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Abstract

Colored interlacing triangles, introduced by Aggarwal–Borodin–Wheeler (2024), provide
the combinatorial framework for the Central Limit Theorem for probability measures arising
from the Lascoux–Leclerc–Thibon (LLT) polynomials. Colored interlacing triangles depend
on two key parameters: the number of colors n and the depth of the triangleN . Recent work of
Gaetz–Gao (2025) connects these objects to Schubert calculus and resolves the enumeration
for n = 3 and arbitrary depth N . However, the enumerative behavior for general n has
remained open.

In this paper, we analyze the complementary regime: fixed depth N = 2 and arbitrary
number of colors n. We prove that in this setting, colored interlacing triangles are in bijection
with Dumont derangements, identifying their enumeration with the Genocchi medians. This
connects the probabilistic model to a rich hierarchy of classical combinatorial objects.

Furthermore, we introduce a q-deformation of this enumeration arising naturally from the
LLT transition energy. This yields new q-analogs of the Genocchi medians. Finally, we present
computational results and sampling algorithms for colored interlacing triangles with higher N
or n, which suggests the limits of combinatorial tractability in the (N,n) parameter space.

1 Introduction

1.1 Overview

Colored interlacing triangles were introduced by Aggarwal–Borodin–Wheeler [ABW24] as discrete
objects arising in the study of Gaussian limits of probability measures coming from Cauchy
identities for LLT (Lascoux–Leclerc–Thibon) polynomials. The pre-limit LLT processes live on
tuples of semistandard Young tableaux, and generalize Schur processes of Okounkov–Reshetikhin
[OR03]. The Central Limit Theorem behavior of the latter is described by the joint law of
eigenvalues of corners of random matrices from the Gaussian Unitary Ensemble (GUE), see
Okounkov–Reshetikhin [OR06] and Gorin–Panova [GP15]. In the LLT generalization (which
also contains a deformation parameter q), along with the continuous GUE corners components,
one also obtains a q-measure on the space of certain discrete objects, the colored interlacing
triangles.

In this paper, we study combinatorial aspects of colored interlacing triangles in their own
right, focusing on enumeration, bijections, q-counting, and random sampling. In particular, we
obtain an exact enumeration of depth-2 triangles in terms of Genocchi medians, explore a q-
deformation of the general enumeration problem, and provide computational results for higher
depths, including a disproof of [ABW24, Conjecture A.5].

1



1.2 Colored interlacing triangles

Definition 1.1. Fix n,N ≥ 1. We call N the depth of a triangle, and n is the number of colors.
A (colored) interlacing n-triangle λ is a collection of nN(N + 1)/2 colored dots (represented
by numbers), arranged into n triangles of depth N , with each triangle consisting of 1 dot at the
bottommost level, 2 dots at the next level, and so on, up to N dots at the top level. We denote by
λ[i]kj ∈ {1, . . . , n} the color of the dot which is located in the i-th triangle, on the k-th level, and
at the j-th position from the left. For any level k = 1, . . . , N − 1, define a linear order between
dots at levels k and k + 1 as follows:

λ[1]k+1
1

∣∣∣λ[1]k1∣∣∣λ[1]k+1
2 . . . λ[1]k+1

k

∣∣∣λ[1]kk∣∣∣λ[1]k+1
k+1λ[2]

k+1
1

∣∣∣λ[2]k1 . . . λ[n]k+1
k

∣∣∣λ[n]kk∣∣∣λ[n]k+1
k+1, (1.1)

where the vertical bars separate the entries from different levels. Denote by λk = (λk1, λ
k
2, . . . , λ

k
nk)

the sequence of elements in the k-th row, read from left to right according to the linear order
(1.1). This notation suppresses the triangle index [i], treating the entire level as a single row of
length nk, which is especially helpful when dealing with small-N cases.

By definition, the interlacing n-triangle must satisfy two conditions:

• For each color b ∈ {1, . . . , n} and any level number k = 1, . . . , N , there are exactly k dots of
color b on the k-th level in the union of all triangles.

• For each color b ∈ {1, . . . , n} and any level k = 1, . . . , N − 1, the configurations of color-b dots
at levels k and k + 1 must interlace (notation λk ≺ λk+1). That is, between any two dots of
color b at level k+1, there is exactly one dot of color b at level k. Here “between” is understood
in the sense of the linear order (1.1).

See Figure 1 for an example. In particular, for this λ we have λ1 = (2, 3, 1), λ2 = (2, 1, 3, 3, 2, 1),
and λ3 = (2, 1, 2, 3, 3, 1, 3, 2, 1).

