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Abstract: We introduce a four-parameter family of interacting particle systems on the
line, which can be diagonalized explicitly via a complete set of Bethe ansatz eigenfunc-
tions, andwhich enjoy certainMarkov dualities. Using this, for the systems started in step
initial data, we write down nested contour integral formulas for moments and Fredholm
determinant formulas for Laplace-type transforms. Taking various choices or limits of
parameters, this family degenerates to many of the known exactly solvable models in the
Kardar–Parisi–Zhang universality class, as well as leads to many new examples of such
models. In particular, asymmetric simple exclusion process, the stochastic six-vertex
model, q-totally asymmetric simple exclusion process and various directed polymer
models all arise in this manner. Our systems are constructed from stochastic versions of
the R-matrix related to the six-vertex model. One of the key tools used here is the fusion
of R-matrices and we provide a probabilistic proof of this procedure.
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1. Introduction

Integrable probability is an active area of research at the interface of probability/
mathematical physics/statistical mechanics on the one hand, and representation the-

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2479-5&domain=pdf


652 I. Corwin, L. Petrov

ory/integrable systems on the other. Integrable probabilistic systems are broadly char-
acterized by two properties:

(1) It is possible to write down concise and exact formulas for expectations of a variety
of interesting observables of the system.

(2) Asymptotics of the system, observable and associated formulas provide access to
exact descriptions of new phenomena as well as large universality classes.

In light of these properties, there are two main goals in this area:

(1) Build bridges between algebraic structures and probabilistic systems and in so doing,
discover new integrable probabilistic systems and new tools by which to analyze
them.

(2) Study scaling limits of these integrable probabilistic systems and in so doing, expand
and refine the scope of their associated universality classes and discover new asymp-
totic phenomena displayed by these systems.

In this paper wework to advance the first goal.We develop a four-parameter family of
stochastic interacting particle systems, which are built off of higher spin representations
of the six-vertex model R-matrix. These systems benefit from properties inherited from
the R-matrix. In particular, they are diagonalizable explicitly in terms of a complete
set of Bethe ansatz eigenfunctions, and they also enjoy certain Markov dualities. We
use these two facts to compute moment and then Laplace-type transform formulas for
these processes. Asymptotics of these systems and the associated exact formulas are
in line with the second goal defined above. We do not pursue this here, but note that
such asymptotics have previously been performed on various degenerations of this fam-
ily of systems [BC14,BCF12,BCR12,BCFV14,CSS14,OO14,Bar14,Vet14,BCG14].
In all of those cases, the resulting phenomena were that of the Kardar–Parisi–Zhang
(KPZ) universality class. It would be quite interesting to see whether other phenomena
can be accessed beyond that of the KPZ class.

Vertexmodels andmore generally quantum integrable systems have long been objects
of intense research within mathematics and physics (see, for example, the reviews
[Fad96,Res08]). Generally, R-matrices are not stochastic, and neither are their associ-
ated transfer matrices. Here we work with a variant of the R-matrix, which is stochastic
and arises from conjugating the associated transfer matrix. We call this variant our L-
matrix (see Remark 2.2 for the relation to the usual R-matrix). This enables us to define
our vertex models on the entire line, such as in [BCG14]. The associated transfer matrix
is Bethe ansatz diagonalizable, as follows either from taking a limit of the finite lattice
algebraic Bethe ansatz or from the recent work [Bor14]. Moreover, as opposed to on a
finite lattice, there are relatively simple direct and inverse transformswith respect to these
Bethe ansatz eigenfunctions [BCPS14] (see also Appendix A). Our proofs of duality are
largely based on earlier methods from [BC13,Cor14]. In both cases (diagonalization
and duality), we first prove our results for the horizontal spin 1/2 (J = 1) and arbitrary
vertical spin L-matrix. Then we construct higher horizontal spin L-matrices (J ∈ Z≥1)
via Markov functions theory, and the diagonalization and duality easily extends. This
construction provides a probabilistic proof of the fusion procedure [KR87] on the line.
Though initially the form of the L-matrix we find is not very explicit, we are able to
demonstrate a recursion relation it satisfies, and then explicitly solve that in terms of
q-Racah polynomials [Man14].

Wealsohave amore concretemotivationbehind thiswork,whichwenowexplain.The
totally asymmetric simple exclusion process (TASEP) is arguably the paradigm for inte-
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grable stochastic interacting particle systems. The asymmetric simple exclusion process1

(ASEP) and q-deformed totally asymmetric simple exclusion process2 (q-TASEP) are
both one-parameter generalizations of TASEP.3 In [BCS12] it was recognized that both
systems enjoy Markov dualities and have moment formulas that can be written in terms
of nested contour integrals. This prompted the question of whether both systems and
their associated results can be united as special cases of a more general integrable prob-
abilistic system. In [BCPS14] this question was addressed at a spectral level—it was
shown that the eigenfunctions that diagonalize both systems are special cases of a more
general set of eigenfunctions (recalled in Appendix A). In this present work we provide
a complete answer to this question in the affirmative. The four-parameter family of sys-
tems we introduce here has degenerations4 to both ASEP and q-TASEP, at the level of
their transition operators. In other words, not only do the eigenfunctions degenerate, but
so do the eigenvalues.

In recent work, [CGRS14] discovered a family of higher spin particle systems which
interpolate from ASEP (spin 1/2) to q-TASEP (spin infinity) and proved dualities for
these systems usingUq(sl2) symmetry. This two-parameter family of systems5 does not
appear to be diagonalizable via Bethe ansatz except for the cases of ASEP and q-TASEP.
Hence it is unclear whether many of the nice properties of ASEP and q-TASEP hold
for the systems in between them. Besides the cases of ASEP and q-TASEP, the systems
and dualities proved in [CGRS14] appear to be different than any degenerations of our
four-parameter family of systems.

Besides ASEP and q-TASEP, our family of particle systems has a number of other
interesting degenerations. Some of this hierarchy of degenerations is illustrated in Fig. 1
wherein we show the relations to various known systems in the literature. There are,
of course, many other degenerations to study. The exact nature of the degenerations
are indicated below or in the cited literature. The left-hand side of the figure involves
q-Hahn TASEP [Pov13,Cor14] (see also Sect. 5.6), discrete time q-TASEP [BC13], q-
TASEP [BC14,BCS12], the strict/weak polymer [CSS14,OO14], and the semi-discrete
Brownian polymer [OY01,O’C12]. The right-hand side of the figure involves the sto-
chastic six-vertex model [BCG14] (see Sect. 5.5), ASEP [TW08,TW09,BCS12], and
Brownian motions with skew reflection [SS14]. Both sides have limits to the KPZ equa-
tion/stochastic heat equation/continuum polymer [BG,ACQ11,MFRQ15] and yet fur-
ther to the KPZ fixed point (e.g. with cube-root scaling and limiting GUE Tracy–Widom
one-point fluctuations) [TW09,ACQ11,SS10,BC14,BCF12,BCR12,BCFV14,CSS14,
OO14,Bar14,Vet14,BCG14]. Besides these examples, there are also ‘determinantal’
particle systems (such as TASEP) which fall into the hierarchy of degenerations and are
not depicted.

Let us note that the log-gamma polymer [Sep12,COSZ14,TLD14], q-pushASEP
[BP13,CP15], and two-sided q-Hahn ASEP [BC15] are not included in Fig. 1. These
systems are all diagonalized in the same basis (or degenerations thereof) as our four-
parameter family of systems, and they have explicit and elementary eigenvalues. While

1 Particles jump left with rate (i.e., according to independent exponentially distributed waiting times of
rate) p and right at rate q, assuming the destination is not already occupied.

2 Particles jump one to the right with rate given by 1 − qgap, where gap represents the number of holes
before the next particle.

3 TASEP arises from ASEP by setting either p or q to zero, and from q-TASEP by setting q to zero.
4 Saying that one system degenerates to another will mean that the second is accessed from the first either

through a special choice of parameters, or through a limit transition.
5 Spin and q being the two parameters.
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Fig. 1. Hierarchy of various degenerations of the four-parameter family of higher spin particle systems. Each
arrow represents a particular degeneration of models (with the exception of the arrow to the KPZ fixed point
which is at the level of one-point limiting distributions). The arrows should be transitive, though not every
additional arrow has been proved

we expect that these systems can also be incorporated in some form into our hierarchy,
we do not pursue this direction here and leave it for future work.

1.1. Outline. Section 2 is devoted to the study of the J = 1 (or horizontal spin 1/2)
vertex models. In particular, Sect. 2.1 provides definitions of the J = 1 L-matrix,
describes certain conditions on parameters under which the matrix is stochastic, and
constructs three-parameter discrete time zero range and exclusion processes from the
L-matrix. Section 2.2 provides the Bethe ansatz diagonalization of these processes.
Section 2.3 contains the statements and proofs of dualities enjoyed by these systems.

Section 3 implements the fusion procedure through which we go from J = 1 to
arbitrary J ∈ Z≥1—thus yielding the fourth parameter.6 In particular, Sect. 3.1 explains
the fusion procedure by which the horizontal spin is taken from 1/2 to J/2 for arbitrary
J ∈ Z≥1. The higher spin L-matrix is constructed through use of the theory of Markov
functions, which draws on certain special properties we check for the J = 1 case. The
diagonalizability and dualities for the higher spin systems follow immediately from the
J = 1 cases. The form of the L-matrix (and hence higher spin zero range and exclusion
processes) is initially rather inexplicit. Section 3.2 deduces a recursion relation in J sat-
isfied by the L-matrix. Section 3.3 provides an explicit solution to that recursion relation
in terms of q-Racah polynomials (or terminating basic hypergeometric functions).

6 The four parameters we work with are q, α, I, J or in a different parametrization, q, α, ν, β.



Stochastic Higher Spin Vertex Models on the Line 655

Section 4 utilizes the duality between the J higher spin zero range and exclusion
processes to compute nested contour integral moment formulas for the exclusion process
with step initial data. These lead to a Fredholm determinant formula for an eq -Laplace
transform which characterizes the exclusion process’s one-point marginal distribution.
We do not pursue asymptotics, though this type of Fredholm determinant has been used
before for such purposes (see references earlier in the introduction).

Proposition 2.3 identifies four different cases of parameters under which the J = 1
L-matrix is stochastic. Case (1) of that remark is assumed in the earlier sections of this
paper. However, in Sect. 5 we explain how to extend our results to the other three cases.
Section 5.1 addresses case (2). Section 5.2 identifies reflection and inversion symmetries
of the higher spin L-matrix. Section 5.3 addresses case (3) and Sect. 5.4 addresses case
(4). Section 5.5 demonstrates how the stochastic six-vertex model [BCG14] arises from
our systems, and establishes a new self-duality of that model. Section 5.6 describes
another degeneration to the q-Hahn processes [Pov13,Cor14]. Section 5.7 briefly notes
which results extend to spatially or temporally inhomogeneous parameters.

Appendix A recalls key facts (namely, the Plancherel theory) about the Bethe ansatz
eigenfunctions which diagonalize the systems considered herein. Appendix B contains
explicit formulas for L-matrix elements for J = 1, 2, 3. Appendix C states the Yang–
Baxter type equation satisfied by the L-matrix.

2. J = 1 Higher Spin Stochastic Six-Vertex Model

2.1. Definitions and construction of processes. Wewill considerq, ν as fixed throughout
and thus only include other variables explicitly in our notation. We will use the notation
Z≥i = {n ∈ Z : n ≥ i}, Z≤i = {n ∈ Z : n ≤ i}, and 1E is the indicator function of an
event E . The symbol E will denote expectation with respect to the process or random
variable that follows.

We proceed now to define the L-matrixwhichwill play a central role in all the follows.

Definition 2.1 (The J = 1 L-matrix). For three generic complex parameters q, ν, α and
any four-tuple (i1, j1, i2, j2) ∈ (Z≥0

)4 define a corresponding vertex weight as follows:
for any m ≥ 0,

L(1)
α (m, 0;m, 0) = 1 + αqm

1 + α
, L(1)

α (m, 0;m − 1, 1) = α(1 − qm)

1 + α
,

L(1)
α (m, 1;m + 1, 0) = 1 − νqm

1 + α
, L(1)

α (m, 1;m, 1) = α + νqm

1 + α
,

(2.1)

and L(1)
α (i1, j1; i2, j2) = 0 for all other values of (i1, j1, i2, j2) ∈ (Z≥0

)4. Notice that
all non-zero weights correspond to four-tuples such that i1 + j1 = i2 + j2, a property
we consider as being particle conservation. Weights are associated graphically with
crosses labeled by (i1, j1, i2, j2) in the manner of Fig. 2 (see also Appendix B). It will
be convenient, at different points, to think about the i1, j1, i2, j2 as recording the number
of arrows (either up or right pointing) along the edges incident to a given vertex, or as
recording the number of particles in a given location (the i’s) and the number of particles
to cross a given edge (the j’s).

We will treat these weights as matrix elements. Define a vector space VI with basis
elements {0, 1, . . . , I } if I ∈ Z≥1, and {0, 1, . . .} otherwise. Likewise define a vector
space HJ with basis elements {0, 1, . . . , J } if J ∈ Z≥1, and {0, 1, . . .} otherwise. As a
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i1

j1

i2

j2

input

output

Fig. 2. Left the weight associated to a vertex with (clockwise, starting on the bottom) labels i1, j1, i2, j2 in

Z≥0 is given by L(1)
α (i1, j1; i2, j2). The L-matrix takes as input (i1, j1) and produces output (i2, j2). Right

the representation of a vertex associated with (i1, j1, i2, j2) = (3, 1, 3, 1) in terms of arrows and particles

[VI ]1 [VI ]2 [VI ]3 [VI ]4 [VI ]5 [VI ]6

[HJ ]1

[HJ ]2

[HJ ]3

[HJ ]4

[L(1)
α ]4,3

Fig. 3. The association of L-matrices to each vertex in Z2 as in Definition 2.1

matter of convention, when describing a linear operator acting between these spaces (or
their tensor products) we will only describe matrix elements in the above basis. Then
for I ∈ C such that ν = q−I and J = 1, L(J )

α : VI ⊗ H
J → V

I ⊗ H
J is defined by its

matrix elements L(J )
α (i1, j1; i1, j2). Wewill associate L-matrices to vertices (x, y) ∈ Z

2

and denote vector spaces [VI ]x and [HJ ]y as associated with column x and row y. We

write [L(J )
α ]x,y to mean the matrix which acts as L(J )

α on [VI ]x ⊗[HJ ]y and the identity
on all other [VI ]x ′ and [HJ ]y′ . This convention is illustrated in Fig. 3.

Remark 2.2. These weights are closely related to the matrix entries of the horizontal
spin7 1/2 (i.e. J = 1) six-vertex model R-matrix. For instance, changing variables to
s, u via α = −su and ν = s2, we can match the above defined weights with those of
[Bor14, Definition 2.1]:

L(1)
α (i1, j1; i2, j2) = wu(i2, j2; i1, j1)(−s) j1(−su) j2− j1 .

7 In general, for I, J ∈ Z≥1 one says that our L-matrix is vertical spin I/2 and horizontal spin J/2.
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The factor (−su) j2− j1 is a conjugation which does not affect the overall transfer matrix
(cf. Remark 2.9) whereas the factor (−s) j1 corresponds to conjugation of the transfer
matrix (cf. Remark 2.7). [Bor14, Proposition 2.4] further matches wu(i1, j1; i2, j2) to
the matrix entries of a particular normalization of the R-matrix considered in [Man14]
when J = 1.

We now identify various ranges of parameters under which our L-matrix is stochastic.
Notice that our weights have been normalized so that for i1, j1 fixed,

∑

i2, j2

L(1)
α (i1, j1; i2, j2) = 1.

If q, ν, α are chosen so that all weights are non-negative, then L(1)
α is a stochastic matrix

and provides the transition probabilities for going from the pair (i1, j1) to (i2, j2) (see
Fig. 2 for a graphical representation of this transition from inputs to outputs).

Proposition 2.3. The following choices of parameters ensure non-negativity (and hence
its stochasticity) of L(1)

α :

(1) q, ν ∈ [0, 1), and α ≥ 0,
(2) q ∈ (−1, 0], α ∈ (0, 1/|q|), and ν ∈ (− 1/|q|,min(1, α/|q|)),
(3) q ∈ [0, 1), ν = q−I for I ∈ Z≥1, and α < −q−I ,
(4) q ∈ (1,+∞), ν = q−I for I ∈ Z≥1, and −q−I < α < 0.

Proof. Each case follows from straightforward inspection. 	

Remark 2.4. In the third and fourth cases, the weights are not always non-negative,
however restricted to i ∈ {0, . . . , I } (i.e. VI ) they are. The only way to transition out
of this range for i is to utilize the weight L(1)

α (I, 1; I + 1, 0), but due to our choice of
ν, this is zero. The first choice relates to models generalizing the q-Boson stochastic
particle system [SW98,BCS12] whereas the third and the fourth examples relate to
models generalizing ASEP and the stochastic six-vertex model (coming from letting
I = 1) [BCG14].

We will assume that q, ν, α satisfy case (1) above, namely that

q, ν ∈ [0, 1), and α ≥ 0, (2.2)

and prove all of our results under those conditions on parameters. In Sect. 5 we describe
how our various results extend to the other choices of parameters from Proposition 2.3.

We turn now to define certain sequential update, discrete time zero range processes
and exclusion processes based off of our stochastic L-matrix.8 This is a general construc-
tion whose only input is the stochastic L-matrix. We will make use of this construction
later when L(1)

α is replaced by L(J )
α .

