ε + T −1) for
some C > 0 independent of N or ε (but C might depend on �x, �t). Using the
third claim of Lemma 6.4, we can upper bound the absolute value of the change of
Re S along the horizontal parts of the contours by a constant times(

− log ε + 1

T 2ε2

)(
ε log2 ε + 1

T

)
= 1

ε2T 3 + log2 ε

T 2ε
− log ε

T
− ε log3 ε.
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This can be made much smaller than δ: first choose ε that the forth term is small,
and then choose N (thus T (N)) large enough so that the first three terms are also
small. Therefore, the whole double contour integral (6.14) is negligible in the limit.
This completes the proof of Theorem 2.7.

6.4. Convergent initial data and proofs of Theorems 2.10, 2.11 and 2.12. In
this subsection, we present proofs of Theorems 2.10, 2.11 and 2.12 describing the
convergence of the point processes to the extended sine process under suitable
additional assumptions. Moreover, using similar arguments we prove Lemmas 6.5
and 6.8 which were formulated in the previous two subsections. These lemmas are
not directly involved in the proofs of Theorems 2.10, 2.11 and 2.12.

In addition to Assumptions 1 and 2, let

(6.15) lim
N→+∞

1

T (N)

N∑
i=1

δai(N)/T (N) = μloc,

where μloc is a σ -finite measure, and the limit is understood according to Def-
inition 2.9. By Assumption 1, μloc has a density (with respect to the Lebesgue
measure) which is between ρ• and ρ•.

Let us also assume that the quantities (2.12) have a limit d(R) =
limN→+∞ dN(R). Then the meromorphic function S′(z) (2.6) has a limit as
N → +∞.

LEMMA 6.9. Under the above assumptions and notation, we have
limN→+∞ S′(z) = S′∗(z) for all z ∈ H, where

S′∗(z) =
∫ ∞
−∞

(
1

z − v
+ 1|v|>R

v

)
μloc(dv) − d(R)

+ log(z + 1) − log z + iπ − log
(
β−1 − 1

)
,(6.16)

and R > 0 is arbitrary (the limit does not depend on R). The convergence is uni-
form in z belonging to compact subsets of H.

PROOF. Fix z ∈ H. Let us use formula (2.9) for S′(z). First, we have

−π cot(πT z) = −iπ
eiπT z + e−iπT z

eiπT z − e−iπT z
→ iπ,

because e−iπT z dominates for z ∈ H.
Next, the sum over i = 1, . . . , T − 1 approximates the corresponding Riemann

integral:

T −1∑
i=1

1

T z + i
= 1

T

T −1∑
i=1

1

z + i/T
→

∫ 1

0

dv

z + v
= log(z + 1) − log z,

and the convergence is uniform over z in compact subsets of H.
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Finally, recall the definition of the atomic measure (5.4), and note that (6.15)
means that the measures MT [a] vaguely converge to μloc. The remaining N -
dependent part of (2.9) can be written as

1

T

N∑
r=1

1

z − ar/T
=

∫ +∞
−∞

MT [a](dv)

z − v
.

Since the function 1/(z − v) in v does not have compact support, and its integral
with respect to the Lebesgue measure diverges at infinity, one cannot directly ap-
ply (6.15) to the integral above. Here, we need a regularization afforded by the
convergence of the constants dN(R) (2.12). Namely, take any R > 0 and write

(6.17)
∫ +∞
−∞

MT [a](dv)

z − v
=

∫ +∞
−∞

(
1

z − v
+ 1|v|>R

v

)
MT [a](dv) − dN(R)

(this expression does not depend on R). Now the function under the integral de-
cays as v−2 at infinity, and so is Lebesgue integrable. Since the density of μloc

is bounded, by restricting the integration to [−M,M] for large M and applying
(6.15), we conclude that the integral converges to the corresponding integral with
respect to μloc. The uniformity of each convergence above is evident, so this com-
pletes the proof. �

We are now in a good position to prove the helpful Lemmas 6.5 and 6.8 formu-
lated previously: their proofs are similar to each other and to that of Lemma 6.9.

PROOF OF LEMMAS 6.5 AND 6.8. We will prove both statements simultane-
ously. If the contrary to one of the lemmas holds, then there exists a subsequence
{Nk} along which the local measures converge in the sense of (6.15) (consider mea-
sures of segments with rational endpoints and choose a diagonal subsequence), the
constants dNk

(R) converge to d(R), but:

• (Lemma 6.5) The derivatives S′′(zNk
) converge to zero or infinity along a sub-

sequence zNk
belonging to a compact subset of the upper half-plane. Further

choosing a subsequence of {Nk} we may assume that along this subsequence
the zNk

’s converge to some point z̃ is in the upper half-plane.
• (Lemma 6.8) The length of the contour Cε

w(Nk) grows to infinity.

To simplify notation, let us use the sequence {N} instead of {Nk} in the rest of the
proof.

Let us now show that there are constants cN such that there exists
limN→+∞(S(z) − cN), call it S∗(z), uniformly in z belonging to bounded sub-
sets of H. Moreover, S∗ is holomorphic in H, and its derivative is given by (6.16).
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Fix z ∈ H. Recall that S(z) is given by (4.8), and let us consider the five sum-
mands in that formula separately. First, observe that

− 1

T
logH

(
sin(πT z)

)+ 2π i
T

⌊
1

2
Re(T z) + 1

2

⌋
− z log

(
β−1 − 1

)
→ iπz − z log

(
β−1 − 1

)
due to (4.6), (4.7). Next, the second sum in (4.8) approximates a convergent Rie-
mann integral:

1

T

T −1∑
i=1

logH

(
z + i

T

)
→

∫ 1

0
log(z + v) dv = (z + 1) log(z + 1) − z log z − 1

(in H the branches log and logH coincide). The first sum in (4.8) can be rewritten
as

1

T

N∑
r=1

logH

(
z − ar

T

)

=
∫ +∞
−∞

log(z − v)MT [a](dv)

=
∫ +∞
−∞

(
log(z − v) − log(i − v) + (z − i)

1|v|>R

v

)
MT [a](dv)

+
∫ +∞
−∞

log(i − v)MT [a](dv) − (z − i)dN(R).

