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1. TooLs: GIBBS MEASURES, YANG-BAXTER EQUATION, SYMMETRIC FUNCTIONS

In this introductory section we discuss the tools used in the proposed research to obtain outcomes
summarized in §4] below.

1.1. Overview. A significant part of development of modern probability theory since the second
half of the 20-th century was heavily influenced by physical applications. In recent decades, there
haven been at least two major achievements at this interplay: (1) discovery and rigorous construc-
tion of scaling limits of conformally invariant models (including the Schramm-Loewner Evolution
Gaussian Free Field, and models of Quantum Gravity); and (2) discovery and rigorous justification
of the Kardar-Parisi-Zhang (KPZ) stochastic partial differential equation, and description of the
KPZ universality class capturing scaling limits of many natural random interface growth models
described by singular stochastic partial differential equations with white noise. Many ideas behind
these achievements are purely mathematical, but some tools and principles were first developed
within physics: for example, field theory heuristics for (1), and Bethe ansatz for (2). Many other
physical theories, (e.g., renormalization group or string theory) keep influencing probability and
other branches of pure mathematics.

The proposed research explores applications of some of the physical ideas, most importantly,
the Yang-Baxter equation (also known as star-triangle, or Y-Delta move) and the Bethe Ansatz,
together with mathematical ideas around symmetric functions, to stochastic models originating
from two-dimensional statistical mechanics and random interface growth. When such a stochastic
model is related to Yang-Baxter equation or symmetric functions, we refer to it as integrable.

1.2. Gibbs measures. The models studied within the proposed research usually can be formulated
as Gibbs probability distributions or marginals / degenerations / limits of such distributions. By
a Gibbs distribution on configurations on a finite space {2 (usually a part of the two-dimensional
lattice Z?) we mean

Prob(w) = Z texp {—H(w)}, w = {0 }icq € S, (1)

where S is a finite set (“set of possible spins”; for example, S = {0,1}), and H(w) > 0 is the energy
of a configuration w, which may depend on global parameters (e.g., inverse temperature) and
local parameters (e.g., vertex rapidities). Here Z is the partition function (probability normalizing
constant) which also depends on all the parameters.

1.3. Infinite volume limit. Besides Gibbs measures on configurations on a finite space as in
(1)) with fixed boundary conditions (“bozed distributions”), we are interested in infinite volume
measures.

By definition, an infinite volume Gibbs measure satisfies the Gibbs property in every finite
subspace ) C Q4 when conditioned on the configuration outside €2, and with boundary conditions
imposed by this outside configuration. Out of all possible Gibbs measures on {2, one usually selects
the ones with certain special properties, like translation invariance and/or ergodicity / extremality.
Classifying infinite volume Gibbs measures is a very nontrivial problem, and an explicit answer is
rarely available. Let us discuss three instances:
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1. The classification is only conjectural in many interesting integrable situations, such as for trans-
lation invariant ergodic Gibbs measures (“pure states”). While this classification (for example,
for the general six vertex model) is a major open problem, a new characterization of pure
states might be helped by the construction of new irreversible dynamics preserving the mea-
sure. Such dynamics could be constructed directly from the Gibbs structure and the underlying
Yang-Baxter equation.

2. On the other hand, pure states of the six vertex model under a special free fermion condition
(a codimension one condition on vertex weights at each vertex) admit a very explicit descrip-
tion through determinantal point processes (i.e., all correlation functions of these measures are
diagonal minors of an explicit function in two variables), which follows from [She05], [KOS06].
Recently the PI and collaborators [ABPW21] obtained doubly inhomogeneous extensions of
these well-known infinite volume measures. In the free fermion case, the proposed research will
pursue, in particular,

a. an explicit particle current of irreversible Markov dynamics (coming from the Yang-Baxter
equation) preserving the pure state of the free fermion six vertex model, and an effect of
inhomogeneities on it.

b. determinantal structure of boxed free fermion measures, and its limit to a discretiza-
tion of the Dyson Brownian Motion in inhomogeneous space with arbitrary initial data.

c. the effect of inhomogeneity on global fluctuations of the height function leading to
deformations of the Gaussian Free Field.

3. Certain families of (non translation invariant) Gibbs measures power the classification of irre-
ducible representations of infinite-dimensional unitary group and other classical groups [Voi76],
[VK82], [BO12], [Pet14]. This subject is closely related to symmetric functions arising as par-
tition functions of Gibbs measures with varying parameters (rapidities) along one of the lattice
coordinate direction, see below for details.

1.4. Connections to random growth. By a random growth model we mean a Markov dynamics
on one- or two-dimensional interfaces separating two regions of Z? or Z3, respectively, started
from a given initial configuration. Random growth in one dimension is essentially the same as
a stochastic interacting particle system. Indeed, for example, the TASEP (Totally Asymmetric
Simple Exclusion Process) is equivalent to the Corner Growth Model by passing to the height
function h(z) = #{TASEP particles > z}.

Let us mention three known instances when Gibbs measures are closely related to random growth
models or interacting particle systems:

1. Fixed time probability distributions of a random growth model in two dimensions may some-
times be identified with a Gibbs measure. For example, after n steps the domino shuffling
produces an exact sample of the uniformly random domino tiling of the size n Aztec Diamond
[EKLP92].

2. The fixed time probability distribution of a random growth in one dimension may sometimes
be found as a marginal distribution of a Gibbs random configuration in two dimensions. See
below for a proposed problem related to TASEP with arbitrary initial data.