Definition 2.5 (State spaces). Define the space of left-finite particle configurations on
the line as

G =
{−→g = (. . . , g−1, g0, g1, . . .) : all gi ∈ Z≥0 ∪ {+∞},
and there exists x ∈ Z such that gi = 0 for all i < x

}
,

8 Strictly speaking, these might not be the most accurate names for these processes, but for lack of a better
name they will suffice.
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and likewise the space of right-finite particle configurations on the line as

Y =
{−→y = (. . . , y−1, y0, y1, . . .) : all yi ∈ Z≥0 ∪ {+∞},
and there exists x ∈ Z such that yi = 0 for all i > x

}
.

For k ∈ Z≥1, define the space of k-particle configurations on the line as

G
k =

{−→g = (. . . , g−1, g0, g1, . . .) :
∑

i

gi = k
}
,

and Y
k =

{−→y = (. . . , y−1, y0, y1, . . .) :
∑

i

yi = k
}
.

Though G
k and Y

k are the same, we differentiate to keep track of the separate Markov
processes forwhich theywill be the state spaces. The spacesGk andYk are (respectively)
in bijections with (W for Weyl chamber)

WG
k =

{−→m = (m1 ≤ · · · ≤ mk) : all mi ∈ Z

}
,

and WY
k =

{−→n = (n1 ≥ · · · ≥ nk) : all ni ∈ Z

}
.

The bijection is given by associating to a state −→g or −→y , the ordered list of the k particle
locations. As a convention, for −→g we associate −→m with weakly increasing particle
location order, and for −→y we associated −→n with weakly decreasing particle location
order. Given an operator B acting on functions fromG

k to C, we will overload notation
and let B also denote the operator on functions f̃ fromWG

k toCdefinedvia (B f̃ )(−→m ) =
(B f )(−→g )where−→g and−→m are associated via the bijection, and f (−→g ) = f̃ (−→m ). Finally,
define (for later use) GI ,YI ,G

k
I , and Y

k
I to be restrictions of the respective spaces so

that each gi or yi lies in {0, . . . , I }. Define WG
k
I and WY

k
I as the respective images of

G
k andYk . In other words, having no clusters of equalmi ’s or ni ’s of length large than I .
Define the space of right-finite exclusion particle configurations

X =
{−→x = (x1 > x2 > · · · ) : all xi ∈ Z

}
,

and for N ≥ 1 define the space of N -particle configurations

X
N =

{−→x = (x1 > · · · > xN
) : all xi ∈ Z

}
.

By convention, we define ‘virtual particles’ xi ≡ +∞ for all i ∈ Z≤0.

Definition 2.6 (J = 1 high spin zero range process). For k ≥ 1, define the k-particle
discrete time J = 1 higher spin zero range process −→g (t) with state spaceGk according
to the following update rule (see Fig. 4). Given state −→g we update to state −→g ′ sequen-
tially. Start at the left-most site x ∈ Z such that gx > 0. Let hx = 0 and randomly choose
g′
x and hx+1 according to the probability distribution L(1)

α (gx , hx ; g′
x , hx+1). Now pro-

ceed sequentially so that given gx+1 and the choice of hx+1 randomly choose g′
x+1 and

hx+2 according to the probability distribution L(1)
α (gx+1, hx+1; g′

x+1, hx+2). Continue in
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gx

hx = 0

gx

hx+1

0

0

0

gx+1

gx+1

hx+2

gx+2

gx+2

hx+3

Left to Right Update

x x + 1 x + 2

gx
gx+1

gx+2

L(1)
α (4, 0; 3, 1)

L(1)
α (2, 1; 3, 0)

L(1)
α (3, 0; 2, 1)

Fig. 4. A schematic showing the discrete time zero range process sequential update. The grey particles on the
bottom of the figure are the ones which will move to the right by one

this manner, augmenting x . Since there are finitely many particles and since all proba-
bilities of the form L(1)

α (0, j1; i2, j2) are strictly less than 1, it follows that eventually
the output of the sequential update step will be all zeros. The update can be stopped
and all subsequent g′ values are set to zero. We will denote the transition probability
(given by the product of L-matrix weights) from state −→g to −→g ′ as Bα,qα(

−→g ,
−→g ′) and

the transition operator9 with matrix entries as Bα,qα . This operator has a well-defined
action on functions f which are bounded as −→g goes to infinity.10 The odd superscript
notationBα,qα is due to our eventual extension toBα,β for arbitrary β (cf. Remark 3.18).
Note that the dynamics of this process preserves the total number of particles due to the
particle conservation property of the L-matrix.

We also define the infinite-particle version of the process −→g (t) with state space G.
Since the update is from left to right and we are dealing with left-finite initial data,
we can show that the update is well-defined. Towards this end, for M ∈ Z, define the
restriction of a state −→g to Z≤M as −→g ∣∣M = (gi · 1i≤M )i∈Z and define a sequence of
finite-particle processes −→g ∣∣M (t) such that −→g ∣∣M (0) = −→g ∣∣M . Each of these initial data
has finitely many particles, and hence the evolution according to the above defined finite-
particle version of the J = 1 higher spin zero range process is well-defined. We define−→g (t) as the inverse limits (in law) of the restriction of −→g ∣∣M (t) to Z≤M (note: even
though the initial data was restricted to Z≤M , the evolution may have left that sector).
Because of the left to right update and one-sided nature to particle movement, these
restrictions form a consistent family and the desired inverse limit exists. Though we

9 The operator acts on functions f : Gk → C as
(Bα,qα f

)
(
−→g ) =∑−→g ′∈Gk Bα,qα(

−→g ,
−→g ′) f (−→g ′).

10 By −→g going to infinity, we mean that the right-most particle in −→g goes to infinity.
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cannot write transition probabilities, we can still define a transition operator acting on
a suitable domain of functions. The operator Bα,qα will act on functions f : G → C

which are stable at infinity. By stable at infinity we mean that for each −→g ∈ G, over all−→g ′ ≥ −→g , f (−→g ′) is uniformly bounded and f (−→g ′∣∣
M ) converges uniformly to f (−→g ′).

The inequality −→g ′ ≥ −→g means that for all x ∈ Z,
∑

i≤x gi ≥∑i≤x g
′
i (in other words,

the state −→g ′ can be accessed from −→g via moving particles to the right). For such stable
functions, limM→∞

(
Bα,qα f

)
(
−→g ∣∣M ) exists for all −→g , and defines

(
Bα,qα f

)
(
−→g ).

In the same manner as above, we define space reversed zero range processes −→y (t)
in which particles are updated right to left with state space Y

k (or Y). This reversed
process involves the L-matrix which is reflected in the y-axis. The space reversed tran-
sition operator B̃α,qα = PBα,qαP−1 where

(
P f
)(

(yi )i∈Z
) = f

(
(y−i )i∈Z

)
is the space

reversal operator (note that P−1 = P). We may likewise extend from finite to infinite
particle configurations.

Remark 2.7. The J = 1 higher spin zero range process describe in Definition 2.6 should
be thought of as a full line version of the transfer matrix built from the L-matrix with
matrix elements given inDefinition 2.1. The standard construction of a transfermatrix on
Z/LZ involves taking the product of L-matrices and then tracing out the horizontal space.
In other words, one defines the transfermatrix as tr[HJ ]1

([L(1)
α ]1,1[L(1)

α ]2,1 . . . [L(1)
α ]L ,1

)
.

The resulting matrix maps [VI ]1 ⊗ [VI ]2 ⊗ · · · ⊗ [VI ]L to itself. Under standard nor-
malization, it is not clear how to directly construct transfer matrices on Z. However, if
we work with stochastic L-matrices, then all weights are strictly less than 1, except for
the weight L(1)

α (0, 0; 0, 0) = 1. This enables us to make sense of the infinite product
of these (stochastic) L-matrices, at least when restricted to the sector in which there is
a finite total number of particles. As in Definition 2.6, with a little more work one can
likewise construct infinite particle number versions of these resulting stochastic transfer
matrices (see also [BCG14]).

Remark 2.8. In light of Remark 2.2, our ZRP transition probability B̃α,qα(
−→n ;−→n ′) for−→n ,

−→n ′ ∈ WY
k is related to the weight G−→n /

−→n ′ up-to a simple conjugation by an
eigenfunction of G. Thus, our stochastic transition operators are Doob h-transforms of
the transfermatrices considered in [Bor14]. It would be interesting to investigatewhether
conjugation with respect to other eigenfunctions result in stochastic transfer matrices.

Remark 2.9. The construction of the finite particle zero range process given in Defini-
tion 2.6 is invariant under conjugation of the L-matrix elements via multiplication by
f ( j1)/ f ( j2) for any non-zero function f : HJ → C. Such a conjugation may, however,
destroy the stochasticity of the individual L-matrices (despite retaining that of the entire
transfer matrix).

Definition 2.10 (J = 1 higher spin exclusion process). Via a gap/particle transform,11

we define an exclusion process. For N ≥ 1, define the N -particle discrete time J = 1
higher spin exclusion process −→x (t) with state space X

N according to the following
update rule (see Fig. 5). Given state −→x we update to state −→x ′ sequentially. Start at
x1, randomly choose x ′

1 ∈ {x1, x1 + 1, . . .} according to the probability distribution12

L(1)
α (∞, 0;∞, x ′

1 − x1). Proceed sequentially up to j = N so that given x ′
j and x j+1,

11 We may consider our zero range process as describing the size of gaps between labeled particles. This
equivalence is unique up to an overall shift in the labeled particle positions.
12 This corresponds to taking the well-defined limit m → ∞ in Definition 2.1.
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x1x2x3x4

x1x2x3x4

L(1)
α (∞, 0; ∞, 1)L(1)

α (2, 1; 2, 1)L(1)
α (1, 1; 2, 0)L(1)

α (3, 0; 2, 1)

Right to Left Update

Fig. 5. The exclusion process constructed from the L-matrix. The first particle x1 is updated and then, based
on the length of the previous update, each subsequent particle is updated

randomly choose x ′
j+1 ∈ {x j+1, . . . , x j − 1} according to the probability distribution

L(1)
α (x j − x j+1 − 1, x ′

j − x j ; x ′
j − x ′

j+1 − 1, x ′
j+1 − x j+1). We will denote the transition

probability from state−→x to−→x ′ as T α,qα(
−→x ,

−→x ′), and the associated transition operator
with these matrix entries as T α,qα . This transition operator has a well-defined action on
functions which are bounded as−→x goes to infinity. In order to define the infinite version
of this process with state space X it suffices to observe that the first N particles evolve
according to the N -particle exclusion process (and hence the infinite-particle version can
be defined as an inverse limit of consistent laws of these processes). We can also define
the transition operator’s action on functions f : X → C which are stable at infinity. By
stable at infinity we mean that for each −→x ∈ X, over all −→x ′ ≥ −→x , f (−→x ′) is uniformly
bounded and f (−→x ′∣∣

N ) converges uniformly to f (−→x ′). The inequality −→x ′ ≥ −→x means
that for all i ∈ Z≥1, x ′

i ≥ xi , and
−→x ′∣∣

N = (x1, . . . , xN ). For such stable functions
limN→∞

(
T α,qα f

)
(
−→x ∣∣N ) exists for all −→x , and defines

(
T α,qα f

)
(
−→x ).

Definition 2.11 (q-Hahn distribution and zero range process). For generic complex
q, μ, ν, and y ∈ Z≥0, define the (complex) probability distribution13 on s ∈ {0, . . . , y}
as

ϕμ(s|y) = ϕq,μ,ν(s|y) = μs (ν/μ; q)s(μ; q)y−s

(ν; q)y

(q; q)y

(q; q)s(q; q)y−s
,

with (a; q)n :=
n∏

j=1

(1 − aq j−1).

For k ≥ 1 fixed and i ∈ Z, define linear operators
[
H̃μ
]
i via their action on functions

f : Yk → C

([
H̃α
]
i f
)
(
−→y ) =

yi∑

si=0

ϕ−α(si |yi ) f
(−→y si

i,i−1

)
.

Note the inclusion of the negative sign in ϕ−α(si |yi ). Here, for −→y ∈ Y
k , we have set−→y s

i,i−1 = (. . . , yi−1 + s, yi − s, . . . , ). Define the k-particle space reversed q-Hahn zero

range process transition operator14

13 One condition under which this is a bona-fide positive probability distribution is if |q| < 1 and 0 ≤ ν ≤
μ < 1. For discussion and references regarding this distribution, see [Pov13,Cor14].
14 If the parameters q, μ, ν are such that ϕμ is always positive, then [H̃α

]
i corresponds with the Markov

update by which si particles are moved from position i to i − 1 according to the distribution ϕ−α(si |yi ), and
H̃α is the Markov update by which one updates each site in parallel according to the H̃α single-site update.
We do not, however, rely upon such positivity in our use of this distribution and its associated operators.
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H̃α = . . .
[
H̃α
]
−1

[
H̃α
]
0

[
H̃α
]
1 . . .

In the sameway as forBα,qα (up to space reversal),we also define the transition operator’s
action on functions f : Y → C which are stable at negative infinity. Likewise, define
the non-space reversed operator Hα = PH̃αP−1 where P is the space reversal operator
from Definition 2.6.

Remark 2.12. We will use the following properties of ϕμ(s|y) which one can readily
check (here s ∈ {1, . . . , y}):

ϕμ(s|y) = ϕμ(s − 1|y) · μ
1 − qy+1−s

1 − qs
1 − νqs−1/μ

1 − μqy−s
, (2.3)

ϕqμ(s|y) = 1

1 − μ

(
(1 − μqy−s)ϕμ(s|y) − μ(1 − qy+1−s)ϕμ(s − 1|y)

)
. (2.4)

2.2. Bethe ansatz diagonalization. In Appendix Awe recall the Bethe ansatz eigenfunc-
tion which, according to the result we now prove, diagonalize the higher spin zero range
process with transition matrix B̃α,qα . We will rely upon the Plancherel theory developed
in [BCPS14] for these eigenfunctions (also reviewed in the appendix). In what follows
we will, as described in Definition 2.5, overload notation and let operators acting on
functions of the −→y variables also act on functions of the −→n variables via their bijective
association.

Proposition 2.13. Assuming
∣∣ 1−zi
1−νzi

α+ν
1+α

∣∣ < 1 for 1 ≤ i ≤ k, then15

(
B̃α,qα��−→z

)
(
−→n ) =

k∏

i=1

1 + qαzi
1 + αzi

��−→z (
−→n ).

Proof. We appeal to the known eigenfunction relations for the J = 1 higher spin six-
vertex model. This can be derived on the periodic lattice via algebraic Bethe ansatz
(cf. [Res08]). We use [Bor14, Corollary 4.5 (i)] wherein it is shown (via a symmetric
function theory approach) that if

∣∣∣
zi − s

1 − szi

u − s

1 − su

∣∣∣ < 1

for all i ∈ {1, . . . , k}, then
k∏

i=1

1 − quzi
1 − uzi

c(−→n )F−→n (z1, . . . , zk) =
∑

−→n ′
G−→n ′/−→n (v)c(−→n ′)F−→n ′(z1, . . . , zk).

Here −→n ′,−→n ∈ WY
k and, after changing z → sz,

c(−→n )F−→n (sz1, . . . , szk) =
k∏

i=1

(−s)ni

1 − s2zi
�r−→z (

−→n )

15 By applying the space reversal operator P we can also produce eigenrelations for Bα,qα .
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where ν = s2 in �r−→z (
−→n ). According to [Bor14, Definition 3.2] the term G−→n ′/−→n (v) is

equal to the product of the weights from −→n ′ to −→n where the weights are given as in
[Bor14, Definition 2.1]. Remark 2.2 explains the relation of the weights in [Bor14] to
those considered herein and setting α = −sv and ν = s2 yields

k∏

i=1

1 + qαzi
1 + αzi

�r−→z (
−→n ) =

((
B̃α,qα

)T
�r−→z

)
(
−→n ).

This, likewise, implies the desired relationship for left eigenfunctions as well. 	

Proposition 2.14. For α ∈ C and 1 − νz j �= 0 for 1 ≤ j ≤ k,

(
H̃α��−→z

)
(
−→n ) =

k∏

i=1

1 + αzi
1 − νzi

��−→z (
−→n ).

Proof. This follows from [Pov13,Cor14,BCPS14]. In particular, [BCPS14, Proposition
5.13] records the desired result for 0 ≤ ν ≤ −α < 1. The operator H̃α depends
polynomially on α, as does the eigenvalue. Thus, since both sides above are polynomial
in α and equal for an interval of values, they must match for all α ∈ C. 	


In Sect. 5.6 we develop the relationship between the operator H̃α and higher spin
versions of the zero range process transition operator.

In order to understand the following corollary, the reader is encouraged to recall from
Appendix A the direct and inverse transforms Fq,ν,J q,ν and the space Wk

max on which
J q,νFq,ν acts as the identity.

Corollary 2.15. On the space Wk
max, Bα,qα = (Hα

)−1Hqα , B̃α,qα = (H̃α
)−1H̃qα , and

H̃α commutes with itself for different values of α.

Proof. This follows by spectral considerations. Let’s prove the first claim. The formula
for J q,ν implies that16

((
H̃α
)−1

f
)
(
−→n ) = J q,ν

((
evα(·))−1(Fq,ν f

)
(·)
)
(
−→n )

(
H̃qα f

)
(
−→n ) = J q,ν

(
evqα(·)(Fq,ν f

)
(·)
)
(
−→n ),

where evα(
−→z ) =∏k

i=1
1+αzi
1−νzi

. Combining these yields

((
H̃α
)−1H̃qα f

)
(
−→n ) = J q,ν

(
evα,qα(·)(Fq,ν f

)
(·)
)
(
−→n )

where eva,b(
−→z ) =∏k

i=1
1+bzi
1+azi

. On the other hand, it follows from Proposition 2.13 that

(
B̃α,qα f

)
(
−→n ) = J q,ν

(
evα,qα(·)(Fq,ν f

)
(·)
)
(
−→n )

as well. Conjugating everything by the space reversal operator P produces the second
claimed result. Similar considerations and Proposition 2.14 imply the last commutation
relation. 	

