Correction to: Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz

Alexei Borodin ${ }^{1,2}$, Ivan Corwin ${ }^{1,3,4,5}$, Leonid Petrov ${ }^{2,6,7}$ (D) Tomohiro Sasamoto ${ }^{8}$
${ }^{1}$ Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
2^{2} Institute for Information Transmission Problems, Bolshoy Karetny per. 19, Moscow, Russia 127994. E-mail: borodin@math.mit.edu; lenia.petrov@gmail.com
${ }^{3}$ Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA. E-mail: ivan.corwin@gmail.com
${ }^{4}$ Clay Mathematics Institute, 10 Memorial Blvd., Suite 902, Providence, RI 02903, USA
5 Institut Henri Poincaré, 11 Rue Pierre et Marie Curie, 75005 Paris, France
6 Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof Hall, P.O. Box 400137, Charlottesville, VA 22904-4137, USA
7 Department of Mathematics, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
8 Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. E-mail: sasamoto@phys.titech.ac.jp

This is a correction to Theorems 7.3 and 8.12 in [1]. These statements claimed to deduce the spatial Plancherel formula (spatial biorthogonality) of the ASEP and XXZ eigenfunctions from the corresponding statements for the eigenfunctions of the q-Hahn system. Such a reduction is wrong. We are grateful to Yier Lin for pointing this out to us.

We have updated the arXiv version of the paper with the necessary corrections [2]. Below is the summary of the issue and the steps we made to correct the presentation of the ASEP and XXZ applications of our results about the q-Hahn eigenfunctions.

q-Hahn Spatial Biorthogonality

Recall that the q-Hahn left and right eigenfunctions are given by

$$
\begin{aligned}
& \Psi_{\vec{z}}^{\ell}(\vec{n}):=\sum_{\sigma \in S(k)} \prod_{1 \leq B<A \leq k} \frac{z_{\sigma(A)}-q z_{\sigma(B)}}{z_{\sigma(A)}-z_{\sigma(B)}} \prod_{j=1}^{k}\left(\frac{1-z_{\sigma(j)}}{1-v z_{\sigma(j)}}\right)^{-n_{j}}, \\
& \Psi_{\vec{z}}^{r}(\vec{n}):=(-1)^{k}(1-q)^{k} q^{\frac{k(k-1)}{2}} \mathfrak{m}_{q, v}(\vec{n}) \sum_{\sigma \in S(k)} \prod_{1 \leq B<A \leq k} \frac{z_{\sigma(A)}-q^{-1} z_{\sigma(B)}}{z_{\sigma(A)}-z_{\sigma(B)}} \prod_{j=1}^{k}\left(\frac{1-z_{\sigma(j)}}{1-v z_{\sigma(j)}}\right)^{n_{j}}
\end{aligned}
$$

where $\vec{n}=\left(n_{1} \geq \cdots \geq n_{k}\right)$. (Here and below we bring only the essential notation from the original paper [1].) Their spatial biorthogonality written in the small contour form reads [1, Corollary 3.13]

$$
\begin{equation*}
\sum_{\lambda \vdash k} \oint_{\gamma_{k}} \ldots \oint_{\gamma_{k}} d \mathrm{~m}_{\lambda}^{(q)}(\vec{w}) \prod_{j=1}^{\ell(\lambda)} \frac{1}{\left(w_{j} ; q\right)_{\lambda_{j}}\left(\nu w_{j} ; q\right)_{\lambda_{j}}} \Psi_{\vec{w} \circ \lambda}^{\ell}(\vec{n}) \Psi_{\vec{w} \circ \lambda}^{r}(\vec{m})=\mathbf{1}_{\vec{m}=\vec{n}} \tag{1}
\end{equation*}
$$

with all integration contours being small positively oriented circles around 1 , and where

$$
d \mathrm{~m}_{\lambda}^{(q)}(\vec{w}):=\frac{(1-q)^{k}(-1)^{k} q^{-\frac{k^{2}}{2}}}{m_{1}!m_{2}!\cdots} \operatorname{det}\left[\frac{1}{w_{i} q^{\lambda_{i}}-w_{j}}\right]_{i, j=1}^{\ell(\lambda)} \prod_{j=1}^{\ell(\lambda)} w_{j}^{\lambda_{j}} q^{\frac{\lambda_{j}^{2}}{2}} \frac{d w_{j}}{2 \pi \mathbf{i}} .
$$