3. The space-time distribution of the whole trajectory of a stochastic interacting particle system
like TASEP or the Dyson Brownian Motion (DBM) may sometimes be an instance of an infinite
volume Gibbs measure in two dimensions. Universal limits of some integrable particle systems,
the Airy and KPZ line ensembles, are conjecturally characterized by their Gibbs properties. See
below for a group of new discrete models related to DBM.

Over the past decades, these connections have powered crucial asymptotic results related to KPZ
or bulk universality in various interacting particle systems, see Tracy-Widom asymptotics in [Joh00]
or discrete Dyson’s conjecture in [GP19], respectively. (The term “bulk” refers to the parts of the
system where the space can be rescaled to form growing regions with constant particle density.)
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The search for new interesting particle systems related to various Gibbs measures, and
utilizing the latter for asymptotic analysis is one of our main research directions.

1.5. Symmetric functions as partition functions. A crucial integrability structure which sin-
gles out the Gibbs measures addressed in the proposal is their connection to symmetric functions
arising as partition functions. The symmetry is powered by the Yang-Baxter equation. This cir-
cle of ideas is best explained on a rather simple example. The proposed research deals with very
nontrivial multiparameter generalizations of the setting explained below.

Fix integer N > 1, let A= (A1 > ... > Ay > 0), A\; € Z, be an integer partition with N parts.
Let z1,...,znx € C be row rapidities. Consider a verter model, i.e., a probability measure on all
configurations of up-right paths in Z>o x {1, ..., N} with the following boundary conditions. There
are no paths entering from below or exiting from the right; at each horizontal j = 1,..., N there is
exactly one path entering, and for ¢ = 1, ..., N a path exits through the top boundary at coordinate
;. Multiple paths per vertical edge are allowed, but there is at most one path per horizontal edge.
Paths can meet at a vertex. Our concrete Schur vertex model, by definition, assigns to each path
configuration the probability weight proportional to the product of the individual vertex weights
w(; jy(a1, bi;az, bz) over all lattice vertices (4,7). (The Gibbs energy H in the sense of is the
sum of the logarithms of the vertex weights.) Here aj, a2 € Z>o, b1,b2 € {0,1} are the numbers
of vertical and horizontal paths at the vertex, with ai,b; entering, and ase, by exiting. We require
the path preservation property, i.e., a; + b1 = as + b2, to hold at each vertex. The concrete
vertex weight we take at the (i, j)-th vertex, i > 0, 1 < j < N, depends on the j-th row rapidity
as wm(al,bl;ag,bg) = x??.
configurations, so the measure is well-defined. See Figure (1| for an example (and also Figure
below for an equivalent lozenge tiling picture).

The Schur symmetric polynomial

Because the partition A is fixed, there are finitely many possible

Aj+N—j
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serves as the as the partition function of this vertex model (recall that we fixed A at the top
boundary).

Expression for the partition function readily follows by induction on N by peeling off the
dependence on xy and utilizing elementary transformations of the determinant. Let us emphasize
that such a concise formula for a partition function is a rare occurrence, and partition functions of
other integrable vertex models are usually much more complicated.

The presence of symmetric functions in Gibbs measures allows to employ powerful algebraic
tools to study stochastic systems, including (when available) explicit formulas, difference operators
acting on symmetric functions diagonally, orthogonality properties of the symmetric functions, and
so on. To summarize, most of the tools worked out in the celebrated book by Macdonald [Mac95]
could be applied to partition functions of various integrable vertex models.

1.6. Yang-Baxter equation. The symmetry of a partition function in the row rapidities x1, ...,y
is a simpler fact compared to the determinantal formula for the global partition function sy. Namely,
the symmetry follows from the Yang-Baxter equation which is a local property of the weights:

Z Ry p(i2,01; ke, k1)wg (i3, k1; k3, j1)wy (ks, k2; js, jo)
k1,k2,k3 (3)
= Y wy(is iz; ks, ka)wa(ks, iv; js, k1) Ry o (ko, ks 2, i),

k1,k2,k3
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FIGURE 1. A configuration of the Schur vertex model with N = 5 and the given A. The probability
weight of this particular configuration is proportional to z3x3z3x3x2.

where i1, 12,71, j2 € {0,1} and i3, j3 > 0 are fixed, and both summations run over ki, ks € {0,1}
and k3 > 0, but there are at most two nonzero terms in each side. The weights w, are x72, as in
above. See Figure [2] for an illustration and the definition of the cross vertex weights R,.

Rzg‘l)[’i 3 K") Kj)

R ()

XM AKX
R: | L[|z [O]4 |1

FIGURE 2. Yang-Baxter equation (framed), an example for (iy,is,1i3,71,J2,73) = (0,1,1,1,0,1)
(below), and the cross vertex weights R, .

To show symmetry of the partition function in Figure [I| under any permutation z; < x;11,
i=1,...,N — 1, add the full cross vertex on the left between the horizontals ¢ and 7 + 1. Since
inﬂ/xi(l, 1;1,1) = 1, this does not change the partition function. Then, using , move the cross
vertex all the way to the right, which interchanges z; and z;y; along the way. Far to the right, the

cross becomes empty, and thanks to R, /g, (0,0;0,0) = 1, it can be removed. Thus, we get the
desired symmetry.
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Besides the symmetry, the Yang-Baxter equation establishes other important properties of par-
tition functions, for example, the Cauchy summation identity for Schur polynomials:

N

1 .