16 In the below formulas, the dot represents the variable integrated in the application of the inverse transform.
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Remark 2.16. One of the methods used in Bethe ansatz is to rewrite an operator as
the direct sum of one-dimensional operators subject to two-body boundary conditions.
Not every higher spin transition operator is amenable to this method—for instance, the
stochastic six-vertexmodel [BCG14]. This proposition shows thatBα,qα (and eventually
via fusion, the general Bα,β operator) can be written as the ratio of q-Hahn transition
operators. It would be interesting to see if this fact goes through to the case of transfer
matrices on the finite lattice Z/LZ.

2.3. Self duality.

Definition 2.17. We define a number of duality functionals. For −→x ∈ X and −→y ∈ Y
k

for some k ∈ Z≥1, define17

H(
−→x ,

−→y ) =
∏

i∈Z
q(xi+i)yi .

For −→g ∈ G and −→y ∈ Y define

G(
−→g ,

−→y ) = q
∑

i> j gi y j , and Ĝ(
−→g ,

−→y ) = q−∑i≤ j gi y j .

Notice that unless −→g ∈ G
k and −→y ∈ Y

k′
for some k, k′ ∈ Z≥1, G(

−→g ,
−→y ) will equal

zero. In the case that −→g ∈ G
k and −→y ∈ Y

k′
notice that

G(
−→g ,

−→y ) = Ĝ(
−→g ,

−→y ) · qkk′
. (2.5)

For −→g ∈ G
k and −→y ∈ Y

k′
we may overload these functionals as described in Defini-

tion 2.5 by replacing −→g by −→m ∈ WG
k and −→y by −→n ∈ WY

k′
. For m ∈ Z (or n ∈ Z)

and −→g ∈ G (or −→y ∈ Y)

N↓
m(

−→g ) =
∑

�≤m

g�, and N↑
m(

−→g ) =
∑

�≥m

g�.

For −→g ∈ G
k bijectively equivalent to −→m ∈ WG

k and −→y ∈ Y we have

G(
−→g ,

−→y ) = G(
−→m ,

−→y ) =
k∏

i=1

q
N↓
mi−1(

−→y )
,

and Ĝ(
−→g ,

−→y ) = Ĝ(
−→m ,

−→y ) =
k∏

i=1

q−N↑
mi (

−→y ).

For −→g ∈ G and −→y ∈ Y
k′
bijectively equivalent to −→n ∈ WY

k′
we have

G(
−→g ,

−→y ) = G(
−→g ,

−→n ) =
k′∏

i=1

q
N↑
ni +1

(
−→g )

,

and Ĝ(
−→g ,

−→y ) = Ĝ(
−→g ,

−→n ) =
k′∏

i=1

q−N↓
ni (

−→g ).

17 We employ the convention that the product is zero if yi > 0 for any i ≤ 0. This is in accordance with the
convention that xi (·) ≡ +∞ for i ≤ 0.
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Recall the q-integer [n] = 1−qn

1−q . For −→m ∈ WG
k and −→y ∈ Y define

Gm(
−→m ,

−→y ) =
k∏

i=1

[ymi ]q · qN
↓
mi−1(

−→y )
, and Ĝm(

−→m ,
−→y ) =

k∏

i=1

[ymi ]q · q−N↑
mi (

−→y ),

and for −→g ∈ G and −→n ∈ WY
k′
define

Gn(
−→g ,

−→n ) =
k′∏

i=1

[gni−1]q · qN↑
ni (

−→g ), and Ĝn(
−→g ,

−→n ) =
k′∏

i=1

[gni ]q · q−N↓
ni (

−→g ).

Definition 2.18. Call −→x ∈ X well-adapted to H if for −→y ∈ Y
k the function −→y →

H(
−→x ,

−→y ) lies in the space Wk
max (see Definition A.5). Call −→g ∈ G well-adapted to

G if for −→y ∈ Y
k the function −→y → G(

−→g ,
−→y ) lies in the space Wk

max. Call
−→y ∈ Y

well-adapted to G if for −→g ∈ G
k the space reversal of the function −→g → G(

−→g ,
−→y )

lies in the space Wk
max.

Remark 2.19. There are a number of readily accessible examples ofwell-adapted−→x ,
−→g ,

and −→y . Step initial data xi = −i , i ∈ Z≥1 is well-adapted to H. To show this, note that
for c > 0 small enough and C > 0 large enough the function −→y → H(

−→x ,
−→y ) lies in

Wk
exp(c,C) which, by Corollary A.6 is a subset ofWk

max. Similarly, one shows that spiked
initial data gi = +∞1i=0 and likewise yi = +∞1i=0 are well-adapted to G.

We now state and prove our first duality result, one between the exclusion process−→x (t) and zero range process −→y (t). The approach of the proof follows, for the most
part, that of the proof of the discrete time Bernoulli q-TASEP duality in [BC13]. Indeed,
setting ν = 0 our exclusion process becomes the Bernoulli q-TASEP.

Theorem 2.20. The J = 1 higher spin exclusion process with transition operator T α,qα

is dual to the space reversed J = 1 higher spin zero range process with transition
operator B̃α,qα with respect to H(

−→x ,
−→y ). Precisely,

T α,qαH = H
(
B̃α,qα

)T
,

where the equality holds for all matrix elements indexed by −→x ∈ X well-adapted to H
and all −→y ∈ Y

k .

Proof. Wewill demonstrate the following ‘implicit’ version of the self-duality. Consider
the exclusion process −→x (·) from Definition 2.10 with some (possibly random) initial
data −→x (0) ∈ X and define

It (
−→y ) = E

[
H
(−→x (t),−→y )

]

where the expectation is over the evolution of −→x (·) (as well as the initial data, if it is
random), and −→y ∈ Y

k for some k ∈ Z≥1. Then, assuming the initial data is such that
It (

−→y ) is everywhere finite, we claim that following equality
(
H̃α It+1

)
(
−→y ) = (H̃qα It

)
(
−→y ), (2.6)

holds for all t ∈ Z≥0 and all −→y ∈ Y
k .
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Before proving (2.6), let us observe how it readily leads to the proof of the theorem.
In matrix notation, (2.6) implies that

T α,qαH(H̃α)T = H(H̃qα)T ,

where we note that H is easily seen to be in the domain of these transition operators.
Since in the hypotheses of the theorem we have assumed that−→x ∈ Xwell-adapted toH,
we can appeal to Corollary 2.15 (which shows that B̃α,qα = (

H̃α
)−1H̃qα when acting

on function in Wk
max) to complete the proof of the theorem.

Thus, it remains to demonstrate (2.6) and the remaining portion of this proof is
devoted to that goal.

Let N be the smallest integer such that all yi = 0 for i > N . Note that by the
convention on H being zero if yi > 0 for any i ≤ 0, it suffices to restrict the product
i ≤ N to 0 ≤ i ≤ N and modify the definition of H̃α to only include terms

[
H̃α
]
i for

1 ≤ i ≤ N . In other words, we can treat 0 as a sink since our functional becomes 0 for
all i ≤ 0. We may now argue similarly to [BC13].

For j ≥ 1 and t ≥ 0, let σ
j
t denote the sigma-algebra generated by the random

variables x1(t), . . . , x j (t). Conditioning on the history of the whole process up to time
t , we will show that, as σ N

t measurable random variables,

H̃α
E

[
N∏

i=0

q(xi (t+1)+i)yi
∣
∣ σ N

t

]

= H̃qα
N∏

i=0

q(xi (t)+i)yi . (2.7)

Since operators H̃α and H̃qα in both sides have a sequential structure (corresponding
to first moving s1 particles from y1 to y0, then s2 particles from y2 to y1, etc.), we can
further condition on what happened to particles x1, . . . , xi−1 during time step t → t + 1
(for any i = 1, . . . , N ). We will show that the relevant contributions to both sides of
(2.7) behave as they should (i.e., the parameter α in the operator at time t + 1 is replaced
by qα at time t). That is, we will show that for i ≥ 2,

yi∑

si=0

ϕ−α(si |yi )E
[
q(xi (t+1)+i)(yi−si )q(xi−1(t+1)+i−1)si

∣∣ σ N
t , σ i−1

t+1

]

=
yi∑

si=0

ϕ−qα(si |yi )q(xi (t)+i)(yi−si )q(xi−1(t)+i−1)si , (2.8)

and for i = 1,

ϕ−α(0|y1)E
[
q(x1(t+1)+1)y1

∣∣ σ N
t

]
= ϕ−qα(0|y1)q(x1(t)+1)y1 . (2.9)

First, note that (2.9) is straightforward: conditioned on the knowledge of x1(t), the first
particle jumps to the right by onewith probabilityα/(1+α) and stays putwith probability
1/(1 + α). Therefore,

ϕ−α(0|y1)E
[
q(x1(t+1)+1)y1

∣∣ σ N
t

]

= ϕ−α(0|y1)
(

α

1 + α
q(x1(t+1)+1)y1qy1 +

1

1 + α
q(x1(t+1)+1)y1

)

= ϕ−qα(0|y1)q(x1(t)+1)y1 .
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Here we have used s = 0 case of (2.4) with μ = −α, which reads

ϕ−qα(0|y) = 1

1 + α
(1 + αqy−s)ϕ−α(0|y).

To show (2.8), denote by I the indicator of the event that xi−1(t + 1) = xi−1(t) + 1,
i.e., that the particle xi−1 has jumped to the right by one during time step t → t +1. This
indicator isσ i−1

t+1 -measurable, and itwill help us to compute the conditional expectation in
the left-hand side of (2.8). Also for any r, s ≥ 0 denote Zr,s := q(xi (t)+i)r q(xi−1(t)+i−1)s .
Using the definition of the dynamics of −→x , we can write

E

[
q(xi (t+1)+i)r q(xi−1(t+1)+i−1)s

∣∣ σ N
t , σ i−1

t+1

]

= I qs Zr,s

(

qr
α + νqxi−1(t)−xi (t)−1

1 + α
+
1 − νqxi−1(t)−xi (t)−1

1 + α

)

+ (1 − I )Zr,s

(

qr
α(1 − qxi−1(t)−xi (t)−1)

1 + α
+
1 + αqxi−1(t)−xi (t)−1

1 + α

)

.

Noting that qxi−1(t)−xi (t)−1Zr,s = Zr−1,s+1, we can simplify the right-hand side above
to

= I

1 + α

(
(αqr+s + qs − αqr − 1)Zr,s + (νqr+s − νqs + αqr − α)Zr−1,s+1

)

+
1

1 + α

(
(αqr + 1)Zr,s + (−αqr + α)Zr−1,s+1

)

(note that when r = 0, the coefficient by Zr−1,s+1 is zero.) The left-hand side of (2.8) is
then equal to the sum (over si ) of ϕ−α(si |yi ) times the above expressions with r = yi −si
and s = si . That is, left-hand side of (2.8) takes the form

I

1 + α

yi∑

si=0

Zyi−si ,si

[
ϕ−α(si |yi )(αqyi + qsi − αqyi−si − 1)

+ ϕ−α(si − 1|yi )(νqyi − νqsi−1 + αqyi−si+1 − α)
]

+
1

1 + α

yi∑

si=0

Zyi−si ,si

[
ϕ−α(si |yi )(αqyi−si + 1) + ϕ−α(si − 1|yi )(−αqyi−si+1 + α)

]
.

By properties of ϕ−α (2.3), (2.4), the expression in the square brackets in the first sum
vanishes for any si ; and the expression in the square brackets in the second sum is equal
to ϕ−qα(si |yi ). This yields (2.8).

Having now established (2.8) and (2.9), we can now prove (2.7). We have (assuming
y0 = 0, otherwise (2.7) is trivial)

[
H̃α
]
1 . . .

[
H̃α
]
N−1

[
H̃α
]
NE

[
q(x1(t+1)+1)y1E

[
q(x2(t+1)+1)y2

. . .E
[
q(xN−1(t+1)+N−1)yN−1E

[
q(xN (t+1)+N )yN

∣∣ σ N
t , σ N−1

t+1

] ∣∣ σ N
t , σ N−2

t+1

]
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. . .
∣∣ σ N

t , σ 1
t+1

] ∣∣ σ N
t

]

= [H̃α
]
1 . . .

[
H̃α
]
N−1E

[
q(x1(t+1)+1)y1E

[
q(x2(t+1)+1)y2 . . .E

[
q(xN−1(t+1)+N−1)yN−1

×
yN∑

sN=0

ϕ−α(sN |yN )E
[
q(xN (t+1)+N )(yN−sN )q(xN−1(t+1)+N−1)sN

∣∣ σ N
t , σ N−1

t+1

]

∣∣ σ N
t , σ N−2

t+1

]
. . .
∣∣ σ N

t , σ 1
t+1

] ∣∣ σ N
t

]

= [H̃α
]
1 . . .

[
H̃α
]
N−1E

[
q(x1(t+1)+1)y1E

[
q(x2(t+1)+1)y2

. . .E
[
q(xN−1(t+1)+N−1)yN−1

∣∣ σ N
t , σ N−2

t+1

]
. . .
∣∣ σ N

t , σ 1
t+1

] ∣∣ σ N
t

]

×
yN∑

sN=0

ϕ−qα(sN |yN )q(xN (t)+N )(yN−sN )q(xN−1(t)+N−1)sN .

The first equality is by definition, and the second equality is by an application of (2.8)
corresponding to i = N , which leads to replacement of the operator

[
H̃α
]
N (for time

t + 1) by the operator
[
H̃qα

]
N (for time t). Continuing using (2.8) for i = N − 1, . . . , 2

and (2.9) for i = 1, we arrive at the desired identity (2.7), and hence complete the proof
of the theorem. 	


We turn now to self-dualities of the zero range process. The proofs are considerably
less involved and rely on an earlier discovered identity [Cor14, Proposition 1.2].

Theorem 2.21. The J = 1 higher spin zero range process with transition operatorBα,qα

is dual to the space reversed process with generator B̃α,qα with respect toG(
−→g ,

−→y ) as
well as Ĝ(

−→g ,
−→y ). Precisely,

Bα,qαG = G
(
B̃α,qα

)T
,

where the equality holds for all matrix elements indexed by −→g ∈ G
k and −→y ∈ Y, or by−→g ∈ G and −→y ∈ Y

k . Likewise,

Bα,qαĜ = Ĝ
(
B̃α,qα

)T
,

where the equality holds for all matrix elements indexed by −→g ∈ G and −→y ∈ Y,
provided both sides of the above equation are finite.

Proof. We prove this theorem in a few stages. Initially we deduce an ‘implicit’ form
of the G duality in (2.10). From this we deduce the G duality claimed in the theorem.
Finally, we use the G duality to deduce the Ĝ duality.

We begin by proving the following implicit form of the G duality. For any k ∈ Z≥1,

HqαG
(
H̃α
)T = HαG

(
H̃qα

)T
, (2.10)

where the equality holds for all matrix elements with−→g ∈ G
k and−→y ∈ Ywell-adapted

to G, or with −→g ∈ G well-adapted to G and −→y ∈ Y
k . We will assume the second case

below, though the first case follows similarly.
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To show (2.10), we demonstrate first that

G
(
H̃μ
)T = HμG (2.11)

for all −→g ∈ G and −→y ∈ Y. This follows from the fact that for each i ∈ Z,

G
([H̃μ]i

)T
(
−→g ,

−→y ) =
yi∑

si=0

ϕμ(si |yi )G(
−→g ,

−→y si
i,i−1) =

yi∑

si=0

ϕμ(si |yi )qsi giG(
−→g ,

−→y )

=
gi∑

ri=0

ϕμ(ri |gi )qri yiG(
−→g ,

−→y ) =
gi∑

ri=0

ϕμ(ri |gi )G(
−→g ri

i,i+1,
−→y )

= [Hμ]iG(
−→g ,

−→y ).

In the first and last equation abovewe havewritten the composition of operators followed
by (

−→g ,
−→y ) to denote the corresponding matrix element. The equality between the end

of the first and beginning of the second line above relies on an identity proved in [Cor14,
Proposition 1.2].

From (2.11), we find that

HqαG
(
H̃α
)T = G

(
H̃qα)T (H̃α

)T = G
(
H̃α)T (H̃qα

)T = HαG
(
H̃qα

)T
.

The only step in this deduction which requires justification is the commutation relation
(H̃qα)T (H̃α

)T = (H̃α)T (H̃qα
)T . This, however, follows from Corollary 2.15 and the

fact that we have assumed that −→g ∈ G is well-adapted to G and −→y ∈ WY
k . Thus, we

have established (2.10).
Under the assumption that −→g ∈ G is well-adapted to G and −→y ∈ Y

k we may apply
the first two identities from Corollary 2.15 to equation (2.10) to deduce the G duality
statement in the theorem. The theorem asks for this duality to hold for all −→g ∈ G

(without the well-adapted condition). Indeed, all −→g ∈ G with
∑

i∈Z gi = ∞ are well-
adapted to G. Thus, it remains to show that we can extend the duality to −→g ∈ G

k′
for

any k′ ∈ Z≥1. For
−→g ∈ G

k′
fixed, and M sufficiently negative (so as to be less than the

location of the most negative particle in −→g ) let −→g M = +∞1M + −→g , where 1M is the
vector of all zeros, except a one at M . In other words, −→g M is equivalent to −→g except
with an infinite number of particles added at site M . From the above argument we know
that theG duality in the theorem holds for matrix elements −→g M ∈ G and any −→y ∈ Y

k .
It remains to show that both

lim
M→−∞ Bα,qαG(

−→g M ,
−→y ) = Bα,qαG(

−→g ,
−→y ),

lim
M→−∞G

(
B̃α,qα

)T
(
−→g M ,

−→y ) = G
(
B̃α,qα

)T
(
−→g ,

−→y ).