We denote the set of all colored interlacing n-triangles of depth N ,

λ =
{
λ[i]kj : 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ N

}
, (1.2)

TN (n). Let TN (n) := #TN (n) be the number of such triangles.

For future reference, let us denote by T̊N (n) the subset of TN (n) consisting of triangles with
the identity permutation of colors at the bottom row, λ1 = (1, 2, . . . , n). Clearly, simultaneous
permutations of all n colors do not affect the interlacing condition, so we have

TN (n) = n! ·#T̊N (n). (1.3)

Let us briefly mention the probabilistic origin of these objects from Aggarwal–Borodin–
Wheeler [ABW24]. The LLT (Lascoux–Leclerc–Thibon) polynomials [LLT97] are a rank-n, q-
deformation of products of Schur polynomials, reducing to the latter when q = 1. Throughout the
paper, we refer to n as the number of colors. Similarly to the Schur case [Ful97], [Oko01], [OR03],
one can define probability measures by normalizing Cauchy summation identities. Among the
measures one can obtain in this manner are coupled tuples of domino tilings of the Aztec dia-
mond introduced by Corteel–Gitlin–Keating [CGK22], see also [KN24] for a sampling algorithm
generalizing classical domino shuffling to the coupled setting.
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Figure 1: Left: A colored interlacing triangle with n = 3 colors and N = 3 levels.
Colors: 1 (red), 2 (green), 3 (blue). Right: indexing notation λ[i]kj for the i-th triangle.

Row sequences: λ1 = (2, 3, 1), λ2 = (2, 1, 3, 3, 2, 1), λ3 = (2, 1, 2, 3, 3, 1, 3, 2, 1). Each
pair of consecutive rows may be written in one line using the linear order (1.1), for
example, (2|2|13|3|32|1|1) for the first two levels.

Aggarwal–Borodin–Wheeler [ABW24] studied Central Limit Theorems for measures based
on LLT polynomials. In the Schur case, the role of the Gaussian distribution in this regime
is played by the corners process of the Gaussian Unitary Ensemble (GUE) of random matrix
theory [OR06], [GP15]. That is, one considers the joint distribution of eigenvalues of all top-left
corners of a random Gaussian Hermitian matrix, and this joint distribution describes the limiting
fluctuations of Schur processes.

Generalizing to the LLT level, one obtains a more complex limit object. Namely, the distribu-
tion describing the fluctuations of LLT processes splits into two independent parts: a continuous
part, which is a product of n independent GUE (Gaussian Unitary Ensemble) corners processes,
and a discrete part, which is a q-weighted probability distribution on the finite set TN (n) of col-
ored interlacing triangles from Definition 1.1. The discrete part is nontrivial for n > 1, while for
n = 1 (Schur case), one has a single copy of the GUE corners process.

The combinatorial landscape of colored interlacing triangles is vast, parameterized by the
number of colors n and the depth N . A complete understanding requires exploring both di-
mensions. Aggarwal–Borodin–Wheeler [ABW24] initiated the study of enumeration for fixed n,
observing that TN (2) = 2N since two-colored interlacing triangles are isomorphic to binary trees
[ABW24, Proposition A.1]. They conjectured [ABW24, Conjecture A.3] that TN (3) =

1
4g

∆
N (4),

where g∆N (4) [OEI25, A153467] is the number of 4-colorings of a triangular grid of side length N .
This was proved by Gaetz and Gao [GG25], who uncovered deep connections to Schubert calcu-
lus. We independently observed that [ABW24, Conjecture A.5], which posited TN (4) =

1
5g

∗
N (5)

(where g∗N (5) [OEI25, A068294] counts 5-colorings of an octagonal array), fails for N ≥ 3; this
was also reported by [GG25].

The present work complements these fixed-n results by exploring the “horizontal” direction
(N = 2, arbitrary n). By fixing the depth, we let the number of colors grow indefinitely, revealing
a connection to the classical Genocchi numbers that is invisible when n is fixed. This result,
together with [GG25], maps out the landscape of so far available enumerative results for colored
interlacing triangles: the vertical direction connects to geometry, while the horizontal direction
connects to the classical theory of permutation statistics, and presentrs a straightforward path
to interpreting q-analogs coming from the Central Limit Theorem for measures based on LLT
polynomials.

In the next Section 1.3, we summarize our main results on enumeration and q-counting in the
discrete space TN (n).
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1.3 Main results and outline of the paper

Our primary contribution is the complete resolution of the enumeration problem for the N =
2 slice of the hierarchy. In Section 2, we prove that depth-2 colored interlacing triangles are
in bijection with Dumont derangements, identifying their partition function with the Genocchi
medians Hn and connecting the probabilistic model to classical combinatorial objects. Building
on this, in Section 3, we analyze the intrinsic LLT q-statistic defined in [ABW24]; we show that
for N = 2, this “energy” of inter-level transitions leads to q-analogs of the Genocchi medians
distinct from all previously known q-analogs.