Here, $\vec{w}=\left(w_{1}, \ldots, w_{\ell(\lambda)}\right) \in \mathbb{C}^{\ell(\lambda)}$, and m_{j} is the number of components of λ equal to j (so that $\lambda=1^{m_{1}} 2^{m_{2}} \ldots$), and

$$
\begin{aligned}
\vec{w} \circ \lambda:= & \left(w_{1}, q w_{1}, \ldots, q^{\lambda_{1}-1} w_{1}, w_{2}, q w_{2}, \ldots, q^{\lambda_{2}-1} w_{2}, \ldots, w_{\lambda_{\ell(\lambda)}}\right. \\
& \left.q w_{\lambda_{\ell(\lambda)}}, \ldots, q^{\lambda_{\ell(\lambda)}-1} w_{\lambda_{\ell(\lambda)}}\right) \in \mathbb{C}^{k} .
\end{aligned}
$$

ASEP Spatial Biorthogonality

To obtain the ASEP eigenfunctions from the q-Hahn ones, we set $v=1 / q=1 / \tau$, where $\tau \in(0,1)$ is the ASEP asymmetry parameter:

$$
\begin{aligned}
\Psi_{\vec{z}}^{\operatorname{ASEP}}\left(x_{1}, \ldots, x_{k}\right) & =\left.\Psi_{-\vec{z}}^{\ell}\left(x_{k}, \ldots, x_{1}\right)\right|_{q=v^{-1}=\tau}, \\
\left(\mathcal{R} \Psi_{\vec{z}}^{\mathrm{ASEP}}\right)\left(x_{1}, \ldots, x_{k}\right) \cdot \mathbf{1}_{x_{1}<\ldots<x_{k}} & =\left.\left(\tau^{-1}-1\right)^{-k} \Psi_{-\vec{z}}^{r}\left(x_{k}, \ldots, x_{1}\right)\right|_{q=v^{-1}=\tau} .
\end{aligned}
$$

Here, $x_{1}<\cdots<x_{k}$ are the ASEP spatial coordinates. The spatial biorthogonality of the ASEP eigenfunctions reads

$$
\begin{equation*}
\oint_{\widetilde{\gamma}_{-1}} \ldots \oint_{\widetilde{\gamma}_{-1}} d \mathrm{~m}_{\left(1^{k}\right)}^{(\tau)}(\vec{z}) \prod_{j=1}^{k} \frac{1-1 / \tau}{\left(1+z_{j}\right)\left(1+z_{j} / \tau\right)} \Psi_{\vec{z}}^{\operatorname{ASEP}}(\vec{x})\left(\mathcal{R} \Psi_{\vec{z}}^{\mathrm{ASEP}}\right)(\vec{y})=\mathbf{1}_{\vec{x}=\vec{y}} \tag{2}
\end{equation*}
$$

where the integration is performed over sufficiently small positively oriented circles around -1 . This biorthogonality of the ASEP eigenfunctions follows from the paper by Tracy and Widom [4], as we explain in detail in [2, Proof of Theorem 7.3]. Next we discuss the gap in our original argument.

Why (2) Does Not Follow from (1) as Claimed

The "proof" of ASEP spatial biorthogonality given in [1] claimed to deduce (2) by plugging $v=1 / q$ into (1) before performing the integration. Indeed, identity (2) looks as if one takes the q-Hahn small contour formula (1), removes all terms corresponding to partitions $\lambda \neq\left(1^{k}\right)$, and then plugs in $v=1 / q, q=\tau$. Formula (2) (following from [4]) a posteriori implies that under this specialization, the contribution of all additional terms with $\lambda \neq\left(1^{k}\right)$ vanishes.

First, observe that the substitution $v=1 / q$ before the integration might change the value of the integral because of the factors of the form $\frac{1}{1-q \nu w_{i}}$ in the integrand for $\lambda \neq\left(1^{k}\right)$. Before the substitution $v=1 / q$, the residue at $w_{i}=(q v)^{-1}$ was not picked while after the substitution we have $1-q \nu w_{i}=1-w_{i}$, so this factor adds an extra pole inside the integration contour.

With the agreement that the substitution $v=1 / q$ occurs after the integration, the "proof" of (2) presented in [1] asserted a stronger statement: For each individual $\lambda \neq\left(1^{k}\right)$ and any two permutations $\sigma, \omega \in S(k)$ (coming from Ψ_{z}^{ℓ} and Ψ_{z}^{r}, respectively), the corresponding term vanishes after setting $v=1 / q$. This assertion is wrong.