Let us justify the first limit, as the second follows similarly. Call f (−→g M ) = G(
−→g M ,

−→y )

and recall that
(
Bα,qα f

)
(
−→g M ) gives the expectation of f after one step of the zero range

process started from initial data −→g M . The only way that the infinite number of particles
at M can affect the value of f is if one of them makes its way past the left-most particle
in −→y . However, this requires a large number of (0, 1; 0, 1)-vertices. Since the weight of
these vertices is strictly less than one, this probability goes to zero as M → −∞. Since
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the above defined f is bounded by one, the desired convergence result clearly holds.
This establishes the G duality in the theorem.

Turning to the Ĝ duality, let us first prove it for −→g ∈ G
k and −→y ∈ Y

k′
for some

k, k′ ∈ Z≥1. Recalling (2.5) we have that Ĝ(
−→g ,

−→y ) = q−kk′
G(

−→g ,
−→y ). Since q−kk′

is a constant, multiplying the G duality by it yields the Ĝ duality. We now extend to
all −→g ∈ G and −→y ∈ Y such that both sides of the Ĝ duality are finite. Under these
conditions there must be a finite number (say k) of particles in −→g which lie to the left of
some particle in −→y , and likewise a finite number (say k′) of particles in −→y which lie to
the right of some particle in −→g . It is easy to see18 that replacing −→g with its k left-most
particles and replacing −→y with its k′ right-most particles, the value of the left-hand and
right-hand sides of the Ĝ duality identity are unchanged. This completes the proof of
the duality and hence the theorem. 	

Remark 2.22. The duality involvingH and Ĝ can be made to look rather similar, though,
to our understanding, they are not equivalent. From a state −→x ∈ X define its gaps via
g̃i = xi−1 − xi − 1. Then xi + i = −gi − · · · − g2 + x1 + 1. Thus, up to this last term
x1 + 1 the duality functional H(

−→x ,
−→y ) can be written in a similar form as Ĝ. We are

not aware of a way to derive, for instance, the H duality from the Ĝ duality (the proof
of the latter is considerably simpler).

From the self-dualities of Theorem 2.21 we can derive four more self-dualities.

Theorem 2.23. The J = 1 higher spin zero range process with transition operatorBα,qα

is dual to the space reversed process with generator B̃α,qα with respect to Gm(
−→m ,

−→y ),
Ĝm(

−→m ,
−→y ), Gn(

−→g ,
−→n ), and Ĝn(

−→g ,
−→n ). Precisely,

Bα,qαGm = Gm
(
B̃α,qα

)T
, and Bα,qαĜm = Ĝm

(
B̃α,qα

)T
,

where the equality holds for all matrix elements indexed by −→m ∈ WG
k
1 and −→y ∈ Y.

Likewise,

Bα,qαGn = Gn
(
B̃α,qα

)T
, and Bα,qαĜn = Ĝn

(
B̃α,qα

)T
,

where the equality holds for all matrix elements indexed by −→g ∈ G and −→n ∈ WY
k
1.

For the Ĝ dualities, we also require both sides to be finite. Recall from Definition 2.5
that WG

k
1 and WY

k
1 refers to

−→m and −→n which are strictly ordered.

Proof. Observe that for m, n ∈ Z, −→g ∈ G, and −→y ∈ Y

[ym]q · qN↓
m−1(

−→y ) = qN
↓
m−1(

−→y ) − qN
↓
m (

−→y )

1 − q
,

[ym]q · q−N↑
m (

−→y ) = q−N↑
m (

−→y ) − q−N↑
m+1(

−→y )

1 − q
,

[gn−1]q · qN↑
n (

−→g ) = qN
↑
n (

−→g ) − qN
↑
n−1(

−→g )

1 − q
,

18 The update for −→g according to Bα,qα is from left to right, and opposite for −→y according to B̃α,qα . The
rightward movement of the particles in−→g besides the k left-most does not change the value ofG, and likewise
for the leftward movement of the particles in −→y besides the k′ right-most.
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[gn]q · q−N↓
n (

−→g ) = q−N↓
n (

−→g ) − q−N↓
n−1(

−→g )

1 − q
.

Wewill use the above identities as well as the dualities forG and Ĝ to prove the theorem.
Since the proofs of all dualities are quite similar, wewill only present the first one. In light
of the first of the above identities, for −→m ∈ WG

k
1 and

−→y ∈ Y we have that Gm = CG
for the linear operator

C =
k∏

i=1

[T ]i − 1

1 − q
.

Here, (T f )(m) = f (m−1) and [T ]i is the operator which acts as T in the i-coordinate.
It is important that we have restricted ourselves to strictly ordered −→m since otherwise
C would depend on the cluster structure of −→m . In light of this, the duality which we
wish to demonstrate reduces to showing that as operators fromWG

k → Y, Bα,qαCG =
CG
(
B̃α,qα

)T . This follows, however, because as operators from WG
k → WG

k , Bα,qα

and C commute. One way to see this is to observe that C is diagonalized in the same
basis as Bα,qα . In particular, because C acts symmetrically on all variables, it follows
that C��−→z = ev(z)��−→z .

19 In a similar manner as demonstrated in Corollary 2.15, this

implies the commutation. In fact, this deduction really requires restricting to −→y which
are well-adapted to G. As we have seen earlier in the proof of Theorem 2.21, it is then
possible to extend from well-adapted −→y to all −→y ∈ Y. 	


3. Fusion and Self Duality for J ∈ Z≥1

Fusion of R-matrices is a representation theoretic mechanism introduced in [KR87]
to construct R-matrices with higher horizontal spin (i.e. J ∈ Z≥1) from those with
J = 1 while maintaining the diagonalizability of the associated transfer matrices. The
procedure simplifies on Z in our case of stochastic L-matrices. We provide (in Sect. 3.1)
a rather simple probabilistic proof using Markov functions theory. Fusion also naturally
provides a recursion relation in J for the higher spin L-matrix L(J )

α . We record the
recursion relation in Sect. 3.2 and solve it explicitly in terms of q-Racah polynomials
(or regularized terminating basic hypergeometric series) in Sect. 3.3. The self-dualities
proved earlier in Sect. 2.3 immediately generalize to all J ∈ Z≥1. In Remark 3.18 we
observe how our L-matrix can be analytically continued so that q Jα is replaced by an
arbitrary β ∈ C. We comment briefly on the implications, and develop this further in
Sect. 5.

Definition 3.1 (General J higher spin zero range and exclusion process transition oper-
ators). For J ∈ Z≥1 define20

Bα,q Jα = Bα,qαBqα,q2α · · · Bq J−1α,q Jα,

19 Though the value of ev(z) is unimportant, it can be calculated to be

ev(z) =
k∏

i=1

1 − 1−νzi
1−zi

1 − q
.

20 The order does not matter since each operator is diagonalized in the same basis.
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Bα,qα

Bqα,q2α

Bq2α,q3α

P0

Bq3α,q4α

Bq4α,q5α

Bq5α,q6α

Bq6α,q7α

P1 P2 . . .

Fig. 6. Left the trajectory (in terms of arrows) of the application of the Markov transition operator Bα,qα ,

Bqα,q2α , through Bq J−1α,q J α (here J = 7). The bottom grey row represents the input to Bα,qα and the

higher grey row the output. Right due to the sequential update rule for each Bq jα,q j+1α , instead of sampling
row by row, one can also sample this trajectory sequentially by updating one column (such as indicated in
grey) at a time from left to right

and likewise B̃α,q Jα . Also define

T α,q Jα = T α,qαT qα,q2α · · · T q J−1α,q Jα.

These correspond to taking J steps of the processes with parameters α, qα, . . . , q J−1α.

The left-hand side of Fig. 6 illustrates the sequential composition of the Bq j−1α,q jα

operators for j = 1, . . . , J . Since each transition operator is stochastic, their product is
as well. Moreover, it follows from Proposition 2.13 that:

Corollary 3.2. If
∣
∣ 1−zi
1−νzi

q jα+ν

1+q jα

∣
∣ < 1 for 1 ≤ i ≤ k and 1 ≤ j ≤ J − 1, then

(
B̃α,q Jα��−→z

)
(
−→n ) =

k∏

i=1

1 + q Jαzi
1 + αzi

��−→z (
−→n ). (3.1)

The of choice parameters α, qα, . . . , q J−1α implies the telescoping of the product
of eigenvalues and hence the simple form of the result.

The following is an immediate corollary of the corresponding J = 1 duality results
contained in Theorems 2.20, 2.21, and 2.23, along with the fact that the operators Bα,qα

commute for different values of α (and the same fact for B̃α,qα and T α,qα). Recall the
duality functionals from Definition 2.17.

Corollary 3.3. For all J ∈ Z≥1 we have the following Markov dualities:

• For all matrix elements indexed by −→x ∈ X well-adapted to H and all −→y ∈ Y
k ,

T α,q JαH = H
(
B̃α,q Jα

)T
.

• For all matrix elements indexed by −→g ∈ G
k and −→y ∈ Y, or by −→g ∈ G and −→y ∈ Y

k ,

Bα,q JαG = G
(
B̃α,q Jα

)T
.
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• For all matrix elements indexed by −→g ∈ G and −→y ∈ Y, provided both sides of the
equation below are finite,

Bα,q JαĜ = Ĝ
(
B̃α,q Jα

)T
.

• For all matrix elements indexed by21 −→m ∈ WG
k
1 and

−→y ∈ Y (for the Ĝ duality, we
also require both sides to be finite),

Bα,q JαGm = Gm
(
B̃α,q Jα

)T
, and Bα,q JαĜm = Ĝm

(
B̃α,q Jα

)T
.

• For all matrix elements indexed by −→g ∈ G and −→n ∈ WY
k
1 (for the Ĝ duality, we also

require both sides to be finite),

Bα,q JαGn = Gn
(
B̃α,q Jα

)T
, and Bα,q JαĜn = Ĝn

(
B̃α,q Jα

)T
.

3.1. Fusion. We can describe the update procedure for the Markov chain with the tran-
sition operator Bα,q Jα started in a state −→g ∈ G

k in the following manner.

Definition 3.4. For x ∈ Z, define the product of L-matrices

[(
L(1)

α

)⊗q J ]
x,1 = [L(1)

α ]x,1 · · · [L(1)
q J−1α

]x,J
so that
[(
L(1)

α

)⊗q J ]
x,1 : [VI ]x ⊗ [H1]1 ⊗ · · · ⊗ [H1]J → [VI ]x ⊗ [H1]1 ⊗ · · · ⊗ [H1]J

has matrix elements
[(
L(1)

α

)⊗q J ]
x,1

(
gx , hx,1, . . . , hx,J ; g′

x , hx+1,1, . . . , hx+1,J
)

with gx , g′
x ∈ [VI ]x and hx,y ∈ [H1]y for 1 ≤ y ≤ J . These matrix ele-

ments represent the transition probabilities from inputs gx , hx,1, . . . , hx,J to outputs
g′
x , hx+1,1, . . . , hx+1,J . In terms of the right-hand side of Fig. 6, these provide the tran-

sition probabilities from the arrows coming into a column (such as the one in grey) from
bottom and left, to those leaving to the top and right.

As inDefinition 2.6, we use
(
L(1)

α

)⊗q J to update sequentially in the followingmanner.
Find the first x ∈ Z such that gx > 0. In the first sequential update step, let hx,y ≡ 0
for 1 ≤ y ≤ J and randomly choose g′

x and hx+1,y for 1 ≤ y ≤ J according to the

stochastic matrix
(
L(1)

α

)⊗q J . The randomly chosen hx+1,y become input, alongwith gx+1
for the next column update step, and so on sequentially increasing x . It is clear that the
above described update from −→g to −→g ′ agrees with Bα,q Jα .

This update procedure can be recast in the following notation (see the right-hand side
of Fig. 6). First, for x ∈ Z define S to be the set of basis elements of [H1]1⊗· · ·⊗[H1]J
and S′ to be the set of basis elements of [HJ ]1. In other words, S is isomorphic to {0, 1}J
and S′ to {0, 1, . . . , J }. For all x ∈ Z, define a Markov transition operator Px : S → S

21 Recall from Definition 2.5 that notation WG
k
1 andWY

k
1 refers to −→m and −→n which are strictly ordered.
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whose matrix elements indexed by (hx,1, . . . , hx,J ) ∈ S and (hx+1,1, . . . , hx+1,J ) ∈ S
are given by

Px
(
hx,1, . . . , hx,J ; hx+1,1, . . . , hx+1,J

)

= [(L(1)
α

)⊗q J ]
x,1

(
gx , hx,1, . . . , hx,J ; g′

x , hx+1,1, . . . , hx+1,J
)

(3.2)

where we consider −→g ∈ G
k fixed, and have set

g′
x = gx + hx − hx+1, with hx =

J∑

y=1

hx,y . (3.3)

As a corollary of the above definitions we have

Corollary 3.5. Fix −→g ∈ G
k and assume without loss of generality that x = 0 is the

smallest x ∈ Z such that gx > 0. Consider the Markov chain with state space S,
transition operator Px , and initial state h0,y ≡ 0 for 1 ≤ y ≤ J . Denote the value
at ‘time’ x as {hx,y}1≤y≤J . Then, from the trajectory of this Markov chain we can
deterministically compute −→g ′ via (3.3) and the probability of having an output −→g ′
given −→g is equal to Bα,q Jα(

−→g ,
−→g ′).

Define the function φ : S → S′ which takes (hx,1, . . . , hx,J ) ∈ S to hx =∑J
y=1 hx,y ∈ S′. Define the operator 
 : S → S′ which acts on functions as

(
 f )
(
hx,1, . . . , hx,J

) = f
(
φ
(
hx,1, . . . , hx,J

))
. In other words, the matrix elements

of 
, indexed by (hx,1, . . . , hx,J ) ∈ S and hx ∈ S′, are given by


(hx,1, . . . , hx,J ; hx ) = 1φ(hx,1,...,hx,J )=hx . (3.4)

Define an operator � : S′ → S whose matrix elements indexed by hx ∈ S′ and
(hx,1, . . . , hx,J ) ∈ S are given by

�
(
hx ;
(
hx,1, . . . , hx,J

)) = Z−1 1φ(hx,1,...,hx,J )=hx ·
∏

y : hx,y=1

qy, (3.5)

where Z equals the sum of the weights 1φ(hx,1,...,hx,J )=hx · ∏y:hx,y=1 q
y over all

(hx,1, . . . , hx,J ) ∈ S. Observe that � does not depend on x , and, moreover, it is a
Markov transition operator, meaning that for each hx ∈ S′, �(hx ; ·) is a probabil-
ity measure in the second slot (over the set S), and for each

(
hx,1, . . . , hx,J

) ∈ S,

�
(
·; (hx,1, . . . , hx,J

))
is bounded and measurable in the first slot (over the set S′).

Proposition 3.6. The following two identities hold:

(1) �
 = I , the identity operator on S′,
(2) For each x ∈ Z the Markov operator

Qx = �Px
 (3.6)

from S′ to S′ satisfies �Px = Qx�.
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Proof. The first identity amounts to the claim that for any hx , the probability measure
�(hx ; ·) is supported entirely uponφ−1(hx ), the pre-image of hx underφ. This, however,
is immediate from the definition of �.

The second identity relies onmore involved properties of the L-matrixweights. These
are recorded in the following lemma (see also Fig. 7 for a pictorial representation of the
three identities of the lemma).

Lemma 3.7. For all α and all m ∈ Z≥0

qL(1)
α (m, 0;m − 1, 1)L(1)

qα (m − 1, 0;m − 1, 0) = L(1)
α (m, 0;m, 0)L(1)

qα (m, 0;m − 1, 1),

(3.7)

qL(1)
α (m, 1;m, 1)L(1)

qα (m, 1;m + 1, 0) = L(1)
α (m, 1;m + 1, 0)L(1)

qα (m + 1, 1;m + 1, 1),
(3.8)

q
(
L(1)

α (m, 1;m, 1)L(1)
qα (m, 0;m, 0) + qL(1)

α (m, 0;m − 1, 1)L(1)
qα (m − 1, 1;m, 0)

)

= L(1)
α (m, 1;m + 1, 0)L(1)

qα (m + 1, 0;m, 1) + qL(1)
α (m, 0;m, 0)L(1)

qα (m, 1;m, 1).
(3.9)

Proof. Each identity is readily checked by direct calculation. 	

We will use the lemma to show that for any j ∈ {1, . . . , J − 1},

�Px
(
hx ; hx+1,1, . . . , hx+1, j , hx+1, j+1, . . . hx+1,J

)

= qhx+1, j+1−hx+1, j �Px
(
hx ; hx+1,1, . . . , hx+1, j+1, hx+1, j , . . . hx+1,J

)
. (3.10)

Notice that the terms hx+1, j and hx+1, j+1 have been switched between the left-hand and
right-hand sides.