The integrand log(z − v) − log(i − v) + (z − i)1|v|>R

v
decays as v−2 at infinity, so

the first integral in the right-hand side converges as N → +∞ to the same integral
over μloc. The second integral in the right-hand side does not depend on z, call it
cN . The third summand converges to −(z− i)d(R). Thus, we have the convergence
S(z) − cN → S∗(z) to a holomorphic function, uniformly in z in compact subsets
in H. One can check that the derivative of S∗ is (6.16).

Once the existence of the uniform limit S∗(z) = limN→+∞(S(z) − cN) is es-
tablished, we continue with separate arguments:

• (Lemma 6.5) We have S′′∗(z̃) = 0 or ∞ and z̃ ∈ H. The second case is not pos-
sible since S∗ is holomorphic in H. If S′′∗(z̃) = 0 then by Hurwitz’s theorem for
all sufficiently large N there exist two complex critical points of S − cN (equiv-
alently, of S) in the upper half-plane. This is impossible by Lemma 5.1. So in
either case we get a contradiction.

• (Lemma 6.8) Observe that the length of the part of the contour Cε
w close to the

real line is bounded. From the convergence of S(z) − cN , it follows that away
from the real line the contour Cε

w approximates the corresponding contour for
S∗(z), and the latter has finite length. We get a contradiction, too.

This proves both desired statements. �
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REMARK 6.10. The previous argument shows that the additional hypothe-
ses of Theorem 2.10, namely, convergence of measures (6.15) and convergence
d(R) = limN→+∞ dN(R), are not too restrictive.

PROOF OF THEOREM 2.10. By Hurwitz’s theorem, the critical points zc(N) ∈
H of S′ converge, as N → +∞, to a critical point z∗ ∈ H, which belongs to
the compact set Z from Theorem 2.7. Applying the latter, we get the desired
convergence. Equation (2.13) is simply S′∗(z) = 0 under a change of variables
z = u/(1 − u), which maps the upper half-plane onto itself. �

As Proposition 2.18 is a particular case of Theorem 2.10, let us give its proof
here.

PROOF OF PROPOSITION 2.18. Under the hypotheses of Proposition 2.18,
Assumptions 1 and 2 clearly hold and, moreover, dN(R) is close to zero for R > 3.
Therefore, the function S′∗(z) (6.16) looks as

S′∗(z) = 1

2

∫ 0

−3h

dv

z − v
+ 1

3

∫ 3h

0

dv

z − v
+ 1

2
p.v.

∫
|v|>3h

dv

z − v

+ log(z + 1) − log z + iπ − log
(
β−1 − 1

)
= iπ

2
− 1

6
log z + 1

6
log(z − 3h)

+ log(z + 1) − log z − log
(
β−1 − 1

)
.

After the substitution z = u/(1 − u) this leads to the equation (2.20) for the com-
plex slope. �

PROOF OF THEOREM 2.11. Fix an arbitrary ε > 0. Choose and fix δ > 0 so
small that AR,δ < ε/3 and that∣∣∣∣

∫
|v|>δ

μglob(dv)

v
− p.v.

∫ ∞
−∞

μglob(dv)

v

∣∣∣∣ < ε

3
.

This approximation is possible because μglob is a probability measure, so 1/v is
integrable at infinity, and thus the only singularity is at zero. Next, let N be so large
that ∣∣∣∣ ∑

i : |ai(N)|>δN

1

ai(N)
−
∫
|u|>δ

μglob(dv)

v

∣∣∣∣ < ε

3
.

This is possible because the sum above is the same as the integral of 1|v|>δ/v

with respect to the atomic measure μN
glob = 1

N

∑N
i=1 δai(N)/N converging vaguely

to μglob. Here, the vague convergence implies the convergence on the function
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1|v|>δ/v because we are dealing with probability measures and so can cut away
the tails at infinity. These estimates imply that

dN(R) = ∑
i : RT ≤|ai(N)|≤δN

1

ai(N)
+
∫
|v|>δ

μN
glob(dv)

v

is close to p.v.
∫∞
−∞ v−1μglob(dv) within ε, and so an application of Theorem 2.10

gives the result. �

PROOF OF THEOREM 2.12. When μloc is a multiple of the Lebesgue measure,
the integral in (6.16) can be explicitly computed:∫ ∞

−∞

(
1

z − v
+ 1|v|>R

v

)
dv

=
∫ R

−R

dv

z − v
+ lim

M→+∞

∫
R<|v|<M

(
1

z − v
+ 1

v

)
dv

= log(z + R) − log(z − R)

+ lim
M→+∞

(
log(z + M) − log(z − M) + log(z − R) − log(z + R)

)
= lim

M→+∞
(
log(z + M) − log(z − M)

)
,

where the branches of all the logarithms above are standard. The last limit is equal
to −iπ because arg(z + M) → 0 while arg(z − M) → π . This immediately leads
to the desired formula for u∗ in Theorem 2.12. �

REMARK 6.11. When μloc is a multiple of the Lebesgue measure, the above
computation shows that the integral in (6.16) is independent of R, and hence d(R)

is, too. This agrees with the fact that the difference dN(R) − dN(R′) (where, say,
R > R′) is equal to the integral of MT [a](dv)/v over R′ < |v| < R, and thus van-
ishes as N → +∞.