E sx(x1, ..., zN)sA (Y1, .- YN) = I | R— |2y < 1 Vi, j.
A=(A12A2>.. > AN 20) ij=1 iYi

The Yang-Baxter equation is a hallmark of integrability in vertex models. For stochastic vertex
models generalizing the Schur model, the PI and collaborators [CP16], [BP18|, [OP17], [BMP21]
have developed various techniques (based on Markov duality, the Yang-Baxter equation, or dif-
ference eigenoperators for symmetric functions) to obtain exact formulas for expectations of ob-
servables amenable to asymptotic analysis Moreover, in the yet more general case when paths are
allowed to have different colors ([BW18|, [ABW21]) the Yang-Baxter equation leads to transfor-
mation rules for partition functions defining a representation of the Iwahori-Hecke algebra. For
brevity, throughout the proposal we discuss only the simplest possible uncolored models.

1.7. Determinantal processes. Let the rapidities ; be positive. Fix A = (A} > ... > Ay > 0)
and consider the random path configuration as in Figure [I] with probability weights proportional to
products of the vertex Weights, as defined in §I.5] Encode the random configuration by an integer
sequence \F = (\¥ > ... > )\i >0), k=1,...,N, with AV = X fixed. For example, in Figure [1| we
have

A= (2), A= (3,1), A =(3,3,1), M= (4,3,1,1), A’ = (4,4,2,1,0).

It is well-known (for example, [Ken09, Corollary 3]) that for the Schur case, the random path
configuration as in Figure [1] gives rise to a determinantal point process. By definition, this means
that for any m > 1 and aq,...,ay, € Z, t1,...,t,m € {1,..., N} we have

P |configuration {()\;‘7 —7j,k): 1 <j <k < N} contains all points (a1, t1),..., (am,tm)] ()

= det[K(ti7 s ty, aj)]zz':la
for a certain function K of two lattice variables. The function K (¢, a;t’,a’) is called the correlation
kernel. In words, all multipoint correlations in the random system are expressed in a rather simple
form through the two-point correlations. The determinantal property is quite special, and is not
shared by all integrable vertex models. The determinantal structure relies on free (noninteracting)
fermion structures behind the Schur polynomials and the vertex model in Figure [1} It is a major
open problem to understand the structure of multipoint correlations in more general
integrable vertex models in a form amenable to asymptotic analysis. In particular, more general
models include many instances of interacting fermions, one example of which is the stochastic six
vertex model.

1.8. Steepest descent. Even in the Schur vertex model the correlation kernel K is not known in
a convenient enough form for general rapidities x;. By “convenient” here we mean double contour
integral form which can be analyzed asymptotically in most interesting regimes (bulk leading to the
sine kernel, edge described by the Airy line ensemble, global fluctuations leading to the Gaussian
Free Field) using steepest descent whose application to determinantal processes dates back to
Okounkov [Oko02].

In more detail, a double contour integral kernel of a stochastic system usually has the form (here
a,b are in Z or Z2, cf.

K(a,b) // o fa,b(z,w) dzdw, (5)

where L is a large parameter, S(z) = S(Z) is a function symmetric under complex conjugation,
and f,; is a regular term not going to zero or infinity. To obtain its asymptotics, one looks at



6

critical points of S(z). For (a,b) in the bulk of the system, S has two complex conjugate critical
points z., Z.. Deforming the contours to intersect at them such that Re(S(z) — S(w)) < 0 on the
new contours makes the double contour integral go to zero. The remaining residue means that
scales to the arc integral of f, (2, 2) from Z. to z.

For (a,b) at the edge of the system, the critical points z., Z. merge at a real line, and scaling S
around the double critical point leads to the Airy kernel containing e?*/3=w* /34 ynder the integral.

In [Petl4] the PI has obtained the double contour integral kernel for the case of rapidities
zi=q ', i=1,...,N, where 0 < ¢ < 1. The limit ¢ /1 leads to the uniformly random lozenge
tilings as in Figure |5 below. The kernel’s limit as ¢ /* 1 (which is quite nontrivial to compute from
the g-dependent kernel) becomes especially amenable to asymptotics which were performed by the
PI [Pet15], [GP19] and other authors [LT17], [Aggl9] to obtain various universality results.

The g-dependent kernel has not yet been utilized towards asymptotics, mainly due to the presence
of the ¢g-hypergeometric function 3¢ under the integral. One of the concrete problems suggested
in the proposal is the exploration of asymptotics of the g-dependent Schur vertex model
and related boxed Gibbs measures. Along this direction, preliminary computations already
suggest new discretizations of the Dyson Brownian Motion, which are powered by new interesting
limits of Schur and Macdonald symmetric functions. We discuss this in detail in §3| below.

1.9. Fredholm determinants and large deviations. Let us mention one more major open
problem related to determinantal structure. The cumulative distribution of the top particle in a one-
dimensional determinantal process (for example, the maximal eigenvalue of a Gaussian Hermitian
random matrix) is given by a Fredholm determinant:

(=)
n!

S det[K (i, b))y (6)

B1yeeeyin >8

P <) =det(ld — K| 100) =1+
n=1

(the second equality may be taken as a definition of the Fredholm determinant; here the space is
discrete). The Fredholm structure is even more general, as it extends to single-point distributions
in many particle systems not connected to determinantal processes. A prototypical example here
is ASEP (a generalization of TASEP in which particles jump in both left and right directions) for
which Fredholm determinants (when £ in (6]) is a fixed particle coordinate in ASEP) were found in
celebrated works of Tracy and Widom [TWO0S], [TW09].