0

0 0

1
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qα
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1
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α
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0
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1
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α
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q · wt+
1

0 1

0

m

α

qα
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0

1 1

0

m

α

qα

q · wt+=

Fig. 7. Pictorial representation of the three identities in Lemma 3.7. The weight of a diagram is given by the
product of L-matrices for each vertex. The value of the α parameter is specified as either α or qα depending
on the height of the vertex
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Lemma 3.7 readily implies (3.10). To see this, first write

LHS(3.10) =
∑

hx,1,...,hx,J∈φ−1(hx )

�
(
hx ; hx,1, . . . , hx,J

)

×Px
(
hx,1, . . . , hx,J ; hx+1,1, . . . , hx+1,J

)
.

Let ( j, j + 1) denote the permutation which transposes j and j + 1, and Id denote the
identity permutation. Then it follows by double counting that we can continue the line
of equalities as

= 1
2

∑

hx,1,...,hx,J∈φ−1(hx )

∑

σ∈
{
Id,( j, j+1)

}
�
(
hx ; hx,σ (1), . . . , hx,σ (J )

)

×Px
(
hx,σ (1), . . . , hx,σ (J ); hx+1,1, . . . , hx+1,J

)
.

We may now expand the definition of Px into the product of L-matrices and factor out
all terms unaffected by the permutation σ (i.e., terms not involving level j or j + 1). To
facilitate this expansion, let us temporarily introduce the notation that for anypermutation
σ , gσ

x,1 = gx (which is given) and gσ
x,y+1 = gσ

x,y + hx,σ (y) − hx+1,y . Note that for
σ = ( j, j + 1), the only value of gσ (x, y) which may differ from the case σ = Id is for
y = j + 1. Then, we can continue the above line of equalities as

= 1
2

∑

hx,1,...,hx,J∈φ−1(hx )

�
(
hx ; hx,1, . . . , hx,J

) J∏

y=1
y �= j, j+1

L(1)
α (gx,y, hx,y; gx,y+1, hx+1,y)

×
∑

σ∈
{
Id,( j, j+1)

}
qhx,σ ( j+1)−hx, j+1L(1)

α (gx, j , hx,σ ( j); gσ
x, j+1, hx+1, j )L

(1)
α

× (gσ
x, j+1, hx,σ ( j+1); gx, j+2, hx+1, j+1).

We have used here the fact that �
(
hx ; hx,σ (1), . . . , hx,σ (J )

) = qhx,σ ( j+1)−hx, j+1�(
hx ; hx,1, . . . , hx,J

)
.

Finally, observe that by applying Lemma 3.7 we have
∑

σ∈
{
Id,( j, j+1)

}
qhx,σ ( j+1)−hx, j+1L(1)

α (gx, j , hx,σ ( j); gσ
x, j+1, hx+1, j )L

(1)
α

× (gσ
x, j+1, hx,σ ( j+1); gx, j+2, hx+1, j+1)

= qhx+1, j+1−hx+1, j
∑

σ∈
{
Id,( j, j+1)

}
qhx,σ ( j+1)−hx, j+1L(1)

α (gx, j , hx,σ ( j); gσ
x, j+1, hx+1, j+1)L

(1)
α

× (gσ
x, j+1, hx,σ ( j+1); gx, j+2, hx+1, j ).

Notice that besides the factor of qhx+1, j+1−hx+1, j , the change on the right-hand side is that
hx+1, j and hx+1, j+1 have been switched. Plugging this equality into the above line of
equalities, and gathering terms back into their original form we arrive at

qhx+1, j+1−hx+1, j�Px
(
hx ; hx+1,1, . . . , hx+1, j+1, hx+1, j , . . . hx+1,J

)
,
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S

S

Px

Qx

Φ Λ

S

S

Px+1

Qx+1

Φ Λ

S

S

Px+2

Qx+2

Φ Λ

Fig. 8. The intertwining relation for Markov function theory

as desired to prove (3.10).
It remains to use (3.10) to prove the second identity of Proposition 3.6. Observe that

�Px
(
hx ; hx+1,1, . . . , hx+1,J

)
(3.11)

=
∑

hx+1∈S′
�Px

(
hx ;φ−1(hx+1)

)
1hx+1=φ(hx+1,1,...,hx+1,J )

�Px
(
hx ; hx+1,1, . . . , hx+1,J

)

�Px
(
hx ;φ−1(hx+1)

) .

(3.12)

We claim that

1hx+1=φ(hx+1,1,...,hx+1,J )
�Px

(
hx ; hx+1,1, . . . , hx+1,J

)

�Px
(
hx ;φ−1(hx+1)

) = �
(
hx+1; hx+1,1, . . . , hx+1,J

)
.

(3.13)
This follows from two facts. First, given hx+1, the left-hand side of (3.13) is a probability
measure on the set φ−1(hx+1) ⊆ S. To state the second fact, let us introduce short-hand
that LHS (3.13)( j, j+1) is equal to the left-hand side of (3.13) when hx+1, j and hx+1, j+1
are switched. Likewise define RHS (3.13)( j, j+1). It follows from (3.10) that for any
1 ≤ j ≤ J − 1,

LHS (3.13)

LHS (3.13)( j, j+1)
= RHS (3.13)

RHS (3.13)( j, j+1)
.

In fact, both sides are either equal to q−1, 1 or q. Thus, combining these two facts (along
with the fact that transpositions ( j, j +1), 1 ≤ j ≤ J − 1 generate the symmetric group
S(J )) proves (3.13).

To complete the proof of the second identity of Proposition 3.6 combine (3.11) and
(3.13) to find that

�Px
(
hx ;
(
hx+1,1, . . . , hx+1,J

))

=
∑

hx+1∈S′
�Px

(
hx ;φ−1(hx+1)

)
�
(
hx+1;

(
hx+1,1, . . . , hx+1,J

))
.

But�Px
(
hx ;φ−1(hx+1)

) = �Px
(hx ; hx+1) = Qx (hx ; hx+1) implying�Px = Qx�.
	


We make use of the following sufficient condition for when a function of a Markov
chain is itself Markov. This comes from [RP81], though since we deal with an inhomo-
geneous Markov chain, we provide the (essentially unchanged) proof.
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Proposition 3.8. Consider measurable spaces S and S′ and a measurable transform
φ : S → S′. Let 
 be a Markov transition operator from S → S′ defined according to

 f = f ◦ φ. Consider a collection of (x ∈ Z≥0)-indexed Markov transition operators
Px : S → S. Suppose that there exists a Markov transition operator � : S′ → S such
that (see Fig. 8).

• �
 = I , the identity operator on S′,
• For each x ∈ Z≥0 the Markov operator Qx = �Px
 from S′ to S′ satisfies �Px =
Qx�.

Let X (x) be Markov with x-indexed Markov transition operators Px (so that Px takes
one from the x to x +1 state) and initial distribution �(y, ·) where y ∈ S′. Then Y (x) =
φ
(
X (x)

)
is Markov with starting state Y (0) = y and x-indexed Markov transition

operators Qx .

Proof. For Borel functions f : S → R and f ′ : S′ → R the first condition implies that22

�(
 f ′) f = f ′� f . Using the second condition we find that

�Px (
 f ′) f = Qx�(
 f ′)g = Qx f
′� f.

In the same manner, we find that for any x ∈ Z≥0 and Borel functions f : S → R and
f ′
0, . . . , f ′

x : S′ → R,

�(
 f ′
0)P0(
 f ′

1) . . . Px−1(
 f ′
x ) f = f ′

0Q0 f
′
1Q1 f

′
2 . . . Qx−1 f

′
x� f.

This immediately implies the conclusion of the theorem. 	

We return now to the specific definitions of S, S′, Px , φ,
,�, and Qx given earlier

in this section.

Corollary 3.9. Initialize the Markov chain with state space S and transition operator
Px to initial state h0,y ≡ 0 for 1 ≤ y ≤ J and denote the value at ‘time’ x as
{hx,y}1≤y≤J . Then hx = φ

(
hx,1, . . . , hx,J

)
is Markov with starting state h0 = 0 and

Markov transition operator Qx .

Definition 3.10 (General J L-matrix). The J higher spin L-matrix L(J )
α : VI ⊗ H

J →
V

I ⊗ H
J is defined such that (here x ∈ Z is an arbitrary and inconsequential index)

[L(J )
α ]x,1(gx , hx ; g′

x , hx+1) = 1gx+hx=g′
x+hx+1Qx (hx ; hx+1), (3.14)

where Qx is defined with respect to gx (via Px ) in (3.6).

Wemay now define the higher spin versions of the zero range and exclusion processes
introduced in Definitions 2.6 and 2.10 respectively. Observe that these depend now on
four parameters, q, ν, α, J . As before, we assume that q, ν, α satisfy the conditions of
(2.2).

Definition 3.11 (General J higher spin zero range process and exclusion process). For
J ∈ Z≥1 define the J higher spin zero range process according to the sequential con-
struction of Definition 2.6 with the L-matrix L(J )

α defined in (3.14). Now, anywhere
between 0 and J particles can move right in each update (i.e., the hx are basis elements
of HJ ). We still write the corresponding Markov chain at −→g (t). Likewise, define the

22 Concatenation of operators and functions should be read from right to left, unless indicated by parentheses.
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x1x2x3x4

x1x2x3x4

L(J)
α (∞, 0; ∞, 3)L(J)

α (2, 3; 3, 2)L(J)
α (1, 2; 3, 0)L(J)

α (3, 0; 0, 3)

Right to Left Update

x x + 1 x + 2

gx

gx+1
gx+2

L(J)
α (4, 0; 1, 3)

L(J)
α (2, 3; 5, 0)

L(J)
α (3, 0; 1, 2)

Left to Right Update

Fig. 9. Illustration of the J higher spin zero range process (on top) and exclusion process (on bottom). Here J

is at least three (as there are clusters/jumps of size at least three). The L-matrix L(J )
α determines the distribution

of the sequential updates

space-reversed zero range process −→y (t) as in the J = 1 case. Similarly, define the J
higher spin exclusion process as in Definition 2.10 with the L-matrix L(J )

α . Now, parti-
cles can move right by up to and including J spaces. See Fig. 9 for illustrations of these
processes.

Corollary 3.12. Recall Definition 3.11. The transition operator for the J higher spin
zero range process is Bα,q Jα , it space-reversal is B̃α,q Jα , and the exclusion process is
T α,q Jα .

Proof. These results follow from Corollaries 3.5 and 3.9. 	


3.2. Recursion relation for L-matrix weights. In (3.14) we have provided a method to
calculate L(J )

α in terms of L(1)
α . We can also write a compact recursive formula (in J )

that L(J )
α must satisfy.

In defining L(J )
α we applied � to hx ∈ [HJ ]x , so as to yield a probability measure

on the pre-image φ−1(hx ). Let p(J )(hx,1|hx ) denote the projection of this probability
measure onto hx,1, the first outgoing arrow. In other words, p(J )(0|hx ) and p(J )(1|hx )
(respectively) represent the probability that hx,1 = 0 or 1 given the value of hx . One
calculates that for j ∈ {0, 1},

p(J )( j |hx ) =
∑

( j=hx,1,hx,2,...,hx,J )∈φ−1(hx )

�
(
hx ; ( j = hx,1, hx,2, . . . , hx,J )

)

=
⎧
⎨

⎩

qhx −q J

1−q J , j = 0;
1−qhx

1−q J , j = 1.
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i1

j1 j2

i2

decomposes as

i1

a

j1 − a

i2

j2 − b

b

Fig. 10. The decomposition of a higher horizontal spin vertex

Lemma 3.13. The L-matrix L(J )
α satisfies the following recursion relation (let i2 =

i1 + j1 − j2)

L(J )
α (i1, j1, i2, j2) =

∑

a,b∈{0,1}
p(J )(a| j1)L(1)

α (i1, a; i1 + a − b, b)

×L(J−1)
qα (i1 + a − b, j1 − a; i2, j2 − b), (3.15)

which, along with its value at J = 1, uniquely characterizes its value for J ∈ Z≥1.

Proof. This follows from the definitions of L(J )
α and p(J )(a| j1), and the decomposition

in Fig. 10. 	


3.3. q-Racah form of L-matrix weights. We explicitly solve the recurrence relation in
Lemma 3.13 in a form similar to that which was (to our knowledge) discovered in
[Man14]. We provide an explicit proof of our L-matrix formula.

Definition 3.14. The regularized terminating basic hypergeometric series is given by23

r+1φ̄r

(
q−n; a1, . . . , ar

b1, . . . , br

∣∣∣q, z

)
=

n∑

k=0

zk
(q−n; q)k

(q; q)k

r∏

i=1

(ai ; q)k(biq
k; q)n−k

=
r∏

i=1

(bi ; q)n · r+1φr

(
q−n, a1, . . . , ar

b1, . . . , br

∣∣∣q, z

)
.

Theorem 3.15. Fix J ∈ Z≥1. Then, with β := αq J ,

L(J )
α (i1, j1; i2, j2) = 1i1+ j1=i2+ j2q

2 j1− j21
4 − 2 j2− j22

4 +
i22+i

2
1

4 + i2( j2−1)+i1 j1
2

× ν j1−i2α j2− j1+i2(−αν−1; q) j2−i1

(q; q)i2(−α; q)i2+ j2(βα−1q1− j1; q) j1− j2

× 4φ̄3

(
q−i2; q−i1 ,−β,−qνα−1

ν, q1+ j2−i1 , βα−1q1−i2− j2

∣∣∣ q, q

)
.

23 Pochhammer symbols (a; q)n , where n is allowed to be negative are defined as in Mathematica by:

(a; q)n =

⎧
⎪⎨

⎪⎩

∏n−1
k=0(1 − aqk ), n > 0,

1, n = 0,
∏−n−1

k=0 (1 − aqn+k )−1, n < 0.
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In particular, L(J )
α is stochastic and satisfies the recursion (3.15).

Remark 3.16. To relate to [Bor14], we may rewrite

L(J )
α (i1, j1; i2, j2) = (−s) j2(−sv−1) j1− j2q

2 j1− j21
4 − 2 j2− j22

4

× (q Jq1− j2; q)∞
(q Jq1− j1; q)∞

w̃(J )
v (i2, j2, i1, j1),

where the parameters (s, v) are related to our parameters (α, ν) as α = −sv, ν = s2

and v = −α/
√

ν, s = √
ν. The general J vertex weight w̃(J )

v from [Bor14, Corollary
6.5] is given by:

w̃(J )
v (i1, j1; i2, j2)

= 1i1+ j1=i2+ j2
(−1)i1+ j1q

i21+i
2
2

4 + i1( j1−1)+i2 j2
2 s j1−i1vi1(vs−1; q) j1−i2

(q; q)i1(vs; q)i1+ j1

×4φ̄3

(
q−i1; q−i2 , q J sv, qsv−1

s2, q1+ j1−i2 , q1+J−i1− j1

∣∣∣ q, q

)
.

Proof. In order to prove this, it suffices to check that the J = 1 formula in the statement
of the theorem matches the formulas given in Definition 2.1, and then to check that for
J ∈ Z≥1, the formula in the theorem satisfies the recursion (3.15). The J = 1 case is
easily checked from definitions so we proceed to the recursion. To achieve this aim, we
utilize an identity (3.19) involving 4φ̄3, as well as a recasting of our L-matrix in terms
of q-Racah polynomials and an associated three term recursion for those polynomials.

Let us start by rewriting L(J )
α and the desired recursion. Changing from α, ν to s, v

variables via α = −sv, ν = s2, we can rewrite

L(J )
α (i1, j1, i2, j2) = 1i1+ j1=i2+ j2(−1)i2+ j2+ j1q

2 j1− j21
4 − 2 j2− j22

4 +
i22+i

2
1

4 + i2( j2−1)+i1 j1
2

× s j1+ j2−i2v j2− j1+i2(vs−1; q) j2−i1

(q; q)i2(vs; q)i2+ j2(q
Jq1− j1; q) j1− j2

× 4φ̄3

(
q−i2; q−i1 , q J sv, qsv−1

s2, q1+ j2−i1 , q1+J−i2− j2

∣∣
∣ q, q

)
. (3.16)

For the remainder of the proofwewill replace (i1, j1, i2, j2) by (g, h, g′, h′). By utilizing
the formula for L(1)

α and p(J ), the desired recursion can be rewritten as follows (by
agreement, g′ = g + h − h′; note that this quantity does not change throughout the
identity):

L(R)
α (g, h, g′, h′)

= (−sv + s2qg)(1 − qh)

(1 − sv)(1 − q J )
L(J−1)
qα (g, h − 1, g′, h′ − 1)

+
(1 − s2qg)(1 − qh)

(1 − sv)(1 − q J )
L(J−1)
qα (g + 1, h − 1, g′, h′)

+
sv(1 − qg)(q J − qh)

(1 − sv)(1 − q J )
L(J−1)
qα (g − 1, h, g′, h′ − 1)

− (1 − svqg)(q J − qh)

(1 − sv)(1 − q J )
L(J−1)
qα (g, h, g′, h′). (3.17)
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Using (3.16), we can recast this desired recursion as an identity between 4φ̄3 functions:

4φ̄3

(
q−g′ ; q−g, q J sv, qsv−1

s2, q1+h
′−g, q1+J−h−g

∣∣∣ q, q

)

=
(
qh − 1

)
(sqg − v)

(
q J − 1

)
(s − v)

4φ̄3

(
q−g′ ; q−g, q J sv, sv−1

s2, qh
′−g, q1+J−h−g

∣∣∣ q, q

)

−
v
(
qh − 1

) (
s2qg − 1

) (
qh

′ − q J
)
qg+h−h′

(
q J − 1

)
(s − v)

(
svqg+h − 1

) 4φ̄3

(
q−g′ ; q−g−1, q J sv, sv−1

s2, qh
′−g, q J−h−g

∣∣∣ q, q

)

+
q−g (qg − 1)

(
sqg − vqh

′)

(
q J − 1

)
(s − v)

4φ̄3

(
q−g′ ; q1−g, q J sv, sv−1

s2, q1+h
′−g, q1+J−h−g

∣∣∣ q, q

)

+
qh−h′ (

qh
′ − q J

)
(svqg − 1)

(
vqh

′ − sqg
)

(
q J − 1

)
(s − v)

(
svqg+h − 1

) 4φ̄3

(
q−g′ ; q−g, q J sv, sv−1

s2, q1+h
′−g, q J−h−g

∣∣
∣ q, q

)
.