7. Applications: Proofs of Theorems 2.13, 2.15 and Proposition 2.16.

7.1. Discretization of a continuous profile: Proof of Theorem 2.13. Let us
show that the initial data (2.18) defined using a twice continuously differentiable
function f satisfies Assumptions 1 and 2, as well as additional hypotheses of The-
orem 2.10.

Since 1 < f ′(x) < +∞ for all x ∈ [−1
2 , 1

2 ], Assumption 1 holds with

ρ• = 1

2
inf

x∈[− 1
2 , 1

2 ]
1

f ′(x)
, ρ• = 1

2
+ 1

2
sup

x∈[− 1
2 , 1

2 ]

1

f ′(x)

on scales, say, D(N) = �Nη/2� and Q(N) = �N(1+η)/2�.
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Next, the local and global measures as in (2.14) exist, μloc is the Lebesgue
measure on R times q = 1/f ′(χ) (recall that f (χ) = 0), and μglob has the density

μglob(dv) = dv

f ′(f −1(v))
.

Because f ′ > 1, the principal value integral

(7.1) p.v.

∫ +∞
−∞

dv

vf ′(f −1(v))
= p.v.

∫ 1
2

− 1
2

dx

f (x)

also exists.
Let us now consider the quantities dN(R) (2.12). Replace the condition |ai | ≥

RT on i in (2.12) by |i − Nχ | > RT/f ′(χ). The difference between the two sums
can be estimated by a part of the harmonic series between RT and RT + CT 2/N ,
which is negligible. Thus,

lim
N→+∞ dN

(
Rf ′(χ)

) = lim
N→+∞

∑
i : |i−Nχ |>RT

1

�Nf (i/N)�

= lim
N→+∞

1

N

∑
i : |i/N−χ |>RT/N

1

f (i/N)
.(7.2)

Taylor expand f (i/N) = (i/N − χ)f ′(χ) + (i/N − χ)2r , where |r| is uniformly
bounded (here we use that f is twice continuously differentiable). Observe that
the sum of

1

Nf (i/N)
− 1

(i − Nχ)f ′(χ)
= − r

N
· 1

f ′(χ)2 + rf ′(χ)(i/N − χ)

over i such that RT/N < i/N −χ < δ (i.e., the one-sided sum) is bounded for suf-
ficiently small δ > 0, and goes to zero as δ → 0, and similarly for −δ < i/N −χ <

−RT/N . The sum of 1/((i −Nχ)f ′(χ)) over |i −Nχ | > RT (i.e., the symmetric
sum) is negligible for large N . Thus, the last sum in (7.2) over |i/N −χ | > RT/N

is close to the same sum over |i/N −χ | > δ for small δ, and the latter approximates
the principal value integral (7.1). This implies Assumption 2 and the property that
the dN(R)’s converge as N → +∞. This completes the proof of Theorem 2.13.

7.2. Random initial configuration. Let us now consider the noncolliding
Bernoulli random walk started from a random initial configuration. We assume that
this random configuration belongs to {−M,−M + 1, . . . ,M}, where M → +∞ is
our main large parameter. Denote by

(7.3) W(M) =
2M+1⋃
k=0

{�x ∈ W
k : −M ≤ x1 < · · · < xk ≤ M

}
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the space of possible initial configurations (cf. (1.1)). The law of the initial config-
uration will be denoted by PM , and the configuration itself by A(N) (here N can be
random). Let �X(t) stand for the noncolliding Bernoulli random walk started from
A(N).

When does �X(t) satisfy an annealed17 bulk limit theorem similar to the ones for-
mulated in Section 2.3? Informally speaking, this happens when the walk started
from a fixed “typical”configuration (with respect to PM ) satisfies a bulk limit theo-
rem with a constant complex slope u∗ (i.e., independent of the randomness coming
from the random initial data). Let us formalize this understanding; cf. [22, 31] for
recent annealed limit theorems for uniformly random tilings.

PROPOSITION 7.1. Choose and fix a time scale T = T (M) � M , T (M) →
+∞. Suppose that there exist subsets Wreg(M) ⊂ W(M), M = 1,2, . . . , such
that:

1. limM→+∞ PM(Wreg(M)) = 1;
2. For any fixed sequence of (nonrandom) initial configurations A(NM) ∈

Wreg(M) the bulk limit theorem near x = 0 (i.e., the conclusion of Theorem 2.10)
holds for a complex slope u∗ independent of this sequence A(NM).

Then as M → +∞ the point process describing { �X(T (M) + t)}t near x = 0 con-
verges in distribution to the extended sine process of the complex slope u∗.

In particular, hypotheses of Proposition 7.1 imply that the random number N of
particles in the initial configuration goes to infinity in probability (with respect to
the PM ’s).

PROOF OF PROPOSITION 7.1. Fix an event of the form

F = {
the configuration �X(T + ti) on Z contains the point yi for all i = 1, . . . , k

}
,

where k = 1,2, . . . , and ti , yi ∈ Z (cf. (2.1)). Such events generate the σ -algebra
describing the configuration { �X(T + t)}t near x = 0.

Let PA(N) stand for the law of the noncolliding Bernoulli random walk started
from the initial configuration A(N). We need to show that

(7.4) lim
M→+∞ EPM

[
PA(N)(F )

] = det
[
Ku∗(tα, yα; tβ, yβ)

]k
α,β=1,

where Ku∗ is the extended sine kernel (2.3), and EPM denotes the expectation with
respect to PM . We have

EPM

[
PA(N)(F )

] = EPM

[
PA(N)(F )1Wreg(M)

]+ EPM

[
PA(N)(F )1W(M)\Wreg(M)

]
.