For example, take $\vec{x}=(10,9,8,7,6,5)$ and $\vec{y}=(5,4,3,2,1,0)$. The summand in the integrand in (1) corresponding to $\lambda=(3,2,1)$, and permutations $\sigma=321,546$ and $\omega=645,123$ has the form (before setting $q=1 / v=\tau$):

$$
\begin{aligned}
& \text { const } \cdot \frac{\left(1-v q w_{1}\right)^{7}\left(1-v q w_{2}\right)^{3}}{\left(1-w_{1}\right)^{7}\left(1-w_{2}\right)^{3}\left(1-w_{3}\right)} \\
& \quad \times \frac{\left(q w_{1}-w_{2}\right)\left(q^{2} w_{1}-w_{2}\right)^{2}\left(q^{3} w_{1}-w_{2}\right)\left(q^{2} w_{1}-w_{3}\right)\left(q^{3} w_{1}-w_{3}\right)\left(q w_{2}-w_{3}\right)\left(q^{2} w_{2}-w_{3}\right)}{\left(w_{1}-w_{2}\right)\left(w_{1}-w_{3}\right)\left(w_{2}-w_{3}\right)\left(q w_{2}-w_{1}\right)^{2}\left(q^{2} w_{2}-w_{1}\right)\left(q w_{3}-w_{1}\right)\left(q w_{3}-w_{2}\right)} \\
& \quad \times f_{1}\left(w_{1}\right) f_{2}\left(w_{2}\right) f_{3}\left(w_{3}\right) .
\end{aligned}
$$

Here, $f_{1}\left(w_{1}\right)$ is independent of w_{2}, w_{3} and has no zeroes or poles at $w_{1}=1$ and $w_{1}=1 /(q \nu)$, and similarly for $f_{2}\left(w_{2}\right)$ and $f_{3}\left(w_{3}\right)$. One can check that the residue of this term at $w_{3}=1, w_{2}=1$, and $w_{1}=1$ does not vanish when setting $q=1 / v$. (Note that the result of the integration depends on the order of taking the residues for individual summands due to the presence of the factors of the form $w_{i}-w_{j}$ in the denominators. These factors cancel out after summing over all permutations σ, ω, and each summand indexed by λ is independent of the order of integration because the result of the summation is a function symmetric in the w_{i} 's.)

Let us mention another (possibly related) subtlety in the spatial biorthogonality of the ASEP eigenfunctions as compared to the general q-Hahn case. Namely, in the q-Hahn situation the contribution of individual permutations coming from the eigenfunctions vanishes, while in the ASEP case this is not the case (see [2, Remark 7.6] for details). The proof of the ASEP statement in [4] employs nontrivial combinatorics to determine cancellations of specific combinations of permutations.

Corrections We Made in the New Version [2] Compared to the Published Version [1]

We have replaced the incorrect "proof" of Theorem 7.3 (spatial biorthogonality of the ASEP eigenfunctions) by its derivation from the earlier result of Tracy and Widom [4]. We have also removed Theorem 8.12 which claimed a spatial biorthogonality statement of the XXZ eigenfunctions based on a similar incorrect direct substitution $v=\boldsymbol{\theta}$.

The Same Gap in [3]

The claim similar to (1) but with more general $v=q^{-I}$, where I is an arbitrary positive integer, is made in [3, Appendix A] (by a subset of the current authors). When $I=1$, this identity is correct, but does not follow from the general $v \in(0,1)$ formulas (as explained above). Moreover, for $I \geq 2$ the claimed orthogonality does not seem to hold as stated. A separate erratum will be prepared to address the issues in the work [3].

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. Commun. Math. Phys. 339(3), 1167-1245 (2015)
2. Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. Updated version, (2018), arXiv:1407.8534v4 [math-ph]. Available at https:// arxiv.org/abs/1407.8534v4
3. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651-700 (2016). arXiv:1502.07374 [math.PR]
4. Tracy, C., Widom, H.: Integral formulas for the asymmetric simple exclusion process, Commun. Math. Phys. 279 (2008), 815-844, arXiv:0704.2633 [math.PR]. Erratum: Commun. Math. Phys., 304:875-878, (2011)

Communicated by H. Spohn