For better notation, let us set qg = G, qh = H , and replace qh
′
by q−g′

GH . We arrive
at the following identity:

4φ̄3

(
q−g′ ; 1/G, q J sv, qsv−1

s2, Hq1−g′
, q1+J /(GH)

∣
∣∣ q, q

)

= (1 − H)(Gs − v)

(1 − q J )(s − v)
4φ̄3

(
q−g′ ; 1/G, q J sv, sv−1

s2, Hq−g′
, q1+J /(GH)

∣∣
∣ q, q

)

− v(1 − H)(GH − qg
′+J )(1 − s2G)

(1 − q J )(1 − GHsv)(s − v)
4φ̄3

(
q−g′ ; q−1/G, q J sv, sv−1

s2, Hq−g′
, q J /(GH)

∣∣∣ q, q

)

+
(1 − G)(s − Hvq−g′

)

(1 − q J )(s − v)
4φ̄3

(
q−g′ ; q/G, q J sv, sv−1

s2, Hq1−g′
, q1+J /(GH)

∣∣∣ q, q

)

+
(GH − qg

′+J )(s − Hvq−g′
)(1 − Gsv)

(s − v)(1 − q J )(1 − GHsv)
4φ̄3

(
q−g′ ; 1/G, q J sv, sv−1

s2, Hq1−g′
, q J /(GH)

∣∣∣ q, q

)
.

(3.18)

Note that for integer g′ = 0, 1, 2, . . ., both sides of the above identity are rational
functions in G, H, q J , s, v, and q.

Wewill now use the following simple identity for basic hypergeometric series (which
can be readily verified by looking at individual terms in 4φ̄3):

4φ̄3

(
q−n; b, c, d
u, v, w

∣∣∣ q, z

)
= (1 − d)(c − w)

(c − d) (1 − wqn)
4φ̄3

(
q−n; b, c, dq
u, v, wq

∣∣∣ q, z

)

+
(1 − c)(w − d)

(c − d) (1 − wqn)
4φ̄3

(
q−n; b, cq, d
u, v, wq

∣∣∣ q, z

)
. (3.19)

Using this identity, one can rewrite summands in the right-hand side of (3.18) with
bottom arguments Hq−g′

or q J /(GH) in terms of basic hypergeometric functions with
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bottom arguments Hq1−g′
and q1+J /(GH). Let us denote the three resulting functions

by


q := 4φ̄3

(
q−g′ ; q/G, q J sv, sv−1

s2, Hq1−g′
, q1+J /(GH)

∣∣∣ q, q

)
,


1 := 4φ̄3

(
q−g′ ; 1/G, q J sv, qsv−1

s2, Hq1−g′
, q1+J /(GH)

∣∣∣ q, q

)
,


q−1 := 4φ̄3

(
q−g′ ; q−1/G, q J sv, q2sv−1

s2, Hq1−g′
, q1+J /(GH)

∣∣∣ q, q

)
.

Applying (3.19) to the first term in the right-hand side of (3.18), we get

(1 − H)(Gs − v)

(1 − q J )(s − v)
4φ̄3

(
q−g′ ; 1/G, q J sv, sv−1

s2, Hq−g′
, q1+J /(GH)

∣∣∣ q, q

)

= −
(1 − G)

(
s − Hq−g′

v
)

(
1 − q J

)
(s − v)


q +
1 − GHq−g′

1 − q J

1.

The second term in the right-hand side of (3.18) is rewritten as follows (note that we
need to use (3.19) twice):

− v(1 − H)(GH − qg
′+J )(1 − s2G)

(1 − q J )(1 − GHsv)(s − v)
4φ̄3

(
q−g′ ; q−1/G, q J sv, sv−1

s2, Hq−g′
, q J /(GH)

∣∣∣ q, q

)

=
(G − 1)v(Gq − 1)

(
Gs2 − 1

)
q−g′ (

sqg
′ − Hv

) (
GHs − vq J

)

(
q J − 1

)
(s − v)(Gs − v)(GHsv − 1)(Gqs − v)


q

+
Gv(Gq − 1)

(
Gs2 − 1

)
q−g′ (

q J − H
) (

Hv − sqg
′)

(
q J − 1

)
(Gs − v)(GHsv − 1)(Gqs − v)


1

−
v(Gq − 1)

(
Gs2 − 1

)
q−g′ (

qg
′ − GHq

) (
vq J − GHqs

)

(
q J − 1

)
(GHsv − 1)(Gqs − v)

(
Gq2s − v

) 
1

−
Gv
(
Gs2 − 1

)
q−g′ (

q J+1 − H
)
(qs − v)

(
qg

′ − GHq
)

(
q J − 1

)
(GHsv − 1)(Gqs − v)

(
Gq2s − v

) 
q−1 .

The third term already contains 
q , so there is no need to apply (3.19) to it. The fourth
term in the right-hand side of (3.18) takes the form:

(GH − qg
′+J )(s − Hvq−g′

)(1 − Gsv)

(s − v)(1 − q J )(1 − GHsv)
4φ̄3

(
q−g′ ; 1/G, q J sv, sv−1

s2, Hq1−g′
, q J /(GH)

∣∣∣ q, q

)

=
(G − 1)q−g′

(Gsv − 1)
(
sqg

′ − Hv
) (

vq J − GHs
)

(
q J − 1

)
(s − v)(Gs − v)(GHsv − 1)


q

+
Gq−g′

(Gsv − 1)
(
q J − H

) (
sqg

′ − Hv
)

(
q J − 1

)
(Gs − v)(GHsv − 1)


1.
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We see that the right-hand side of (3.18) can be written as a linear combination of

q , 
1, and 
q−1 . Note that the left-hand side of (3.18) is a multiple of 
1. Moreover,
collecting coefficients by 
q , 
1, and 
q−1 , we see that (3.18) is equivalent to

GHq−g′ (
1 − qg

′) (
1 − svq J

)

(
1 − q J

)
(1 − GHsv)


1 = B̃
q−1 − (B̃ + D̃)
1 + D̃
q , (3.20)

where we are using the notation

B̃ := −
Gv
(
Gs2 − 1

) (
q J+1 − H

)
(qs − v)

(
1 − GHq1−g′)

(
q J − 1

)
(GHsv − 1)(Gqs − v)

(
Gq2s − v

) ,

D̃ :=
(1 − G)

(
s − Hq−g′

v
) (

GHs − vq J
)
G(q − sv)

(
1 − q J

)
(Gs − v)(GHsv − 1)(Gqs − v)

.

To complete the proof, we aim to match this desired identity (3.20) to the following
q-difference relation for the q-Racah orthogonal polynomials [KS96, (3.2.6)]:

q−n(1 − qn)(1 − abqn+1)Rn(x)

= B(x)Rn(x + 1) − (B(x) + D(x))Rn(x) + D(x)Rn(x − 1), (3.21)

where

B(x) = (1 − aqx+1)(1 − bdqx+1)(1 − cqx+1)(1 − cdqx+1)
(1 − cdq2x+1)(1 − cdq2x+2)

,

D(x) = q(1 − qx )(1 − dqx )(b − cqx )(a − cdqx )
(1 − cdq2x )(1 − cdq2x+1)

,

and

Rn(x) = 4φ3

(
q−n,abqn+1, q−x , cdqx+1

aq,bdq, cq

∣∣∣ q, q

)
, n = 0, 1, 2, . . . , N , (3.22)

with either of the following three truncations holding:

q−N =

⎧
⎪⎨

⎪⎩

aq;
bdq;
cq.

(3.23)

The above quantities Rn(x), x = 0, 1, 2, . . . , N , are polynomials in q−x + cdqx+1 (of
degree n), and are orthogonal on {0, 1, 2, . . . , N } with a certain weight.

In fact, for the identity (3.21) the truncations (3.23) are not relevant since (3.21)
is an identity between rational functions in a,b, c,d. We will utilize (3.21) with this
understanding.

Note also that since the bottom arguments of the hypergeometric function for Rn(x)
do not depend on x or n, the same identity (3.21) also holds if one replaces 4φ3 by 4φ̄3
in (3.22).
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Recalling our notation G = qg and H = qh and setting24

n = g′; x = g; a = s2/q; b = vq J−g′
/s; c = qh−g′ ; d = sqg

′−g−h/v,

(3.24)

one readily sees that


1 = 4φ̄3

(
q−g′ ; 1/G, q J sv, qsv−1

s2, Hq1−g′
, q1+J /(GH)

∣∣∣ q, q

)
= const · Rn(x),


q = const · Rn(x − 1), 
q−1 = const · Rn(x + 1),

with the overall constant

const = (s2; q)g′(Hq1−g′ ; q)g′(q1+J /(GH); q)g′ .

The coefficients in (3.20) and (3.21) also match:
(
1 − q J

)
(1 − GHsv)B̃ = GH · B(x);

(
1 − q J

)
(1 − GHsv)D̃ = GH · D(x).

This implies the desired recursion on the R matrix. 	

Remark 3.17. From the above proof we see that the vertex weights L(J )

α (i1, j1; i2, j2)
can be interpreted as an analytic continuation of q-Racah polynomials. Namely, if ν =
s2 = q−I for some I = 1, 2, . . ., then L(J )

α (i1, j1; i2, j2) is a multiple of the q-Racah
polynomial Ri2(i1) (3.22) on i1 ∈ {0, 1, . . . , I }. The parameters of the polynomial
Ri2(i1) are

25

a = q−I−1, b = −αq I+J−i2 , c = q j1−i2 , d = −α−1q−I− j2

(these are the same parameters as in (3.24) expressed through α = −sv and ν = s2 =
q−I ). The fact that aq is a negative integer power of q ensures that the index i2 and
the variable i1 of the q-Racah polynomials are restricted to the finite integer segment
{0, 1, . . . , I }.

Note that the parameters of the q-Racah polynomials also depend on (i1, j1; i2, j2),
and one cannot interpret the weights as values of a single q-Racah polynomial Rn(x)
(with constant parameters a,b, c,d) at various integer points x . This observation agrees
with the fact that we can choose vertex weights to be non-negative (see Proposition 2.3),
but the orthogonal polynomial Rn(x) must change sign as a function of x .

Remark 3.18. Observe that our L-matrix formula in Theorem 3.15 admits an analytic
continuation in the parameter β := αq J . For β ∈ C which is not equal αq J for some
J ∈ Z≥1, it is unclear whether L

β
α is stochastic. One can argue, as in the comments after

[Bor14, Corollary 6.6], that for fixed i1, j1, the sum over i2, j2 of the L-matrix elements
equals 1 (though the nature of this convergence may not be so straightforward). It is the
positivity, however, which becomes suspect for general β. By inspection of terms in the
summation defining 4φ̄3 one finds that unless β takes the special form (which results in
many terms being zero in the sum), the terms in the summation are not all of the same

24 In fact, it is also possible to assign other values to a,b, c,d which match all the parameters. We will not
discuss all possible ways of choosing a, b, c,d.
25 Similarly one can take Ri1 (i2), which involves interchanging parameters (a, b) with (c, d).
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sign. Empirical computer testing indicates that for generic β, L-matrix entries are not
always positive.

It is because of this lack of stochasticity that we do not pursue this β continuation
further at this time. One can certainly (as in the comment from [Bor14]) extend the
eigenfunction relations to general β. It may also be possible to extend the duality and
the formulas proved in Sect. 4 to this non-stochastic setting (in which case, expectations
in Sect. 4 must be replaced by signed expectations). The only case in which we deal
with an extension to general β is in Sect. 5.6.

4. Moment and eq -Laplace Transform Formulas

Combining the first duality result of Corollary 3.3 with the integrability of B̃α,q Jα given
in Corollary 3.2, we may employ results of [BCPS14] to compute moment formulas and
then follow the general scheme developed in [BC14,BCS12] to arrive at an eq -Laplace
transform formulas for the J higher spin exclusion process (recall from Definition 3.1)
with step initial data. The other dualities of Corollary 3.3 may prove similarly useful in
computing moment formulas (perhaps for different choices of initial data), but we do
not pursue these here.

Theorem 4.1. Fix J ∈ Z≥1, β = αq J and consider the J higher spin exclusion process−→x (·) with step initial data xi (0) = −i, i ∈ Z≥1. For all n1 ≥ · · · ≥ nk ≥ 1 and
t ∈ Z≥0,

E

[ k∏

i=1

qxni (t)+ni
]

= (−1)kq
k(k−1)

2

(2π i)k

∮

γ 1

· · ·
∮

γ k

∏

1≤A<B≤k

× zA − zB
zA − qzB

k∏

j=1

(1 − νz j
1 − z j

)n j
(1 + βz j
1 + αz j

)t dz j
z j (1 − νz j )

where the simple closed integration contours γ 1, . . . , γ k are chosen such that they all
contain 1, the γ A contour contains qγ B for all B > A and all contours exclude 0 and
1/ν.

Proof. This is proved in the same manner as [BCPS14, Corollary 5.19], replacing the
eigenvalue

∏k
j=1

1−μz j
1−νz j

therein by the present value
∏k

j=1
1+βz j
1+αz j

. Rather than repeating
the proof, we briefly explain the idea behind it. The first duality result of Corollary 3.3
implies that

E

[ k∏

i=1

qxni (t+1)+ni
]

= B̃α,q Jα
E

[ k∏

i=1

qxni (t)+ni
]
,

where B̃α,q Jα acts on the−→n variables via the associate of−→n with−→y , as inDefinition 2.5.
The operator B̃α,q Jα is diagonalized (Corollary 3.2) by the eigenfunctions introduced in
Appendix A and utilizing the associated Plancherel theory, we arrive at the solution to

the time evolution equation satisfied byE
[∏k

i=1 q
xni (t+1)+ni

]
, thus proving the theorem.
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For the exclusion processwith step initial data, the formula fromTheorem4.1 provide
a complete characterization of the distribution of −→x (t). This is because each random
variable qxn(t)+n , 1 ≤ n ≤ N , is in (0, 1] for all t . The knowledge of all joint moment
thus suffices to characterize the joint distribution. Despite this fact, it is not obvious
how to extract meaningful asymptotic distribution information from these formulas. In
the case of one-point distributions (i.e. the distribution of xn(t) for a single n) this was
achieved in [BC14]. We will apply the approach developed therein (in particular, the
general restatement of the calculation in [BC14] which can be found in [BCS12, Section
3]).

Theorem 4.2 provides two Fredholm determinant formulas for what is called the
eq -Laplace transform of the observable qxn(t)+n , and consequently for the one-point
distribution of xn(t) (see [BC14, Proposition 3.1.1] or [BCS12, Proposition 7.1]). This
type of Fredholm determinant formula (in particular that of (4.1)) is quite amenable to
asymptotic analysis—see for instance [BC14,BCF12,BCFV14,BCR12,Bar14,FV13,
Vet14,OO14,CSS14].

Theorem 4.2. Fix J ∈ Z≥1, β = αq J and consider the J higher spin exclusion process−→x (·) with step initial data xi (0) = −i, i ∈ Z≥1. For all n ∈ Z≥1, t ∈ Z≥0, and
ζ ∈ C\R+,

E

[
1

(
ζqxn(t)+n; q)∞

]

= det
(
I + Kζ

)
(4.1)

where det
(
I + Kζ

)
is the Fredholm determinant of Kζ : L2(C1) → L2(C1) for C1 a

positively oriented circle containing 1 with small enough radius so as to not contain 0,
1/q, and 1/ν. The operator Kζ is defined in terms of its integral kernel

Kζ (w,w′) = 1

2π ı

∫ ı∞+1/2

−ı∞+1/2

π

sin(−πs)
(−ζ )s

g(w)

g(qsw)

1

qsw − w′ ds

with

g(w) =
(

(νw; q)∞
(w; q)∞

)n (
(−βw; q)∞
(−αw; q)∞

)t 1

(νw; q)∞
.

The following second formula also holds:

E

[
1

(
ζqxn(t)+n; q)∞

]

= det
(
I + ζ K̃

)

(ζ ; q)∞
(4.2)

where det
(
I +ζ K̃

)
is the Fredholm determinant of ζ times the operator K̃ζ : L2(C0,1) →

L2(C0,1) for C0,1 a positively oriented circle containing 0 and 1 (but not 1/ν or −1/α).
The operator K̃ is defined in terms of its integral kernel

K̃ (w,w′) = g(w)/g(qw)

qw′ − w

where the function g is as above.

Proof. This type of deduction of Fredholmdeterminant formulas fromq-moment formu-
las has appeared before, cf. [BC14,BCS12,BCF12,BC13,BCFV14]. Hence, we provide
only the steps of the proof, without going into much detail. We also do not recall the
definition of Fredholm determinants, cf. [BC14, Section 3.2.2].
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In order to prove the first formula (which is sometimes called a Mellin–Barnes type
formula) we utilize the formula for E

[
qk(xn(t)+n)

]
from specializing all ni ≡ n in Theo-

rem 4.1. Call μk := E
[
qk(xn(t)+n)

]
so as to match it with the formula present in [BCS12,

Definition 3.1], subject to defining f (w) := g(w)/g(qw), with g from the statement of
Theorem 4.2. We may then apply [BCS12, Propositions 3.3 and 3.6] with the contour
CA = C1, and DR,d , DR,d;k specified by setting R = 1/2 (and d arbitrary, as it does
not matter for this choice of L). The output of these propositions is that

∑

k≥0

μk
ζ k

kq ! = det
(
I + Kζ

)
.