17That is, with respect to the combined randomness coming from the initial configuration and from
the random walk itself.
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The second summand goes to zero by hypothesis 1, and the first summand can be
estimated as

(7.5) PAmin(Nmin)(F ) ≤ EPM

[
PA(N)(F )1Wreg(M)

] ≤ PAmax(Nmax)(F ),

where Amax(Nmax) is the configuration which maximizes PA(F ) over all A ∈
Wreg(M) (it exists because this is a finite set), and similarly for Amin(Nmin). Be-
cause both minimizing and maximizing configurations belong to Wreg(M), both
bounds in (7.5) converge to the right-hand side of (7.4) by hypothesis 2, and so the
desired convergence holds. �

7.3. Bernoulli initial data: Proof of Theorem 2.15. Let the parameters p and
α be as in Theorem 2.15, the time scale be T (M) = �Mη�, and the initial parti-
cle configuration on {−�M(1 − α)�,−�M(1 − α)�+ 1, . . . , �Mα�− 1, �Mα�} be
obtained by putting a particle at each location with probability p independently of
all others.

We will construct a subset Wreg(M) ⊂ W(M) (7.3) satisfying Proposition 7.1
by imposing two conditions (of asymptotic PM -probability 1) on the configuration.
First, fix 0 < δ < min(1 − η,η/7), and take scales D(M) = �Mη−δ�, Q(M) =
�Mη+δ�. Denote

Wreg,1(M) =

⎧⎪⎪⎨
⎪⎪⎩

�x ∈ W(M) such that in every segment of length
D(M) inside

[−Q(M),Q(M)
]

the number of
points in the configuration �x is between pD − D2/3

and pD + D2/3

⎫⎪⎪⎬
⎪⎪⎭ .

Since the expected number of points in one of the segments of length D is pD and
the variance is of order D, by the Chebyshev inequality the probability that in one
of such segments the (random) number of points is not between pD − D2/3 and
pD + D2/3 can be bounded from above by a constant times D−1/3. The number of
segments of length D inside [−Q,Q] is of order Q/D, and so

1 − PM(
Wreg,1(M)

) ≤ C · D− 1
3

Q

D
= C · M− 4

3 (η−δ)+η+δ = C · M 1
3 (7δ−η) → 0.

Clearly, configurations in Wreg,1(M) satisfy Assumption 1. Moreover, for these
configurations the local density of particles at 0 vaguely converges as M → +∞
to p times the Lebesgue measure on R.

Second, recall dM(R) defined by (2.12) as a sum of 1/ai over |ai | ≥ RT (M),
and interpret it as a sum of independent random variables δi/ i over all i ∈
{−�M(1 − α)�, . . . , �Mα�}, where δi is the indicator of the event that there is
a point of the configuration at the location i. We have

EPM

(
dM(R)

) = p
∑

j : |j |≥RT (M)
−�M(1−α)�≤j≤�Mα�

1

j
,
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VarPM

(
dM(R)

) = p(1 − p)
∑

j : |j |≥RT (M)
−�M(1−α)�≤j≤�Mα�

1

j2 .

We see that the expectation approximates an integral

EPM

(
dM(R)

) = p.v.

∫ α

−(1−α)

p

v
dv + O

(
M−1) = p log

(
α

1 − α

)
+ O

(
M−1),

and VarPM (dM(R)) = O(T (M)−1), so the random variable dM(R) converges as
M → +∞ to the constant d = p log( α

1−α
). Thus, if we define for some fixed R >

0:

Wreg,2(M) =
{
�x ∈ W(M) :

∣∣∣∣p log
(

α

1 − α

)
− ∑

i : |xi |≥RT (M)

1

xi

∣∣∣∣ < M−η/3
}
,

then by the Chebyshev inequality we have PM(Wreg,2(M)) → 1. Configurations
from the sets Wreg,2(M) satisfy Assumption 2, and have dM(R) → d.

Defining Wreg(M) = Wreg,1(M)∩Wreg,2(M), we see that the PM -probabilities
of these sets go to 1, while any sequence of configurations from Wreg(M) satisfies
the hypotheses of Theorem 2.10, and hence the bulk limit theorem near x = 0.
Thus, applying Proposition 7.1 we see that Theorem 2.15 is established.

7.4. Sine process initial data: Proof of proposition 2.16. Let the parame-
ters φ and α be as in Proposition 2.16, the time scale be T (M) = �Mη�, and
the initial particle configuration be obtained by restricting the configuration of
the discrete sine process of density φ/π to {−�M(1 − α)�,−�M(1 − α)� +
1, . . . , �Mα� − 1, �Mα�}. We will use the same scales D(M),Q(M) and sets
Wreg,1(M),Wreg,2(M) as in the Bernoulli case in Section 7.3 with p replaced
by φ/π . This ensures that the second hypothesis of Proposition 7.1 holds for
Wreg(M) = Wreg,1(M) ∩ Wreg,2(M). To establish Proposition 2.16, it remains to
show that

lim
M→+∞ PM(

Wreg,1(M)
) = lim

M→+∞ PM(
Wreg,2(M)

) = 1,

where now PM stands for the law of the initial configuration under the restriction
of the discrete sine process. For Wreg,1(M), observe that the variance under PM

of the number of points in a segment of length D (say, {1, . . . ,D}, since the sine
process is translation invariant) can be estimated as

VarPM

(
D∑

i=1

δi

)
= φ

π
D −

(
φ

π
D
)2

+ 2
∑

1≤i<j≤D

EPM (δiδj )

= D
φ

π

(
1 − φ

π

)
− 2

∑
1≤i<j≤D

(
sin(φ(i − j))

π(i − j)

)2

≤ D
φ

π

(
1 − φ

π

)
,(7.6)
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where δi is as in Section 7.3. This variance does not exceed the one in the
Bernoulli case, and so using the argument from Section 7.3 we conclude that
PM(Wreg,1(M)) → 1.