The steepest descent analysis of @ around a double critical point of K leads (in many models)
§(L) —cL
oLl/3
asymptotics, the distribution of {(L) typically has two different large deviation tails. For example,
in ASEP, the probability P(§ < c¢L — aL) that ¢ is exceedingly slow is of order exp(—¢™(«)L)
(established by the PI in [DPS1§]), and the exceedingly fast probability P(§ > c¢L + aL) is of
order exp(—¢~ () L?). Heuristically, a particle may be slow just because its independent jumps are
slow (a classical large deviation behavior), while to be fast, all the particles in front must also be
fast. The slow large deviations can be established by the steepest descent analysis of a Fredholm
determinant. Namely, in this regime the double critical point splits into two real points z1, z2, and
the integral behaves as eL(5(21)=5(22)) " which produces the order L large deviations. In @, only
the term with n = 1 in the sum matters in this regime. Presumably, in the fast large deviations of

order L?, all terms in the sum should contribute.

It would be beneficial to be able to prove the fast large deviation regime (or at least estimates) of
order L? directly from the Fredholm determinant. There are several known approaches to this tail,
like equilibrium measures in random matrices [AGZ10), Section 2.6], or matching of expectations
for the KPZ equation tail [CG20]. Yet, most stochastic interacting particle systems or integrable

to the GUE Tracy-Widom asymptotics: limp_, . P < r) = F5(r). In addition to this
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directed random polymers do not possess random matrix, determinantal, or matching expectation
properties, and it would be interesting to find a direct approach via Fredholm determinants.

The PI hopes that a progress in this major open problem may be achieved by considering
problems with many independent parameters, like determinantal processes coming from the free
fermion six vertex model. This could highlight previously missing structure.

1.10. Outline of the rest of the proposal. In this section we gave an overview of the tools used
by the PI to attack the structural and asymptotic questions around Gibbs measures, integrable ver-
tex models, and stochastic systems such as random configurations and interacting particle systems.
In the next two sections, §§2] and [3] we discuss two concrete setups where initial progress could be
achieved by a combination of these tools. When expected results are already visible and can be
formulated precisely, they are called “Conjectures” in the text. There are several other settings
in which the PI will apply the tools described here, but due to space limitations these settings can
only be briefly mentioned. A brief summary of proposed research directions is given in Finally,
in §5| we discuss broader impacts of the PI’s activities related to the project.

2. TASEP WITH ARBITRARY INITIAL CONDITION

2.1. Bernoulli TASEP with sequential update. Fix N and let xy,...,xny > 0 be rapidities.
Also pick the speed parameter 8 > 0. The Bernoulli TASEP with sequential update (in what follows
we call it TASEP, for short) is an N-particle Markov process £(t) = (£1(t) > ... > En(t)) on Z
with discrete time ¢ € Zx>q. It evolves as follows. At each update t — t + 1, each particle ; flips an
T

1+ B

independent coin with probability of Heads Then sequentially for ¢ = 1,..., N, update

(see Figure 3| for an illustration)

Et41) = {fi(t) + 1, if the coin of §; is Heads and &_1(t + 1) > &(¢) + 1;

&(t), otherwise (coin is Tails, or the jump destination is occupied).
By agreement, £y = +oo, so the first par- e $ LN
ticle &1 (t) performs a simple random walk. (VPR ~ N 1tp*a
initial state of TASEP at t = 0.
3¢ 5o 3203

Remark 2.1. We consider the N-particle
TASEP, but a process with infinitely many
particles & > &2 > ... is well-defined by con-
sistency.

Ficure 3. Bernoulli TASEP. The first particle
jumps with probability Sz /(1+8x1), the jump of the
second particle depends on whether the first particle

In the Poisson rescaling f — 0, ¢t = [7/5], has jumped. The third particle jumps with probabil-
TASEP becomes a process with continuous ity Brs/(1+ Bx3), and so on.

time 7 and Poisson jumps. It is well-defined

started from any initial configuration € {0, 1}Z by Harris graphical construction [Har78]. However,
the finite- N statements we discuss in this section are sufficient for asymptotic analysis in the sense
of finite-dimensional distributions.

Let us present a vertex model representation of the joint distribution of £(¢) started from an
arbitrary initial configuration 7. Without loss of the generality we may assume that ny > —N.
This vertex model has three layers, the bottom one of size N with vertex weights w;, as in Figure
the middle one of size t with weights Wg under which the paths go up and left. In the top layer
of size N — 1, the weights are W_,.. Here the paths go up an right, and must end at points 7; + ¢
at consecutive horizontals in the top layer. In the middle and top layers, multiple paths per edge
are allowed in both directions, but a path cannot travel more than one step on a single horizontal
slice. The weights and the vertex model are given in Figure
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FIGURE 4. Vertex model for P[¢(¢) = £ | £(0) = n], where & + ¢ are the coordinates of the leftmost
upper arrows at the N bottom slices, and 7; + ¢ are the top boundary conditions located at consecutive
horizontals in the top layer. The vertex weights and the rapidities are indicated, too. In the figure we
have n = (4,0, —3,—4) and £ = (4,1, —1,—3). Here and below 14 denotes the indicator of A.

Theorem 2.2. For any t € Z>¢ and any N-particle configurations {,n on Z>_n, the TASEP
transition function P[§(t) = & | £(0) = n] is proportional (the normalizing constant is independent
of & but may depend on the initial condition n) to the partition function of the vertex model as in

Figure []] with the boundary conditions determined by &, n.

