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Correction to: Commun. Math. Phys. 339, 1167–1245 (2015)
https://doi.org/10.1007/s00220-015-2424-7

This is a correction to Theorems 7.3 and 8.12 in [1]. These statements claimed to deduce
the spatial Plancherel formula (spatial biorthogonality) of theASEP andXXZeigenfunc-
tions from the corresponding statements for the eigenfunctions of the q-Hahn system.
Such a reduction is wrong. We are grateful to Yier Lin for pointing this out to us.

We have updated the arXiv version of the paper with the necessary corrections [2].
Below is the summary of the issue and the steps we made to correct the presentation of
the ASEP and XXZ applications of our results about the q-Hahn eigenfunctions.

q-Hahn Spatial Biorthogonality

Recall that the q-Hahn left and right eigenfunctions are given by
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where �n = (n1 ≥ · · · ≥ nk). (Here and below we bring only the essential notation from
the original paper [1].) Their spatial biorthogonality written in the small contour form
reads [1, Corollary 3.13]
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with all integration contours being small positively oriented circles around 1, and where
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Here, �w = (w1, . . . , w�(λ)) ∈ C
�(λ), and m j is the number of components of λ equal to

j (so that λ = 1m12m2 . . .), and
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ASEP Spatial Biorthogonality

To obtain the ASEP eigenfunctions from the q-Hahn ones, we set ν = 1/q = 1/τ ,
where τ ∈ (0, 1) is the ASEP asymmetry parameter:
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�z (x1, . . . , xk) = ��

−�z(xk, . . . , x1)|q=ν−1=τ ,

(R�ASEP
�z )(x1, . . . , xk) · 1x1<...<xk = (τ−1 − 1)−k�r

−�z(xk, . . . , x1)|q=ν−1=τ .

Here, x1 < · · · < xk are the ASEP spatial coordinates. The spatial biorthogonality of
the ASEP eigenfunctions reads
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where the integration is performed over sufficiently small positively oriented circles
around −1. This biorthogonality of the ASEP eigenfunctions follows from the paper by
Tracy and Widom [4], as we explain in detail in [2, Proof of Theorem 7.3]. Next we
discuss the gap in our original argument.

Why (2) Does Not Follow from (1) as Claimed

The “proof” of ASEP spatial biorthogonality given in [1] claimed to deduce (2) by
plugging ν = 1/q into (1) before performing the integration. Indeed, identity (2) looks
as if one takes the q-Hahn small contour formula (1), removes all terms corresponding
to partitions λ �= (1k), and then plugs in ν = 1/q, q = τ . Formula (2) (following from
[4]) a posteriori implies that under this specialization, the contribution of all additional
terms with λ �= (1k) vanishes.

First, observe that the substitution ν = 1/q before the integration might change
the value of the integral because of the factors of the form 1

1−qνwi
in the integrand for

λ �= (1k). Before the substitution ν = 1/q, the residue at wi = (qν)−1 was not picked
while after the substitution we have 1 − qνwi = 1 − wi , so this factor adds an extra
pole inside the integration contour.
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With the agreement that the substitution ν = 1/q occurs after the integration, the
“proof” of (2) presented in [1] asserted a stronger statement: For each individualλ �= (1k)
and any two permutations σ, ω ∈ S(k) (coming from ��

�z and �r
�z , respectively), the

corresponding term vanishes after setting ν = 1/q. This assertion is wrong.
For example, take �x = (10, 9, 8, 7, 6, 5) and �y = (5, 4, 3, 2, 1, 0). The summand in

the integrand in (1) corresponding to λ = (3, 2, 1), and permutations σ = 321,546 and
ω = 645,123 has the form (before setting q = 1/ν = τ ):
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Here, f1(w1) is independent of w2, w3 and has no zeroes or poles at w1 = 1 and
w1 = 1/(qν), and similarly for f2(w2) and f3(w3). One can check that the residue of
this term at w3 = 1, w2 = 1, and w1 = 1 does not vanish when setting q = 1/ν.
(Note that the result of the integration depends on the order of taking the residues for
individual summands due to the presence of the factors of the form wi − w j in the
denominators. These factors cancel out after summing over all permutations σ, ω, and
each summand indexed by λ is independent of the order of integration because the result
of the summation is a function symmetric in the wi ’s.)

Let us mention another (possibly related) subtlety in the spatial biorthogonality of the
ASEP eigenfunctions as compared to the general q-Hahn case. Namely, in the q-Hahn
situation the contribution of individual permutations coming from the eigenfunctions
vanishes, while in the ASEP case this is not the case (see [2, Remark 7.6] for details).
The proof of the ASEP statement in [4] employs nontrivial combinatorics to determine
cancellations of specific combinations of permutations.

Corrections We Made in the New Version [2] Compared to the Published Version
[1]

We have replaced the incorrect “proof” of Theorem 7.3 (spatial biorthogonality of the
ASEP eigenfunctions) by its derivation from the earlier result of Tracy and Widom [4].
We have also removed Theorem 8.12 which claimed a spatial biorthogonality statement
of the XXZ eigenfunctions based on a similar incorrect direct substitution ν = θ .

The Same Gap in [3]

The claim similar to (1) but with more general ν = q−I , where I is an arbitrary positive
integer, is made in [3, Appendix A] (by a subset of the current authors). When I = 1,
this identity is correct, but does not follow from the general ν ∈ (0, 1) formulas (as
explained above). Moreover, for I ≥ 2 the claimed orthogonality does not seem to hold
as stated. A separate erratum will be prepared to address the issues in the work [3].
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