REMARK 7.2. In fact, the variance in the left-hand side of (7.6) grows as
O(log D) (see [6], Lemma 4.6, [19], Section 4.2), but we do not need this for our
proof.

For Wreg,2(M) consider the random variable dM(R) (2.12). Arguing as in Sec-
tion 7.3, we see that its expectation converges to φ

π
log( α

1−α
). Let us estimate its

variance. Observe that for any subset B ⊂ Z \ {0} one has

(7.7) VarPM

(∑
i∈B

δi

i

)
= φ

π

(
1 − φ

π

)∑
i∈B

1

i2 − 2
∑

i,j∈B : i<j

1

ij

(
sin(φ(i − j))

π(i − j)

)2
.

Apply this with

B = {−⌊
M(1 − α)

⌋
, . . . ,−RT −1,−RT , . . . ,RT ,RT +1, . . . , �Mα�−1, �Mα�}

for some fixed R ∈ Z≥1. We see that as M → +∞, the first sum in (7.7) decays
as O(T −1). Throwing away the pairs (i, j) of the same sign from the second sum,
we can bound the second sum in (7.7) by a constant times

∑
k,j≥RT

1

kj (k + j)2 ≤ ∑
j≥RT

(∑
k≥1

1

kj (k + j)2

)

≤ ∑
j≥RT

C1 + C2 log j

j2 = O
(
T −1+ε)(7.8)

for some C1,2 > 0 and an arbitrary small ε > 0. Thus, the variance of dM(R) de-
cays as O(T −1+ε), and so by the Chebyshev inequality we have
PM(Wreg,2(M)) → 1. Applying Proposition 7.1, we see that Proposition 2.16
holds.

REMARK 7.3. One can say that the constant d = φ
π

log( α
1−α

) in Proposi-
tion 2.16 corresponds via (2.15) to the global probability measure μglob which
is the uniform measure on the segment [−(1 − α)π

φ
,α π

φ
]. Indeed, this μglob is a

limit as in (2.14) of random atomic measures corresponding to the sine process
initial data, where as N one should take the random number of particles N (it is
concentrated around φ

π
M). Similarly, the constant p log( α

1−α
) in Theorem 2.15

corresponds to μglob being the uniform measure on [−(1 − α)p−1, αp−1].

REMARK 7.4. The proof of Proposition 2.16 carries over from the Bernoulli
case modulo two estimates of the variance (7.6) and (7.7)–(7.8), which are rather
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straightforward for the sine process. Thus, the bulk limit theorem should hold for
rather general random initial data, but we will not formulate any other results in
this direction.

APPENDIX A: DETERMINANTAL KERNELS FOR OTHER
NONCOLLIDING PROCESSES

A.1. Noncolliding Poisson random walk. Taking the limit as β → 0 and
scaling to the continuous time as t = �β−1τ�, τ ∈ R≥0, turns the noncolliding
Bernoulli random walk into the noncolliding Poisson random walk—the contin-
uous time dynamics of N independent speed 1 Poisson particles conditioned to
never collide [46]. This Markov chain �X(τ) on W

N has jump rates (cf. (1.2))

P
( �X(τ + dτ) = �x′ | �X(τ) = �x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(�x′)
V(�x)

dτ + O
(
dτ 2) x′

i = xi + 1 for some

i, and x′
j = xj for

j �= i,

1 − N dτ + O
(
dτ 2) �x′ = �x,

0 otherwise,

where �x, �x′ ∈ W
N are arbitrary.18 The noncolliding Poisson random walk is also

sometimes referred to as the Charlier process [6] due to the fact that if it starts
from the densely packed initial configuration (0,1, . . . ,N −1), then its (fixed time)
distribution is the Charlier orthogonal polynomial ensemble (cf. Remark 2.2).

THEOREM A.1. The noncolliding Poisson random walk �X(τ) started from an
arbitrary initial configuration �a ∈ W

N is determinantal in the sense of (2.1), with
the kernel

KPoisson
�a (τ1, x1; τ2, x2)

= −1x1≥x21τ1>τ2

(τ1 − τ2)
x1−x2

(x1 − x2)!

− 1

(2π i)2

∫ x2− 1
2 +i∞

x2− 1
2 −i∞

dz

∮
all w poles

dw
1

w − z

�(x2 − z)

�(x1 − w + 1)

× τ
x1−w
1 τ

z−x2
2

N∏
r=1

z − ar

w − ar

,(A.1)

18In particular, this implies
∑N

i=1 V(�x + ei) = NV(�x), where ei is the ith basis vector
(0, . . . ,0,1,0, . . . ,0).
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where x1,2 ∈ Z, τ1,2 > 0, the z integration contour is a vertical line Re z = x2 − 1
2

traversed upwards, and the w contour is a positively oriented circle or a union
of two circles encircling all the w poles {. . . , x1 − 1, x1} ∩ {a1, . . . , aN } of the
integrand except w = z.

PROOF. We will obtain KPoisson
�a from KBernoulli

�a;β (2.2) via the β → 0 limit de-

scribed above. Employing Remark 3.7, write KBernoulli
�a;β as

KBernoulli
�a;β (t1, x1; t2, x2)

= 1x1≥x21t1>t2(−1)x1−x2+1

(
t1 − t2

x1 − x2

)
+ t1!