Note that while in the top layer the vertex weights could be negative, the partition function in
Theorem is always nonnegative, which is a part of the statement. Theorem follows from
[DWOS]. The earlier case of homogeneous rapidities z; is due to [BFPS07], and these interpretations
are based on determinantal formulas of Rakos-Schutz [RS05], [RS06].

The PI will investigate whether other particle systems like ¢-TASEP and ASEP admit a vertex
model interpretation similar to Figure [4] of their transition probabilities for arbitrary initial data.
There are already vertex model candidates for the step initial data discussed by the PI in [BP19],
[BMP21]. An initial question would be to see how the vertex model in Figure [4] solves the master
equation (Kolmogorov equation associated with the Markov chain) for TASEP. Presumably, this
fact should follow from Yang-Baxter equation only, and therefore the method would be extendable
to all other integrable vertex models.

2.2. Speed compression for step initial data. In the case of the step initial data n; = —j,
j = 1,...,N and geometric rapidities z; = ¢*~', i = 1,..., N, where 0 < ¢ < 1, the PI has
observed [PS21] that a certain Markov transition operator applied to the final condition () essen-
tially preserves the TASEP distribution, but replaces 5 by ¢B8. This Markov map is based on the
bijectivisation of the Yang-Bazter equation introduced by the PI in [BP19]. In short, a bijectivi-
sation is a mechanism of randomly updating an arrow configuration then the cross vertex moves
from the left to the right in Figure |2l The probabilities of updates are determined by w;,w,, and
R, /., and are chosen so that the relative weights in both sides of the Yang-Baxter equation are
preserved by the random update.

Let us explain what bijectivisation brings in the concrete example of TASEP. We use the Yang-
Baxter equation to take the horizontal slice with rapidity 1 = 1 and exchange it with the slices with
o = q,x3 = ¢°,...,xn = ¢~V ~1. The bijectivisation allows to realize each exchange as a Markov
map (i.e., the application of a one-step Markov transition operator) which changes one row of the
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vertex model. When restricted to the leftmost vertical arrows at each slice, the combination of these
Markov maps becomes the following random sequential update of the &’s fori=1,..., N — 1:

§i— EZ =&i4+1+ 1+ min (Geoqi+l,€i — &1 — 1) ,

where Geog, Geo,z, . . . are independent geometric random variables with P [Geo, = k] = (1 — a)a¥,

k € Zsp. Let the combined Markov map ({1,...,&n) — (51,...,51\7_1) corresponding to the
reordering of the rapidities (1,q,¢%,...,¢" 1) = (¢,¢% ...,¢" 1, 1) be denoted by L,. Note that
the jump of {ny_1 depends on &y, and so L, “forgets” the last particle.

Theorem 2.3 ([PS21)). Fiz t € Z>o and let {(t) be the N-particle TASEP configuration with
speed B started from the step initial data n; = —j, 1 < j < N. Then the joint distribution of
(€1, En1) = Ly(&1(t), ..., En(t)) coincides with the distribution of the (N — 1)-particle TASEP
of speed qB started from the step initial data.

Idea of proof. For the step initial data, the configuration in the top layer in Figure 4| (with the
weights W_,,) is frozen. Then we use the homogeneity of the Schur polynomials (partition func-
tions of the paths in the bottom layer, cf. Figure which implies that the rapidity sequence
(q,¢%, ...,¢N"1 B,..., B) arising after applying L, (and forgetting the N-th particle which is pos-
sible by consistency) may be replaced by (1,q,...,¢""2;¢p,...,qB) without changing the joint
distribution of the path ensemble. The new speed parameter is ¢f, as desired. ([l

Remark 2.4. In the continuous time Poisson limit, the speed compression map becomes a map
which turns the time in the continuous time TASEP backwards (in the sense of acting on the
fixed-time distributions).

2.3. Arbitrary initial data and KPZ fixed point. We will establish an extension of Theo-
rem [2.3] to general initial data :

Conjecture 1 (Speed compression for arbitrary initial data). There exists a Markov map My g
mapping (N1, ...,Mn) — (M,...,Mn—1) such that the following diagram of Markov maps is com-
mutative (in the sense that the probability distribution off~ 1s the same along both paths in the
diagram):

TASEP(8)

n —— £
Mgp ( L, (7)

_  TASEP(¢8) =~

n —— ¢
General initial data leads to the vertex model with possibly negative vertex weights, so one has
to carefully define the bijectivisation, and show that it leads to a Markov map n — 7. Presumably,
this bijectivisation cannot be performed at a local level by moving the cross vertex one step at a
time. However, there is hope that the resulting probability distribution after the action of L, may
be expanded with nonnegative coefficients (interpreted as probabilities) in the linear basis indexed

by the possible initial configurations 7.

The TASEP with arbitrary initial condition has gained a lot of attention recently after the
identification of its space-time scaling limit as the KPZ fized point process [MQRI7]. The KPZ
fixed point is a continuous time Markov process on one-dimensional interfaces h(7, z), and [MQRI7]
expresses its transition cumulative distribution function P(h(¢,2) < g(z) | h(0,z) = f(x)) as a
Fredholm determinant. The major open strong KPZ universality conjecture states that the
KPZ fixed point is the scaling limit of any one-dimensional random growth model sufficiently similar
to TASEP, that is, having symmetric slope-dependent growth and a smoothing mechanism. The

corresponding scaling of the commutative diagram should bring the following result:
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Conjecture 2 (Compression symmetry for the KPZ fixed point). Let h(7,z) be the KPZ fized
point starting from f(x). There exists 7" < T and a pair of Markov maps L and M, each randomly
changing a function h(x) onR, such that the distribution of L(h(7,x)) is the same as the distribution

of (7', x) where Y is another KPZ fized point started from M(f(x)).