In the course of applying these propositions, it is necessary to check that a few technical
conditions on the contours, as well as ζ and g are satisfied. These are easily confirmed for
|ζ | small enough, and C1 a small enough circle around 1. The only condition depending
on the function g is that |g(w)/g(qsw)| remain uniformly bounded as w ∈ C1, k ∈ Z≥1
and s ∈ DR,d;k varies. This is readily confirmed forg from the statement of Theorem4.2.

Now, observe that for ζ with |ζ | small enough, we also have that

∑

k≥0

μk
ζ k

kq ! = E

[
1

(
ζqxn(t)+n; q)∞

]

.

This is justified (as in [BC14, Theorem 3.2.11]) by the fact that qxn(t)+n ∈ (0, 1) and an
application of the q-Binomial theorem. This establishes (4.1) for |ζ | sufficiently small
and since both sides are analytic inC\R+ the general ζ result of (4.1) follows via analytic
continuation.

The Cauchy type formula (4.2) follows from [BCS12, Proposition 3.10] along with a
small amount of algebra. The proof essentially follows that of [BC14, Theorem 3.2.16].

	

Remark 4.3. Setting gi (t) := xi−1(t) − xi (t),

−→g (t) evolves as the zero range process
with step initial data corresponding to having g1(0) = +∞ and gi (0) = 0 for i > 1. Let
Cs(t) =∑∞

i=s+1 gi (t) be the number of particles of −→g (t) strictly to the right of site s at
time t . Then clearly {xn(t) + n ≥ s} = {Cs(t) ≥ n} and hence Theorem 4.2 provides an
exact formula characterizing the distribution of Cs(t) as well.

5. Generalizations, Specializations and Degenerations

5.1. Case (2) of Proposition 2.3. Recall that in case (2) of Proposition 2.3 we assume
q ∈ (−1, 0], α ∈ (0, 1/|q|), and ν ∈ ( − 1/|q|,min(1, α/|q|)). As already observed
in Proposition 2.3, under these conditions one readily confirms that the L-matrix is
stochastic. Thus, the zero range and exclusion processes built from the L-matrix in
Definitions 2.6 and 2.10 remain valid. The q-Hahn operators Hα and H̃α remain well-
defined. All of the duality and fusion results extend as we now explain.

In Sect. 2 all of the results can be extended. Proposition 2.13 holds since the proof
only relies upon [Bor14, Corollary 4.5 (i)] which remains valid in such an extension of
parameters. Alternatively, one can observe that the equality demonstrated by the propo-
sition can be analytically continued into the regime of parameters we are considering.
In order to show the analyticity, one uses the bound that

∣∣ 1−zi
1−νzi

α+ν
1+α

∣∣ < 1 which ensures
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the convergence of the left-hand side of equality in the proposition. The factor 1−zi
1−νzi

comes from the eigenfunctions whereas the factor α+ν
1+α

comes from the weight associ-
ated with (0, 1; 0, 1), which is the only vertex weight which can occur an unbounded
number of times in the application of the operator B̃α,qα . Proposition 2.14 holds since
both sides are rational functions in the parameters and can be extended to the desired
range. Corollary 2.15 holds since the results of Appendix A hold for this present case
of parameters. Theorem 2.20 holds since the only properties the proof relies upon are
those notes in Remark 2.12 (both of which remain valid under the present choice of
parameters). Theorem 2.21 holds since the proof only relies upon [Cor14, Proposition
1.2] which holds as rational identity in the parameters q, ν, α and clearly extends to
the range of parameters presently considered. Theorem 2.23 holds since the proof only
relies upon Theorem 2.21 and the eigenfunction relations which remain valid.

All of the results of Sect. 3 besides those pertaining to the exclusion process hold
as long as the triple (q, ν, αq j ) satisfy the conditions of case (2) of Proposition 2.3 for
1 ≤ j ≤ J . This is because they all follow from results of Sect. 2.

We do not pursue modifying the results of Sect. 4. As it stands, the formula in
Theorem 4.1 is not well adapted to taking q negative (because of the nested structure of
the contours). Instead, one might first shrink the nested contours to all lie around 1 (cf.
[BCPS14, Proposition 3.2]) and then argue by analytic continuation that the formula in
which the parameters have been extends to case (2) of Proposition 2.3. Such a formula
would then serve as the input to establishing a result like Theorem 4.2. We leave the
justifications necessary to prove such formulas to future work.

5.2. L-matrix reflection and inversion. Let I, J ∈ Z≥1. Temporarily, to emphasize the
role of I and J , let us write

R(i1, j1; i2, j2|I, J, α, q) = L(J )
α ,

where the right-hand side implicitly depends on q as well as I via ν = q−I .
There are two actions on a vertex we consider. The first is reflection in the diagonal

under which (i1, j1; i2, j2) → ( j1, i1; j2, i2) and the second is inversion of arrows under
which (i1, j1; i2, j2) → (I − i1, J − j1; I − i2, J − j2). The result of these two actions
on the L-matrix is quite simple.

Proposition 5.1. Let α̂ = 1/α and q̂ = 1/q then

R( j1, i1; j2, i2|I, J, α, q) = R(i1, j1; i2, j2|J, I, α̂, q̂),

R(I − i1, J − j1; I − i2, J − j2|I, J, α, q) = R(i1, j1; i2, j2|I, J, α̂, q̂).

Composing the two transformations (reflection and inversion) results in yet a fourth
stochastic L-matrix in which (I, J ) → (J, I ) and α, q remain fixed.

Proof. These relations can be confirmed directly from our explicit formulas for the
L-matrices given in Theorem 3.15. 	

Cases (3) and (4) of Proposition 2.3 are related by inversion of arrows: The range
q ∈ [0, 1) maps to q ∈ (1,+∞) and the range α < −q−I maps to −q−I < α < 0.
Despite this relationship, we will still consider each case separate. This is because when
we construct our zero range process from the L-matrix, the inversion of arrows takes a
state −→g with

∑
gi = k to an state with an infinite number of particles.



690 I. Corwin, L. Petrov

Note that applying reflection to cases (1) and (2) of Proposition 2.3 leads to different
L-matrices and corresponding processes than we have presently considered. We do not
pursue the study of the resulting systems any further here.

5.3. Case (3) of Proposition 2.3. Recall that in case (3) of Proposition 2.3 we assume
that q ∈ (0, 1), ν = q−I for I ∈ Z≥1, and α < −ν. With this choice of I , VI is
finite dimensional and given by the span of {0, . . . , I }. Consequently we must replace
G,Gk,WG

k,Y,Yk,WY
k byGI ,G

k
I ,WG

k
I ,YI ,Y

k
I ,WY

k
I as given at the end of Defi-

nition 2.5. The construction of the zero range processes with transition operators Bα,qα

and B̃α,qα remains unchanged. However, in this finite spin case, we cannot define the
exclusion process with a right-most particle (whose transition operator was T α,qα). This
is because that construction required having an infinite gap and in the finite spin setting,
that is not allowed. It may be possible to define an exclusion process with a doubly
infinite state space, so long as the gaps between particles is bounded by I . However,
as we have no use for that presently, we do not pursue it. Definition 2.1 remains well-
defined, even though ϕq,−α,ν(s|y) is not necessarily positive (in fact, it has sign (−1)s)
for integers 0 ≤ s ≤ y ≤ I . Likewise, the two equations of Remark 2.12 remain valid
(one readily observes that 1 + αqy−s remains non-zero for our choice of α and for all
0 ≤ s ≤ y ≤ I ).

Appendix A describes how the Plancherel theory is modified for the present choice
of parameters. The eigenfunction relation of Proposition 2.13 follows since the results
of [Bor14, Corollary 4.5 (i)] are stated in sufficient generality. It is also possible to show
that the left-hand and right-hand sides of the relation in the proposition are analytic
functions of ν and α in a suitable open domain which connects the parameters from
case (1) of Proposition 2.3 to the present choices. Analytic continuation then implies
the extension of the relation to the present case. This argument only requires showing
that for some fixed zi , there is an open domain of (ν, α) ∈ C

2 connecting cases (1) and
(3) of Proposition 2.3 such that the relation

∣∣ 1−zi
1−νzi

α+ν
1+α

∣∣ < 1 is preserved throughout the
domain. This fact is readily checked. Proposition 2.14 holds as written.

We will not make use of Corollary 2.15 (though it holds with Wk
max replaced

by Wk
I ;max from Definition A.5). We will also not make use of Definition 2.18 and

there appear not to be natural examples of initial data satisfying the well-adaptness of
Remark 2.19. Since we have not formulated an exclusion process for these parameters,
we do not have an analog of Theorem 2.20 presently. Theorem 2.21, however, holds for
the choice of parameters. Since we cannot make use of well-adaptedness, we demon-
strate this result by analytic continuation. Let us focus on establishing the first of the
dualities (the other follows similarly)

Bα,qαG = G
(
B̃α,qα

)T
.

Similarly to as above, note that there exists an open domain of (ν, α) ∈ C
2 connecting

case (1) and case (3) of Proposition 2.3 along which
∣∣α+ν
1+α

∣∣ < δ for some δ < 1.
Consequently, both sides of the above identity are analytic functions of ν and α and
the result follows. The reason for analyticity is due to the fact that for −→g and −→y fixed,
the only L-matrix weight which can be used an unbounded number of times is α+ν

1+α
,

corresponding with (0, 1; 0, 1)-vertices. That this weight is bounded above by δ < 1 in
magnitude ensures the convergence of the left-hand and right-hand sides and hence the
analyticity. It should be noted that as we deform parameters, the transition operators are
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no-longer stochastic and it is only after arriving at the terminal locations for parameters
that this property is restored. Theorem 2.23 holds true by similar considerations. Notice
that even if we were to try to follow the proof given earlier in the text, we would run into
a problem if I < k.

All of the result of Sect. 3 besides those pertaining to the exclusion process hold as
long as the triple (q, ν, αq j ) satisfy the conditions of case (3) of Proposition 2.3 for
1 ≤ j ≤ J . This is because they all follow from results of Sect. 2.

5.4. Case (4) of Proposition 2.3. Recall that in case (3) of Proposition 2.3 we assume
that q ∈ (1,∞), ν = q−I for I ∈ Z≥1, and −ν < α < 0. With this choice of I ,
V

I is finite dimensional and given by the span of {0, . . . , I }. Consequently we must
replace G,Gk,WG

k,Y,Yk,WY
k by GI ,G

k
I ,WG

k
I ,YI ,Y

k
I ,WY

k
I as given at the end

of Definition 2.5. The construction of the zero range processes with transition operators
Bα,qα and B̃α,qα remains unchanged. However, as in Sect. 5.3 we cannot define the
exclusion process with a right-most particle. Definition 2.1 remains well-defined, even
though ϕq,−α,ν(s|y) is not necessarily positive (in fact, it has sign (−1)s) for integers
0 ≤ s ≤ y ≤ I . Likewise, the two equations of Remark 2.12 remain valid.

Appendix A describes how the Plancherel theory is modified for the present choice
of parameters. The eigenfunction relation of Proposition 2.13 follows since the results
of [Bor14, Corollary 4.5 (i)] are stated in sufficient generality. Proposition 2.14 holds as
written. We will note make use of Corollary 2.15 (though it holds with Wk

max replaced
by Wk

I ;max from Definition A.5). We will also not make use of Definition 2.18. Since
we have not formulated an exclusion process for these parameters, we do not have an
analog of Theorem 2.20 presently.

Theorems 2.21 and 2.23 follow from analytic continuation of their analogous results
in case (3) with the following modification: in the case of the G,Gn,Gm dualities, one
should restrict to −→g ∈ G

k and −→y ∈ Y
k′
for some k, k′ ∈ Z≥1 (otherwise terms may

fail to be finite). We may also, without loss of generality, assume that −→g ∈ G
k and−→y ∈ Y

k′
for some k, k′ ∈ Z≥1 when considering the Ĝ, Ĝn, Ĝm dualities (see the end

of the proof of Theorem 2.21 for an explanation of how to go from this to general−→g and−→y ). So, given −→g ∈ G
k and −→y ∈ Y

k′
let us see how this analytic continuation works.

Let us focus on establishing the first duality (all others follow similarly)

Bα,qαG = G
(
B̃α,qα

)T
.

This hold for case (3), in which q ∈ (0, 1) and α < −q−I . Think of q, α as complex
variables and fix ν = q−I for I ∈ Z≥1. We want to extend this to also hold for case
(4) in which q ∈ (1,∞) and α ∈ (−q−I , 0). We do this by observing that there exists
an open domain of (q, α) ∈ C

2 connecting cases (3)–(4) along which
∣∣α+ν
1+α

∣∣ < δ for
some δ < 1. Consequently, both sides of the above identity are analytic functions of q
and α and the result follows. The reason for analyticity is due to the fact that for −→g and−→y fixed, the only L-matrix weight which can be used an unbounded number of times
is α+ν

1+α
, corresponding with (0, 1; 0, 1)-vertices. That this weight is bounded above by

δ < 1 in magnitude ensures the convergence of the left-hand and right-hand sides and
hence the analyticity.

All of the result of Sect. 3 besides those pertaining to the exclusion process hold as
long as the triple (q, ν, αq j ) satisfy the conditions of case (3) of Proposition 2.3 for
1 ≤ j ≤ J . This is because they all follow from results of Sect. 2.
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5.5. Stochastic six-vertexmodel. If I = J = 1 (so ν = 1/q), then the zero range process−→g (t) we have been considering degenerates to the stochastic six-vertex model. In that
case, the L-matrix has six non-zero vertex configurations, and can be parameterized by
two parameters (b1, b2) which are between zero and one [GS92,BCG14]:

0

0

0

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

1

1

1

a1 = 1 b1 =
1 + αq

1 + α
c1 =

α(1 − q)
1 + α

b2 =
α + q−1

1 + α
c2 =

1 − q−1

1 + α
a2 = 1

Here c1 = 1 − b1, c2 = 1 − b2.
The I = J = 1 vertex weights are nonnegative if and only if the parameters (α, q)

belong to one of the following two families:

(1) q ∈ (0, 1), α ≤ −1/q;
(2) q ∈ (1,∞), α ∈ (−1/q, 0).

Case (1) above corresponds with case (3) of Proposition 2.3 whereas the case (2) above
corresponds with case (4) of that proposition. The ratio b2/b1 = 1/q is denoted by τ in
[BCG14]. Under the present choices of parameters, Theorem 2.13 degenerates to match
the eigenrelations proved in [BCG14, Section 3.3] via coordinate Bethe ansatz (see also
[Lie67]). In [BCG14], the eigenrelations are used to compute transition probabilities for
the finite particle stochastic six-vertex model. The authors then focus on the case when
τ < 1 (in other words, case (2) above where q ∈ (1,∞)) and when −→g (t) is started
from the step initial data (gi (0) = 1i≥1). Building on a combination of the approaches

developed in [TW08,BC14], they compute a contour integral formula for E[τ LN↓
n (

−→g )],
L ∈ Z≥1, and eventually utilize this to compute a eτ -Laplace transform formula for

τN
↓
n (

−→g ).
Theorems 2.21 and 2.23 yield self-dualities of the stochastic six-vertex model which,

to the best of our knowledge, appear new. As described in [BCG14, Section 2.2], as
b1, b2 → 0 (with τ fixed), the stochastic six-vertex model has a limit to the asymmetric
simple exclusion process (ASEP). Schütz [Sch97] (see also [IS11,BCS12]) discovered
two self-dualities for ASEP. These arise as limits of two of our dualities, those involving
Ĝ and Ĝn. Focusing on the Ĝn duality, notice that

Ĝn(
−→g ,

−→n ) =
k′∏

i=1

gni · τN
↓
ni (

−→g )

where we have used the fact that for g ∈ {0, 1}, [g]q = g. In the ASEP limit, this
duality becomes that recording in [BCS12, Theorem 4.1]. The Ĝ dualities limits to that
of [BCS12, Theorem 4.2].

Dualities provide closed systems of differential (or in discrete time, difference) equa-
tions satisfied by certain expectations of observables. For instance, taking the expectation
over the evolution of the −→g (t) process, the duality involving Ĝn implies that

E
[
Ĝn(

−→g (t + 1),−→n )
] = B̃α,qα

E
[
Ĝn(

−→g (t),−→n )
]
.
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This provides and alternative approach towards computing a formula forE[τ LN↓
n (

−→g )].
For ASEP with step initial data, Borodin et al. [BCS12] developed this approach. We
expect that a similar approach can be implemented to reprove the formula of [BCG14]

for E[τ LN↓
n (

−→g )] (for step initial data) by utilizing our duality. The main challenge in this
pursuit is to compute the direct transform Fq,ν of E

[
Ĝn(

−→g (0),−→n )
]
. This is known for

ASEP, and onemay observe that the ASEP eigenfunctions are (after change of variables)
the same as those considered herein.26 Thus, what is known in this respect for ASEP
likely follows for the stochastic six-vertex model.We do not pursue this any further here.