(t2 − 1)!
1

(2π i)2

×
∫ x2− 1

2 +i∞
x2− 1

2 −i∞
dz

∮
all w poles

dw
(z − x2 + 1)t2−1

(w − x1)t1+1

× 1

w − z

sin(πw)

sin(πz)

(
1 − β

β

)w−z N∏
r=1

z − ar

w − ar

.(A.2)

Here, the w contour (a circle or a union of two circles) can be taken to encircle
the points {a1, a2, . . . , aN }, which contain all the w poles except w = z. (Indeed,
for w = ai to be a pole, it must additionally satisfy (ai − x1)t1+1 = 0 to not cancel
with the zero coming from sin(πw).) Therefore, the integration contours do not
depend on t1,2, and we can take the Poisson rescaling of (A.2), that is, β → 0 and
t1,2 = �β−1τ1,2� with τ1 ≥ 0, τ2 > 0.

The t-dependent part of the first summand in (A.2) scales as

1τ1>τ2

(⌊
β−1τ1

⌋− ⌊
β−1τ2

⌋
x1 − x2

)

= 1τ1>τ2

�(�β−1τ1� − �β−1τ2� + 1)

�(�β−1τ1� − �β−1τ2� − x1 + x2 + 1)(x1 − x2)!

∼ 1τ1>τ2

(τ1 − τ2)
x1−x2

(x1 − x2)! β−(x1−x2),

where we used (3.7). Similarly, for the part of the integrand depending on β and
t1,2 we have

t1!
(t2 − 1)!

(z − x2 + 1)t2−1

(w − x1)t1+1

(
1 − β

β

)w−z sin(πw)

sin(πz)

= �(t1 + 1)

�(w − x1 + t1 + 1)

�(z − x2 + t2)

�(t2)

�(w − x1)

�(z − x2 + 1)
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×
(

1 − β

β

)w−z sin(πw)

sin(πz)

∼ �(x2 − z)

�(x1 − w + 1)
(−1)x1−x2+1τ1

x1−wτ2
z−x2β−(x1−x2).

Note that (1 − β)w−z → 1 as β → 0, and in the last step we used (3.12). This
implies

lim
β→0

(
(−β)x1−x2KBernoulli

�a;β
(⌊

β−1τ1
⌋
, x1; ⌊β−1τ1

⌋
, x2

)) = KPoisson
�a (τ1, x1; τ2, x2),

where KPoisson
�a is given by (A.1). Because the multiplication by (−β)x1−x2 does

not change the correlation functions (cf. footnote 7), this completes the proof. �

The correlation kernel of Theorem A.1 appears to be new. By analogy with the
results in Section 2.3, we believe that the local statistics of the noncolliding Poisson
random walk are universally described by an extension of the discrete sine kernel
with the continuous time parameter. This extension first appeared in [11], see also
[4, 14] for a general discussion of extensions of the discrete sine kernel. We will
not pursue this in the present paper.

A.2. Dyson Brownian motion. A diffusion scaling brings the kernel
KBernoulli

�a;β (2.2) to the kernel of the Dyson Brownian motion. We will use the
following scaling (where M → +∞):

t1,2 = �Mτ1,2�,
x1,2 = ⌊

βMτ1,2 + ξ1,2

√
β(1 − β)

√
M

⌋
,

ai = ⌊
αi

√
β(1 − β)

√
M

⌋
,

where (α1 ≤ · · · ≤ αN) ∈ R
N are the rescaled starting points (by agreement, when

some of the αi’s coincide, the corresponding ai ’s differ by 1, so that the discrete
noncolliding Bernoulli random walk is well defined).

THEOREM A.2. Under the above scaling and up to a gauge transformation as

in footnote 7, the kernel (Mβ(1−β))
1
2 KBernoulli

�a;β converges to the following kernel:

KDBM
�a;β (τ1, ξ1; τ2, ξ2)

= − 1τ1>τ2√
2π�τ

exp
{
−(�ξ)2

2�τ

}

− 1

(2π i)2√τ1τ2

∫ c+i∞
c−i∞

dz

∮
all w poles

dw
1

w − z

× exp
{
τ1(z − ξ2)

2 − τ2(w − ξ1)
2

2τ1τ2

} N∏
r=1

z − αr

w − αr

,(A.3)
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where ξ1,2 ∈ R, τ1,2 > 0, and we use the notation �ξ = ξ1 − ξ2, �τ = τ1 − τ2. The
z contour is a vertical line which lies to the left of all the αr ’s (i.e., c < α1), and
the w contour is a positively oriented circle encircling all the αr ’s.

The multiplication by (Mβ(1 − β))
1
2 corresponds to the rescaling of the space

from discrete to continuous (the correlation kernel should be viewed as a kernel of
an integral operator). Note also that the kernel (A.3) can similarly be obtained as a
diffusion limit of the Poisson kernel (A.1), but we will not perform this computa-
tion.

PROOF OF THEOREM A.2. Let us denote σ = √
β(1 − β) to shorten the no-

tation. Changing the variables as z = z̃σ
√

M , w = w̃σ
√

M , and renaming back to
z,w, we can rewrite (2.2) as

KBernoulli
�a;β (t1, x1; t2, x2)

= 1x1≥x21t1>t2(−1)x1−x2+1

(
t1 − t2

x1 − x2

)

+ σ
√

M
t1!