This conjecture, if proven, would uncover a nontrivial probabilistic symmetry of the KPZ fixed
point, which would bring a better understanding of this universal limiting process. Moreover, such
a symmetry might allow to characterize the KPZ fixed point by a list of its properties not including
the explicit Fredholm determinantal transition probabilities. Such a characterization would be a
significant step towards the strong KPZ conjecture.

3. DETERMINANTAL PROCESSES, DYSON BROWNIAN MOTIONS, AND BEYOND

3.1. Dyson Brownian motion. Dyson Brownian motion (DBM), or the noncolliding Brownian
motion of Coulomb repelling particles, is a fundamental dynamical model in random matrix theory.
It is the Markov process on the spectrum of a random Hermitian matrix whose entries undergo
independent Brownian motions. Introduced in the early 1960s [Dys62], DBM has been solved (its
multipoint space-time correlations are given by a determinantal point process as in with an
explicit kernel, even when DBM starts from an arbitrary initial configuration) only about 35-40
years later [NEF98], [JohO1].

The whole space-time trajectories of DBM satisfy the Brown-
ian Gibbs property which is shared by the universal scaling limit,
the Airy process [CHI16]. Also DBM plays a key role in bulk
universality results for random matrices [EY12] due to Dyson’s
conjecture (now proven). The latter states that the bulk univer-
sality under DBM is achieved at small time scales, much faster

/ \ than the global shape changes. In |[GP19| the PI has proven a
\ \ / / discrete version of the Dyson’s conjecture using the determinan-
tal kernel for random tilings from [Pet14].
- The proposed research deals with further discrete DBM-like
FIiGURE 5. The lozenge tiling . . . - .
. stochastic systems coming from various families of symmetric
corresponding to the path con-

figuration in Figure [II The functions.
bold noncolliding paths start
from an arbitrary configuration 3.2. g-noncolliding absorbing random walks. We start

at the top (determined by \), with the Schur vertex model (Figure|l)) with rapidities z; = ¢~ 1,
and in a limit turn into the ¢- ¢ = 1,..., N, forming a geometric progression, where ¢ € (0,1)
noncolliding absorbing random is fixed. The path configurations are in bijection with lozenge
walks. tilings of a fixed shape (determined by the fixed top row con-
sisting of the vertical lozenges placed at locations A\; — i, i =

1,...,N). Thus, we arrive at a random lozenge tiling, where the probability weight of a tiling

is proportional to ¢*°'. Here vol is the volume under the 3D surface represented by a tiling, cf.
Figure |5[ (so ¢*°' is another natural example of a Gibbs measure). The conditional distribution of
the (N — 1)-st row having lozenges at p; —j,j=1,...,N —1,is
. _ Lq,q?...,¢"2
Plu | A :q(N—l)(Zjua—Zml) Su( ,g,q ) ]\;112 ]\2_1 . (8)
S)\(l)Q7Q)"'7q »q )

Then we pass to the N — 400 limit when the vertical lozenges at \; —i are densely packed except
for m gaps at £ = (& > ... > &, > 0). Reading the lozenge tiling from top to bottom brings a
Markov chain of m noncolliding particles. Their trajectories are highlighted in Figure 5| (there time
runs in the downward direction). Preliminary computation lead to the following results:
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Conjecture 3 (g-noncolliding absorbing random walks). Let { = (§1 > ... > &, > 0), n = (1 >
. > My, > 0) be such that n; — & € {0,—1} for all i. Taking \ with gaps &; and p with gaps n; in
(18), in the limit N — 400 we obtain a discrete time Markov process with transition probabilities

m . Mg LY e .
]P)[g N ,'7] — q—(2)+(m—l) Zz(gz 771) H u H <q§1 1771_:& + (1 _ qu)lni:&_l) . (9)

& — gb
1<i<j<m 4 i
Note that this random walk is absorbed at (m —1,...,1,0).

The fact that the probabilities @ sum over all 7 to 1 is rather nontrivial and, to the best of the
PI’s knowledge, has not been observed before.

From the determinantal structure of the measure ¢ [Pet14] it follows that the noncolliding
random walks also possess a determinantal structure:

Conjecture 4 (Determinantal structure). Started from an arbitrary initial configuration (& >
. > &y > 0), the whole space-time trajectory {&;(t): t > 0, 1 < i < m} is a determinantal point
process with the correlation kernel

q:m(tlftz)(qxl zo+1. Q)tg -1 %% dzdw
K(x1,t1;29,t0) = —1 1
(w1, t15 w2, t2) ta>t1 Lag>ay (@ Dttt 2m

1—x2

i (10)

wh (g Qn (205 q)e H 1—2" qu
22 (wg ™ Q)41 (G D1 (2 1,q 1—wlg%’

for suitable integration contours. Here (a;q), = (1—a)(l—aq)...(1—aq _1) is the q-Pochhammer
symbol, which makes sense for k = 400 as well.

The kernel arises as a limit of the kernel for the measure ¢ computed in [Peti4]. Note
however that the latter contained the g-hypergeometric function 3¢9 under the integral, while
contains only products under the integral. Therefore, the kernel K is amenable to asymptotic
analysis using steepest descent method (cf. .