Remark 5.2. If I = J = 2 and q, α are as in cases (3) and (4) of Proposition 2.3,
then the L-matrix is stochastic. In this case, there can be up to two particles per site
and up to two particles can move in each update step. If α = −1/q2 then the zero
range process becomes a deterministic shift. In the six-vertex case (I = J = 1) this
occurs for α = −1/q. In that case, ASEP arises from an expansion around this shift,
as α = −1/q + ε. We can perform the same expansion in the I = J = 2 case, setting
α = −1/q2 + ε. The below table is calculated from the J = 2 case of Appendix B. The
overall matrix (three by three) has rows and columns indexed by j1 and j2 in {0, 1, 2}
(respectively) and each matrix entry (a length three column vector) has entries indexed
by i1 in {0, 1, 2}. All terms of order smaller than ε are left out of the matrix. A quick
inspection reveals that subtracting the shift (the order one terms) leaves somethingwhich
is not stochastic. Indeed, both q3(1+q)/(q−1) and q5/(1−q2) arises in this ε expansion
and their respective signs will always differ.

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎝
1
0
0

⎞

⎠

⎛

⎜⎜
⎝

ε

1− 1
q2

q2ε
1−q2

+ 1
0

⎞

⎟⎟
⎠

⎛

⎜
⎝

qε

1−q2
q(q+1)ε
q−1

1 − q2(q+2)ε
q2−1

⎞

⎟
⎠

⎛

⎜
⎝
1 − q4ε

q2−1
q4ε
q2−1
0

⎞

⎟
⎠

⎛

⎜⎜⎜
⎝

q2ε
q2−1(

q4+q2
)
ε

1−q2
+ 1

q4ε
q2−1

⎞

⎟⎟⎟
⎠

⎛

⎜⎜
⎝

0
ε

1− 1
q2

q2ε
1−q2

+ 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1 − q3(2q+1)ε
q2−1

q3(q+1)ε
q−1
q5ε
1−q2

⎞

⎟⎟
⎠

⎛

⎜
⎝

0

1 − q4ε
q2−1

q4ε
q2−1

⎞

⎟
⎠

⎛

⎝
0
0
1

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

This seems to be a negative indication as to whether one can extract higher spin versions
of ASEP in this manner.

5.6. q-Hahn processes. In Remark 3.18 we observed the possibility to analytically con-
tinue our L-matrix weights so as to depend on parameters α and β. However, for general
β �= αq J , J ∈ Z≥1, these weights were not always positive. The following propo-
sition provides an exception to this, in which our L-matrix weights reduce to q-Hahn
distribution weights (Definition 2.11).

26 The limit b1, b2 → 0 (with τ fixed) involves scaling α, but not changing q (which is 1/τ ) and since q, ν

are the only parameters which enter the eigenfunctions, the ASEP and stochastic six-vertex eigenfunctions
are the same.
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Proposition 5.3. Let α = −ν and β = −μ for 0 ≤ ν ≤ μ < 1. Then

Lβ
α(i1, j1; i2, j2) = 1i1+ j1=i2+ j2 · ϕμ( j2|i1)

for i1, j1, i2, j2 ∈ Z≥0. Consequently, the space reversed higher spin zero range process−→y and higher spin exclusion process for these parameters coincides with the q-Hahn
zero range process27 and q-Hahn TASEP studied in [Pov13,Cor14].

Remark 5.4. For the above choices of α, β, the proposition implies that the L-matrix
weights do not depend on j1 and hence the processes constructed from these weights
become parallel update.

Proof. This reduction is essentially proved in [Bor14, Proposition 6.7] by studying
how the hypergeometric functions specialized with these parameters. The equality of
the associated processes constructed from these L-matrix weights follows immediately.
Note, however, that as far as the equality of the processes is concerned, this could be
shown directly by noting that the eigenfunctions and eigenvalues coincide under this
parameter specialization (cf. Proposition 2.14, Corollary 3.2). This route would require
extending Corollary 3.2 to general β in the manner described in Remark 3.18. 	


5.7. Inhomogeneous parameters. It is possible to define a time-inhomogeneous versions
of the zero range and exclusion processes considered earlier by replacing the time t
transition operator (from the state time t to that at time t + 1) by Bαt ,βt (or likewise
T αt ,βt ). As long as we assume βt = q Jtαt for Jt ∈ Z≥1, this is stochastic and hence
generates a Markov chain. The duality of Corollary 3.3 clearly extends, and since these
operators for different t are still diagonalized in the same basis (owing to Corollary 3.2),
we are able to develop analogous results to Theorems 4.1 and 4.2. The only change in
Theorem 4.1 is the replacement

(1 + βz j
1 + αz j

)t →
t−1∏

s=0

1 + βs z j
1 + αs z j

,

and the corresponding change in Theorem 4.2 is the replacement in the function g

(
(−βw; q)∞
(−αw; q)∞

)t

→
t−1∏

s=0

(−βsw; q)∞
(−αsw; q)∞

.

It is also natural to consider spatial inhomogeneities. In that case, the L-matrices
used to construct the zero range and exclusion processes should depend on location or
particle number (respectively) in so far as the parameter α can be replaced by αx . Under
this generalization, the eigenfunctions considered in Appendix A no-longer suffice for
diagonalization and no suitable replacements are presently known. An inspection of the
duality proofs as well as the proof of the fusion procedure seem to suggest that these
results can be modified to apply in this setting. We do not pursue this direction any
further here. However, it is worth noting that when ν = 0, these processes relate to those
considered in [BC13] wherein duality and moment formulas were proved for both time
and space inhomogeneities. The moment formulas were generalizable in such a manner
due to the connection between the ν = 0 case and the theory of Macdonald processes
[BC13, Section 6.2].

27 Also called the q-Hahn Boson process, or (q, μ, ν)-Boson process.
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Appendix A. Bethe Ansatz Eigenfunctions

We recall results about the Bethe ansatz eigenfunctions, most of which come from
[BCPS14].

Definition A.1. Assume that q, ν are as in the first two cases of Proposition 2.3. Recall
WY

k fromDefinition 2.5 and letWk equal the space of all compactly supported functions
fromWY

k to C. Define left and right Bethe ansatz eigenfunctions28

��−→z (
−→n ) =

∑

σ∈S(k)

∏

1≤B<A≤k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏

j=1

(
1 − zσ( j)

1 − νzσ( j)

)−n j

,

�r−→z (
−→n ) = (−1)k(1 − q)kq

k(k−1)
2 mq,ν(

−→n )
∑

σ∈S(k)

×
∏

1≤B<A≤k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏

j=1

(
1 − zσ( j)

1 − νzσ( j)

)n j

, (A.1)

where −→z = (z1, . . . , zk) ∈ (C\{1, ν−1})k , and mq,ν(
−→n ) is given by

mq,ν(
−→n ) =

M(
−→n )∏

j=1

(ν; q)c j

(q; q)c j
(A.2)

where c1, . . . , cM(
−→n ) are the cluster sizes of −→n (i.e. n1 = · · · = nc1 > nc1+1 =

· · · nc1+c2 > · · · ).
Let Fq,ν be the direct transform which takes a function f ∈ Wk in the spatial variables−→n and produces a function in the spectral variables −→z according to

(Fq,ν f )(−→z ) =
∑

−→n ∈WY
k

f (−→n )�r−→z (
−→n ).

The function (Fq,ν f )(−→z ) is a symmetric Laurent polynomial in (1 − z j )/(1 − νz j ),
j = 1, . . . , k. We denote the space of all such Laurent polynomials by Ck .
LetJ q,ν be the inverse transformwhich maps Laurent polynomialsG ∈ Ck to functions
in Wk according to the following nested contour integration formula:

(J q,νG)(
−→n ) =

∮

γ
· · ·
∮

γ
dm(1k )(

−→z )

k∏

j=1

1

(1 − z j )(1 − νz j )
��−→z (

−→n )G(
−→z ).

28 See Propositions 2.13 and 2.14 which describe certain operators for which these are eigenfunctions.
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The contour γ is a circle containing around 1, not containing ν−1 and such that it contains
its image under multiplication by q. The term

dm(1k )(
−→z ) = 1

k!
(−1)

k(k−1)
2 V(

−→z )2
∏

i �= j (zi − qz j )

k∏

j=1

dz j
2π ı

, (A.3)

where V(
−→z ) =∏1≤i< j≤k(zi − z j ) is the Vandermonde determinant.

The following result comes from [BCPS14, Theorems 3.4, 3.9].

Proposition A.2. Assume that q, ν are as in the first two cases of Proposition 2.3. The
transforms Fq,ν and J q,ν are mutual inverses in the sense that J q,νFq,ν acts as the
identity on Wk , and Fq,νJ q,ν as the identity on Ck .

If q, ν are as in the last two cases of Proposition 2.3, somemodifications are necessary.
Let I ∈ Z≥1 be such that ν = q−I and recall WY

k
I (Definition 2.5), the space of−→n = (n1 ≥ · · · ≥ nk) with clusters of equal elements of length at most I (e.g. if I = 1,

the equality is strict). Similarly, denote by Wk
I the space of all compactly supported

functions fromWY
k
I toC. When we substitute ν = q−I ,mq,ν(

−→n ) [and hence�r−→z (
−→n )]

becomes supported on WY
k
I . This is because the factor (ν; q)c j is zero if any cluster

c j of
−→n exceeds length I . Therefore, in the direct transform, the summation overWY

k

can be replaced by a summation ofWY
k
I . The inverse transform similarly requires some

modification29

(J q,νG)(
−→n )=

∑

λ�I k

∮

γ ′
· · ·
∮

γ ′
dmλ(

−→w )

�(λ)∏

j=1

1

(w j ; q)λ j (νw j ; q)λ j

��−→w ◦λ
(
−→n )G(−→w ◦λ).

Some notation used above must be explained. For a partition30 λ �I k if λ � k and each
λi ≤ I . Define

dmλ(
−→w ) := (1 − q)k(−1)kq− k2

2

m1!m2! . . . det

[
1

wi qλi − w j

]�(λ)

i, j=1

�(λ)∏

j=1

w
λ j
j q

λ2j
2
dw j

2π ı
, (.4)

where −→w = (w1, . . . , w�(λ)) ∈ C
�(λ) and for λ � k, we use the notation

−→w ◦ λ := (w1, qw1, . . . , q
λ1−1w1, w2, qw2, . . . , q

λ2−1w2, . . . , wλ�(λ)
, qwλ�(λ)

,

. . . , qλ�(λ)−1wλ�(λ)
) ∈ C

k . (.5)

The contour γ ′ is a small circle around 1 which does not contain ν−1 and does not
contain its image under multiplication by q.

Proposition A.3. Assume that q, ν are as in the last two cases of Proposition 2.3. The
transforms Fq,ν and J q,ν are mutual inverses in the sense that J q,νFq,ν acts as the
identity on Wk

I , and Fq,νJ q,ν as the identity on Ck
I .

29 When I /∈ Z, such a form of the inverse transform is also valid, with �I simply replaced by �.
30 That is, λ = (λ1 ≥ λ2 ≥ · · · ≥ 0), λi ∈ Z, with λ1 + λ2 + · · · = k if λ � k. The number of nonzero

components in λ will be denoted by �(λ), and m j will denote the number of components of λ equal to j so
that λ = 1m12m2 . . .



Stochastic Higher Spin Vertex Models on the Line 697

Proof. The case when q ∈ (0, 1) follows by applying the arguments of [BCPS14,
Theorems 7.2, 7.3]. One then observes that everything is analytic in q away from 1 and
thus the q > 1 result thus follows readily. 	

It is useful to extend the space Wk to include non-compactly supported functions which
still have nice growth properties. In particular, for c,C > 0 define Wk

exp(c,C) as those

functions f : WY
k → C such that | f (−→n )| < C exp{c∑k

i=1 ni } for all −→n ∈ WY
k .

Likewise define Wk
I ;exp(c,C)

.

Proposition A.4. There exist c > 0 small enough and C > 0 large enough such that
J q,νFq,ν acts as the identity on Wk

exp(c,C) [and likewise for Wk
I ;exp(c,C)

].

Proof. Let fM equal f on the support [−M, M]k and zero outside. For the choice of
contours γ in the definition of J q,ν , there exists C1,C2 such that C1 < 1−z

1−νz < C2
holds for all z ∈ γ . This along with the exponential growth bounds on f implies that
(Fq,ν fM )(

−→z ) is uniformly convergent as the zi vary along γ . This, along with the fact
that J q,νFq,ν fM = fM implies the desired result. 	

Definition A.5. Let Wk

max be the space of all functions f : WY
k → C such that

J q,νFq,ν f = f (and likewise for Wk
I ;max).

The following corollary is a consequence of Proposition A.4.

Corollary A.6. For c > 0 small enough and C > 0 large enough, Wk
exp(c,C) ⊂ Wk

max

(and likewise for Wk
I ;max).

Appendix B. Vertex Weights for J = 1, 2, 3

B.1. J = 1 vertex weights.

j2 = 0 j2 = 1

j1 = 0

g

0

g

0
1 + αqg

1 + α

g

0

g − 1

1
α(1 − qg)
1 + α

j1 = 1

g

1

g + 1

0
1 − νqg

1 + α

g

1

g

1
α + νqg

1 + α

When g = 0, the configuration (g, 0, g − 1, 1) has zero weight, as it should be.
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B.2. J = 2 vertex weights.

j2 = 0 j2 = 1 j2 = 2

j1 = 0

g

0

g

0

(1+αqg)(1+αqg+1)
(1+α)(1+αq)

g

0

g − 1

1

α(1+q)(1−qg)(1+αqg)
(1+α)(1+αq)

g

0

g − 2

2

α2(1−qg)(q−qg)
(1+α)(1+αq)

j1 = 1

g

1

g + 1

0

(1−νqg)(1+αqg+1)
(1+α)(1+αq)

g

1

g

1

1 − (1−νqg)(1+αqg+1)
(1+α)(1+αq)

−α(1−qg)(αq+νqg)
(1+α)(1+αq)

g

1

g − 1

2

α(1−qg)(αq+νqg)
(1+α)(1+αq)

j1 = 2

g

2

g + 2

0

(1−νqg)(1−νqg+1)
(1+α)(1+αq)

g

2

g + 1

1

(1+q)(1−νqg)(α+νqg)
(1+α)(1+αq)

g

2

g

2

(α+νqg)(αq+νqg)
(1+α)(1+αq)

Again, note the automatic vanishing of suitable probabilities triggered by factors 1−qg

and q − qg .

B.3. J = 3 vertex weights. For J = 3, there are 16 vertex types, so we will no longer
draw the arrow configurations. We will also omit the common denominator (1 + α)(1 +
qα)(1 + q2α) which is present in all probabilities. The table of J = 3 vertex weights is
the following:

j2 = 0 j2 = 1 j2 = 2 j2 = 3

j1 = 0 (1 + αqg)(1 + αqg+1)
× (1 + αqg+2)

α(1+ q+ q2)(1+αqg)
× (1 + αqg+1)(1 − qg)

α2(1 + q + q2)
× (1 + αqg)
× (1 − qg)(q − qg)

α3(1 − qg)
× (q − qg)(q2 − qg)

j1 = 1 (1 − νqg)(1 + αqg+1)
× (1 + αqg+2)

(1 + αqg+1)

×
(

α(1 + q + q2)

− αqg+1(1 + q − αq)
+ νqg(1 − α − αq)

+ανq2g(1+ q+ q2)
)

α2q 1 + q + q2
)

+ αqg(αq − q − 1)
× −ν + αq2 + αq

)
+ αq2g(α + αq − 1)
× ν − αq2 + νq

)
+ α2νq3g 1 + q + q2

)
α2(1 − qg)(q − qg)
× (αq2 + νqg)

j1 = 2 (1 − νqg)(1 − νqg+1)
× (1 + αqg+2)

(1 − νqg)

×
(

α(1 + q + q2)

+ αqg+2(α+ qα − 1)
+ νqg(1 + q − qα)
+ ανq2g+1

× (1 + q + q2)
)

(αq + νqg)

×
(

α(1 + q + q2)

− αqg+1(1 + q − qα)
+ νqg(1 − α − qα)

+ανq2g(1+ q+ q2)
)

α(1 − qg)(αq + νqg)
× (αq2 + νqg)

j1 = 3 (1 − νqg)(1 − νqg+1)
× (1 − νqg+2)

(1 + q + q2)(α + νqg)
×(1−νqg)(1−νqg+1)

(1 + q + q2)(α + νqg)
× (αq + νqg)(1− νqg)

(α + νqg)(αq + νqg)
× (αq2 + νqg)

Appendix C. Yang–Baxter Equation

Denote, for this section, L(m,n)
α1,α2(k1, k2; k′

1, k
′
2) = L(1)

α1 (m, k1; �, k′
1)L

(1)
α2 (�, k2; n, k′

2)

where � = m + k1 − k′
1 = n + k′

2 − k2. Let L̃
(m,n)
α1,α2(k1, k2; k′

1, k
′
2) = L(m,n)

α1,α2(k
′
1, k

′
2; k1, k2)

and define the matrix
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Y =

⎛

⎜⎜⎜
⎝

1 0 0 0
0 − q(u1−u2)

su1u2(u1−qu2)
− 1−q

su1(u1−qu2)
0

0 − 1−q
su2(u1−qu2)

− u1−u2
su1u2(u1−qu2)

0

0 0 0 1
s2u21u

2
2

⎞

⎟⎟⎟
⎠

under the association αi = −sui and ν = s2. Then the Yang–Baxter equation amounts
to the fact that L(m,n)

α2,α1 and L̃(m,n)
α1,α2 (note the interchange of indices in α1, α2) are similar

with respect to Y :

L(m,n)
α2,α1

Y = Y L̃(m,n)
α1,α2

.

This can be derived, in light of Remark 2.2, from [Bor14, Proposition 2.5], which itself
is just a restatement of the standard six-vertex Yang–Baxter equation.
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