(t2 − 1)!
1

(2π i)2

∫ (x2−t2+ 1
2 )/(σ

√
M)+i∞

(x2−t2+ 1
2 )/(σ

√
M)−i∞

dz

×
∮

all w poles
dw

(zσ
√

M − x2 + 1)t2−1

(wσ
√

M − x1)t1+1

× 1

w − z

sin(πwσ
√

M)

sin(πzσ
√

M)

(
1 − β

β

)(w−z)σ
√

M

×
N∏

r=1

z − �αrσ
√

M�/(σ√
M)

w − �αrσ
√

M�/(σ√
M)

.(A.4)

The w contour encircles all the w poles of the integrand except w = z, which are
close to the points (α1 ≤ · · · ≤ αN). For large M , the z contour will get shifted
further to the left; the computation below shows that there will be no poles crossed
while doing this.

Denote

c1,2 = t1,2 − Mτ1,2,

d1,2 = x1,2 − βMτ1,2 − ξ1,2σ
√

M,

these are numbers between −1 and 0. Let us first consider asymptotics of the
nonintegral summand. For large M , the two indicators reduce simply to 1τ1>τ2 ,
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and the binomial coefficient has the asymptotics(
t1 − t2

x1 − x2

)
= �(t1 − t2 + 1)

�(x1 − x2 + 1)�(t1 − t2 − (x1 − x2) + 1)

= 1/
√

M√
2πσ�τ

(
1 − β

β

)σ
√

M�ξ

× e−M�τ(β logβ+(1−β) log(1−β))βd2−d1(1 − β)c2−c1+d1−d2

× e−(�ξ)2/(2�τ)(1 + O(1/
√

M)
)
,

where we used (3.13).
Now consider the asymptotics of various parts of the integrand. We have

t1!
(t2 − 1)! = M(Mτ1)

Mτ1+c1(Mτ2)
−Mτ2−c2e−M�τ√τ1τ2

(
1 + O(1/M)

)
.

We can also write

(zσ
√

M − x2 + 1)t2−1

(wσ
√

M − x1)t1+1

= �(zσ
√

M − x2 + t2)

�(zσ
√

M − x2 + 1)

�(wσ
√

M − x1)

�(wσ
√

M − x1 + t1 + 1)

= (−1)x1−x2+1 �(zσ
√

M − x2 + t2)

�(wσ
√

M − x1 + t1 + 1)

�(−zσ
√

M + x2)

�(1 − wσ
√

M + x1)

× sin(πzσ
√

M)

sin(πwσ
√

M)
,

where we used (3.12). This cancels with the existing ratio of the sine functions.
Continuing with the asymptotics, we obtain

�(zσ
√

M − x2 + t2)

�(wσ
√

M − x1 + t1 + 1)

�(−zσ
√

M + x2)

�(1 − wσ
√

M + x1)

= M−2(Mτ1)
−Mτ1−c1(Mτ2)

Mτ2+c2eM�τ

× e−M�τ(β logβ+(1−β) log(1−β))

× βd2−d1(1 − β)c2−c1+d1−d2

(
1 − β

β

)σ
√

M(�ξ+z−w)

× 1

β(1 − β)τ1τ2
exp

{
τ1(z − ξ2)

2 − τ2(w − ξ1)
2

2τ1τ2

}(
1 + O(1/

√
M)

)
.
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We see that the factor

(−1)x1−x2e−M�τ(β logβ+(1−β) log(1−β))βd2−d1(1 − β)c2−c1+d1−d2

(
1 − β

β

)σ
√

M�ξ

appearing in both summands in (A.4) is of the form f (τ1, ξ1)/f (τ2, ξ2), and thus
does not affect the correlation functions (cf. footnote 7). The remaining parts of
(A.4) multiplied by σ

√
M converge to (A.3), as desired. �

Since the noncolliding Bernoulli random walks converge under the diffusion
scaling to the Dyson Brownian motion [27], the kernel (A.3) is the correlation
kernel for the latter process started from the arbitrary initial configuration (α1 ≤
· · · ≤ αN). When τ1 = τ2, the kernel (A.3) turns into the one appeared in [17, 37,
59]. Utilizing (A.3), these papers show that the local statistics of the eigenvalues of
the deformed GUE ensemble (equivalently, the distribution of the Dyson Brownian
motion started from (α1 ≤ · · · ≤ αN) at a fixed time) are universally governed by
the continuous sine kernel.

APPENDIX B: REPRESENTATION-THEORETIC INTERPRETATION OF
NONCOLLIDING WALKS

The random matrix analogue of noncolliding Bernoulli or Poisson random
walks is the GUE Dyson Brownian motion. The distribution of the Dyson Brow-
nian motion started from an arbitrary initial configuration (α1 ≤ · · · ≤ αN) ∈ R

N

after time t > 0 can also be interpreted as the eigenvalue distribution of the de-
formed GUE ensemble A+√

tG, where A = diag(α1, . . . , αN) is a fixed diagonal
matrix, and G is an N × N random matrix from the GUE.19 Let us discuss a sim-
ilar interpretation of the noncolliding Bernoulli or Poisson random walks in terms
of representation theory of unitary groups.

Irreducible representations of the unitary group U(N) can be parametrized by
points of WN . Let χ�x(u1, . . . , uN), �x ∈ W

N denote the corresponding normalized
irreducible characters. Here, the ui’s are eigenvalues of the matrix from U(N),
and the characters χ�x are normalized in the sense that χ�x(1, . . . ,1) = 1. These
characters are the normalized Schur polynomials:

χ�x(u1, . . . , uN) = sλ(u1, . . . , uN)

dimN �x ,

where λ = (λ1 ≥ · · · ≥ λN) with λi = xN+1−i + i − N is the highest weight of the
representation, and

dimN �x = sλ(1, . . . ,1) = ∏
1≤i<j≤N

xj − xi

j − i
= V(�x)

V(0,1, . . . ,N − 1)

19There are different normalizations of the GUE random matrices and Dyson Brownian motion in
the literature (cf. [1], (2.2.2), [63], Example 2), and here we assume that they agree.
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is the dimension of this representation. Details on representations of unitary groups
can be found in, for example, [66].