Conjecture 5 (Bulk universality). Let m — +oo, ¢ = e~Y™m 5 1, and assume that the counting

measure m~1 Y. 0, at the initial condition £ = (& > ... > &, > 0) converges to some fized
density profile. Then (under mild technical assumptions) at short times t — 400, t < m, the fized
time t1 =ty = t local bulk (lattice) distribution of the determinantal process (10) coming from the
noncolliding Markov chain @D converges to the universal limit given by the discrete sine kernel

K(zy,22) = M, x1,x9 € Z. Here p/m is the limiting density depending on the global

w(x1—x2)
location in the bulk.

The process @D can be viewed as the Doob’s h-transform of m independent space-inhomogeneous
simple random walks with transitions P[k — k] = ¢*, P[k — k — 1] = 1 — ¢* (absorbed at k = 0).

The harmonic function h(¢) = ¢~V 2 & ], < j(q& —¢%) has eigenvalue q(gl) (instead of the more
common case when the eigenvalue is equal to 1). Note that the DBM itself is the h-transform of
independent Brownian motions z;(7), with similarly looking harmonic function J; ;(z — 2;).

Our g¢-noncolliding process @ degenerates to DBM in a diffusive limit. We will study other
fixed-m limits of @ which could possibly lead to random matrix type diffusions at the hard edge
of the Wishart ensemble. In this way the determinantal structure ((10) would provide formulas for
these hard edge diffusions with arbitrary initial condition.

3.3. Macdonald generalization. Transition probabilities are defined in terms of the Schur
symmetric polynomials. They admit an immediate generalization involving Macdonald symmetric
polynomials depending on two parameters (g, t), and potentially further generalizations to Koorn-
winder polynomials related to symmetries of other Lie types. Let us present the Macdonald case:
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Conjecture 6 (Macdonald noncolliding walks). The following transition probabilities from & =
(&1>...>&n>0)ton=(m >...>ny >0), withn; — & € {0,—1} for all i, sum to one and
define a discrete time Markov chain:

m—1

P[é’ NN 77] — t_(gb)'*'z:il &+ i=0 (gm—i_i)("]m—i_gm—i)

< ]
1<i<j<m
ni=&i, 1;=§;—1

(qj—z't&—ﬁj —jti, t) N (qj—z'—1tm—nj —jtitly

)OO 1 m—i4&—m+i
’ 1gi1<_g[gm e e W R N (L= ).

(1-— qj—i—lt&—ﬁj—j-&-i—i-l)(l _ qj—i-l-lt&—&j—j-i-i)
(1 — qi—it&i=&—IH1) (1 — gi—it& =& —i+i+1)

(11)

This Markov chain with two Macdonald parameters turns into @ when ¢ = ¢t. For general
q,t, the chain fails to be determinantal. In a scaling limit ¢ = t — 1, where 6 > 0 is fixed, the
dynamics becomes the Beta-noncolliding Poisson process worked out in [Hua2l]. A possible
approach to study asymptotics of the Markov chain would be a suitable discrete version of the
loop (Schwinger—Dyson) equations [BGGI1T].

3.4. Free fermion six vertex model. Discrete determinantal processes discussed above in the
proposal are associated with the integrable structure of Schur symmetric polynomials. Very re-
cently, the PI and collaborators [ABPW21] introduced an inhomogeneous deformation of the Schur
polynomials coming from the free fermion six vertex model. The deformation depends on
four sequences of parameters — row and column rapidities, and row and column spin parame-
ters (previously we had only row rapidities), x = (z1,...,2n5), r = (r1,...,7n), ¥ = (Y1,¥2,-..),
s = (s1,82,...):

N -2
_ r; T — X N
F(x;y;138) = <| [z -1 ][ — j) det [ox,+n—j(zi | yi9)];, . (12)
i=1 J

= T —
1<i<j<N

—2
1 p T8y

Ykt1 — X = T —y;

The functions F) share many common properties with the Schur symmetric polynomials. More-
over, [ABPW21] a first instance of a determinantal point process based on these functions (an
analogue of the Schur process [OR03]) was investigated, leading to a new bulk determinantal ker-
nel with four bi-infinite families of inhomogeneities. The PI will continue investigating structure
and asymptotics of the inhomogeneous Schur-like vertex models, by extending known results and
probing new asymptotic phenomena. Here are the immediate research goals in this direction:

where ¢; are the inhomogeneous powers ¢y (x) :

1. Introduce Markov dynamics on the two-dimensional ensemble coming from the free fermion six
vertex model, and study its bulk limit. Via determinantal structure, this would lead to an
inhomogeneous deformation of the anisotropic KPZ growth of [BE14], and the explicit particle
current (as a function of the slope) should be accessible explicitly.

2. Study global fluctuations of the exiting determinantal process associated with (12]). In the
homogeneous case, global fluctuations are given by the Gaussian Free Field [Petl5]. The PI will
probe deformations of the Gaussian Free Field in the presence of the inhomogeneities.

3. Obtain an explicit determinantal kernel for the boxed measure coming from the free fermion
six vertex model. Presumably, like for the ordinary Schur case, this is limited to the geometric
specialization of the rapidities z; = ¢*~! (including the “uniform” case ¢ / 1).

4. Putting the functions in a combination like , obtain m-particle noncolliding dynamics
with explicit determinantal structure for arbitrary initial configuration. Investigate possible
bulk universality results, and random matrix diffusive limits.
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4. INTELLECTUAL MERIT: SUMMARY OF RESEARCH DIRECTIONS

Overall, the project revolves around studying new and known integrable stochastic systems whose
structure is accessible through Yang-Baxter equation and/or symmetric functions. Above we have
outlined a number of conjectures and research directions in two settings — TASEP with general
initial data ( and determinantal processes and Dyson Brownian motion like Markov chains (
Let us summarize the proposed objects of study and the proposed results:

A. New models with integrable structure: g-noncolliding absorbing random walks with de-
terminantal structure (in the case of arbitrary initial data), their generalization with Macdonald
parameters, and scaling to random matrix diffusions. Related models coming from symmetric
functions associated with other Lie symmetry types. Determinantal processes with inhomoge-
neous parameters associated with the free fermion six vertex model.

B. New integrable structure in known models: TASEP with arbitrary initial data via a
vertex model, and its distributional symmetry. Realization of distributions of ¢-TASEP and
ASEP with arbitrary initial data through vertex models. Scaling of the vertex models to the
KPZ fixed point, and distributional symmetry of the latter.

C. New asymptotic phenomena: Inhomogeneous deformations of the Gaussian Free Field;
hydrodynamics and the particle current in the presence of inhomogeneities, potential SPDE
limits. Besides probing new asymptotic phenomena, the project will also lead to universal
results when the asymptotic distribution is predicted from previously known stochastic systems.

Initial progress along each of the directions is clearly possible, as outlined in the proposal. Let
us emphasize that these directions, as well as concrete questions being asked, are informed by the
four major open problems mentioned in the proposal above:

1. Classification of pure Gibbs states in the presence of interaction (for example, for the general
six vertex model).

2. Structure and asymptotics of multipoint distributions in non-determinantal / interacting fermion
setting.

3. Large deviations on both tails via Fredholm determinants.

4. Strong KPZ universality, in particular, characterization of the KPZ fixed point which avoids
explicit formulas but may be based on distributional symmetries.

The PI believes that understanding the structure of underlying stochastic systems (by means of
exact formulas, symmetric functions, and Markov maps preserving the probability distributions in
question) could lead to eventual progress in at least one of these important open problems. This
structure could be informed by introducing as many inhomogeneous parameters into the systems
as possible.

5. BROADER IMPACTS

5.1. Impacts on other disciplines. Statistical mechanical and random growth models are moti-
vated by a wide range of real-world questions concerning the structure of ice and other condensed
matter, magnetism, quantum spin systems, thermodynamics, traffic models, directed polymers.
The proposed project will impact many of these questions. For example, most of the inhomoge-
neous space models are relevant for studying randomly growing or Coulomb repulsive systems with
impurities. New irreversible Markov chains on important Gibbs measures such as the six- and
eight-vertex models are expected to provide their faster sampling than the well-known reversible
Glauber dynamics. This would lead to a better phenomenological and numerical understanding of
possible limit regimes in these models.

5.2. Training new researchers. Many problems and algorithms developed as a part of the project
will be accessible to undergraduate and beginning graduate students. The PI is very active at
supervising undergraduate research (including numerical studies of new models), and will continue



working with undergraduate and graduate students on the topics described in this proposal. In the
past years, the PI has lead a number of joint projects with undergraduate and graduate students
and postdocs.

5.3. Powering research and organizational connections. Throughout the PI's time at Uni-
versity of Virginia, he is actively involved in transmission of actual information relevant to research
and outreach activities at Department of Mathematics. These include creation and maintenance
of the Department’s website, and an active role of the PI in creating online spaces for the Student
Chapter of the Association of Women in Mathematics at the University of Virginia; the Math
Collaborative Learning Center; the Directed Reading Program, and so on. In the COVID pan-
demic time, these efforts have been especially crucial, and the PI continues to play an active role
in connecting colleagues with each other through online tools.

Since Fall 2021, the PI participates in teaching design team at Department of Mathematics,
University of Virginia, aimed at closing the achievement gaps for under-represented students in
introductory courses.

5.4. Event organization and dissemination. The PI is active at disseminating research results
through talks at conferences; mini-courses; teaching graduate topics courses and preparing lecture
notes (Fall 2012, Spring 2016, Fall 2019; Spring 2021; some of the lecture notes are posted to the
AMS Open Notes); organizing reading seminars for advanced undergraduate and graduate students
at University of Virginia; and organizing workshops and summer schools. Following the beginning
of the COVID pandemic, in April 2020 the PI organized one of the first ever online conferences
(on Statistical Mechanics, Integrable Systems and Probability) which featured six talks by leading
experts in these fields, and dozens of participants from all around the world. The PI will continue
organizing online and in-person meetings and conferences around integrable probability and related
fields.

In particular, the PI will organize Virginia Integrable Probability Summer School 2023, which
is modeled after the very successful 2019 summer school supported by DMS-1664617 “FRG:
Collaborative Research: Integrable Probability”. The 2023 summer school will last 2 to 3 weeks,
will feature 5 mini-courses by leading researchers in Integrable Probability and related areas, and
will host 30-50 students. The students will participate in exercise sessions, networking events (such
as a career development panel), and will have a possibility to present a short talk. The lectures at
the summer school will be made available online.

5.5. Availability of research outcomes. Publications produced within the project will be posted
at the arXiv preprint server and submitted to conventional journals. The PI’s homepage contains
a number of simulation results (including code and full raw data), and many of the colleagues have
used these pictures for illustration of their talks and papers. Full results of computer simulations
produced within the project will be made publicly available on the web.

Remark. This is the posted version. Some details removed, mainly section 1 on results from prior
NSF support.
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