An (abstract) normalized character χ of U(N) is defined as a nonnegative def-
inite continuous function on U(N) which satisfies χ(e) = 1 and χ(ab) = χ(ba)

for any a, b ∈ U(N) (i.e., we speak about characters which do not necessar-
ily correspond to actual representations). The set of such characters is con-
vex, and the normalized irreducible characters are its extreme points. Thus,
any abstract character can be decomposed into irreducibles as χ(u1, . . . , uN) =∑

�x∈WN c�x χ�x(u1, . . . , uN), where the numbers {c�x}�x∈WN are nonnegative and sum
to one, hence they define a probability distribution on W

N .
The product of two normalized characters χ(1) and χ(2) is also a normalized

character. (If both χ(1) and χ(2) correspond to actual representations, then χ(1)χ(2)

is the normalized character of the tensor product of these representations.) The
product χ(1)χ(2) then can be decomposed into irreducibles, thus yielding a proba-
bility distribution on W

N .
Fix �a ∈W

N and take the irreducible normalized character χ�a as χ(1). Let χ(2) be
the restriction to U(N) of a certain extreme character of the infinite-dimensional
unitary group U(∞). We will consider two classes of such characters of U(N)

having the form

χβ;t (u1, . . . , uN) =
N∏

r=1

(1 − β + βur)
t or χτ (u1, . . . , uN) =

N∏
r=1

eτ(ur−1),

where t ∈ Z≥0 and τ > 0. There is a number of papers discussing classification of
extreme characters of U(∞); for example, see [26, 54, 64, 65], and other refer-
ences in [12] and [57].

PROPOSITION B.1. The probability weights {c�x}�x∈WN arising from the de-
composition

χ�a(u1, . . . , uN)χβ;t (u1, . . . , uN) = ∑
�x∈WN

c�x χ�x(u1, . . . , uN)

describe the distribution of the noncolliding Bernoulli random walk with parame-
ter β started from the initial configuration �a after t steps.

Similarly, the decomposition of χ�a(u1, . . . , uN)χτ (u1, . . . , uN) into irreducibles
corresponds to the distribution of the noncolliding Poisson random walk started
from the configuration �a after time τ .

The case �a = (0,1, . . . ,N − 1) leads to the trivial representation: χ�a(u1, . . . ,

uN) ≡ 1. In this case, the distribution of the noncolliding Bernoulli or Poisson
random walks is related to the decomposition of extreme characters of U(∞) into
irreducibles. Probabilistic properties of the corresponding measures were studied
in, for example, [6, 9]. These measures can be regarded as discrete analogues of
the GUE eigenvalue distribution.



UNIVERSALITY OF LOCAL STATISTICS 2749

PROOF OF PROPOSITION B.1. This fact is well known to specialists, but we
include its proof for completeness.

It suffices to consider only the Bernoulli t = 1 case, because the general t case
follows by induction, and the Poisson statement follows by a simple limit transi-
tion. The result would follow if we interpret the coefficients cμ in the decomposi-
tion

sλ(u1, . . . , uN)

sλ(1, . . . ,1)

N∏
r=1

(βur + 1 − β)

= ∑
μ1≥···≥μN

cμ

sμ(u1, . . . , uN)

sμ(1, . . . ,1)
, λi = aN+1−i + i − N,

as one-step transition probabilities (1.2). Multiply the above decomposition by
sλ(1, . . . ,1) and the Vandermonde in the ui’s, and expand the determinants in

det
[
u

λj+N−j

i

]N
i,j=1

N∏
r=1

(βur + 1 − β)

= ∑
μ1≥···≥μN

cμ det
[
u

μj+N−j

i

]N
i,j=1

sλ(1, . . . ,1)

sμ(1, . . . ,1)
.

Because of the ordering in λ and μ, it suffices to consider the coefficient by
u

μ1+N−1
1 · · ·uμN

N in u
λ1+N−1
1 u

λ2+N−2
2 · · ·uλN

N multiplied by
∏N

r=1(βur + 1 − β).
Clearly, picking βur from each r th factor corresponds to the r th particle jumping
by one to the right, while picking (1 − β) means that this particle stays put. Par-
ticle collisions are not allowed because μ1 + N − 1 > · · · > μN , and the factor
sλ(1, . . . ,1)/sμ(1, . . . ,1) can be identified with the ratio of the Vandermondes in
(1.2).

The Poisson case follows from the above argument in the limit as β ↘ 0. �

We see that tensor multiplication of representations (and, more generally, mul-
tiplication of normalized characters) is a discrete analogue of the matrix addition.
Moreover, multiplying by a suitable extreme character of U(∞) corresponds to
adding a multiple of the GUE matrix. This similarity can be continued further to
include the operation of the free convolution—its discrete analogue is the so-called
quantized free convolution; see [18].

Therefore, our main universality results in Section 2.3 can be reformulated as
bulk universality for tensor products of two representations of U(N), when one
of the factors is arbitrary, and the other factor is the specific representation χβ;t
(with t large). We conjecture that under mild technical conditions the same bulk
universality should hold for tensor products of two arbitrary representations of
U(N) (cf. [3] for a progress toward a similar random matrix result). A weaker
version of the bulk universality for tensor products of two arbitrary representations
is established in [31].
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