Probing the hierarchy beyond N = 2, in Section 4.1 we enumerate TN (n) for a range of depths
and sizes, finding that the counts exhibit large prime factors and eventually hit computational
walls — evidence that the combinatorics diverges from the closed-form patterns of the Genocchi
case or the Schubert calculus connections at n = 3. Along the way, we provide independent
confirmation of the disproof of [ABW24, Conjecture A.5].

Returning to depth N = 2, in Sections 4.2 to 4.4 we perform a detailed computational study
of the q-Genocchi medians. We derive conjectured formulas for coefficients of low powers of q
(which we prove for the first power, see Proposition 3.5), and observe a curious “linear cumulant”
phenomenon in the distribution of the q-statistic.

Finally, in Section 5, we develop a Markov Chain Monte Carlo algorithm for sampling from
the q-weighted measure on T2(n).
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2 Two-level colored interlacing triangles and Genocchi medians

In this section, we establish the enumeration formula for depth-2 colored interlacing triangles in
terms of Genocchi medians.

The sequence of Genocchi medians Hn (also sometimes called the Genocchi numbers of second
kind) is a classical integer sequence in combinatorics with several interpretations. We refer to
[Dum74], [DR94], and the entry [OEI25, A005439] for background and further references. The
following definition in terms of a certain class of permutations (called the Dumont derangements)
goes back to [Dum74]:

Definition 2.1. A permutation σ ∈ S2n is called a Dumont derangement (of second kind) if the
following two conditions hold: {

i < σ(i), for all i odd;

i > σ(i), for all i even.
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The number of Dumont derangements in S2n is called the n-th Genocchi median and denoted
by Hn. We have

H0 = H1 = 1, H2 = 2, H3 = 8, H4 = 56, H5 = 608, . . .

Recall that we denote by TN (n) the number of colored interlacing n-triangles of depth N
(Definition 1.1).

Theorem 2.2. We have T2(n) = n! ·Hn for all n ≥ 0.

Proof. It suffices to show that #T̊2(n) = Hn, see (1.3). Let us identify the valid top rows with
Dumont derangements in S2n.

The top row is a sequence of 2n elements where each color appears exactly twice. For a
color c = 1, . . . , n, let p1 < p2 be the positions of its two occurrences, and define σ ∈ S2n by

σ(2c) = p1, σ(2c− 1) = p2.

The interlacing condition requires that the color c at level 1 lies strictly between the two level-
2 positions of c. This means that p1 < 2c and p2 > 2c − 1, which are precisely the Dumont
derangement conditions. This completes the bijective proof.

The interpretation in terms of colored interlacing triangles yields the following well-known
divisibility property of the Genocchi medians:

Corollary 2.3. The number Hn is divisible by 2n−1.

Proof. Consider the set T̊2(n). For each i = 1, . . . , n − 1, the entries λ[i]22 and λ[i + 1]21 are
immediate neighbors in the linear order (1.1), with no entries between them at level 1. Therefore,
λ[i]22 ̸= λ[i+1]21. Swapping these two entries produces a different valid top row, and this operation
can be performed independently for each i. This leads to n−1 independent involutions on T̊2(n),
which implies the divisibility.

In the same manner, this divisibility property is generalized to an arbitrary depth:

Proposition 2.4. For N ≥ 2, the number TN (n)/n! is divisible by 2n−1.

Proof. There are n−1 independent involutions on T̊N (n) swapping the neighbors λ[i]NN ̸= λ[i+1]N1
at the top level.

Remark 2.5. One might hope to improve the divisibility in Proposition 2.4 to 2(n−1)(N−1) by
constructing independent involutions at each of the N − 1 levels 2 ≤ k ≤ N . However, as the
hypothetical involutions at lower levels are constrained by the interlacing conditions imposed from
above, this may not be possible. Indeed, exact enumeration shows that such an improvement is
not possible in general: T3(3)/3! = 88 is divisible by 23 but not by 2(3−1)(3−1) = 16 (see Section 4
and Table 2 in particular).
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3 The q-enumeration of colored interlacing triangles

In this section, we explore the q-counting statistic (we denote it by ψ(λk−1, λk)) on colored inter-
lacing triangles based on interactions between consecutive levels. This statistic is related to the
quantity ξ(·; ·) arising from the Central Limit Theorem for LLT processes [ABW24, Section 1.6].

For depth N = 2, we obtain new q-analogs of the quantities T2(n) = n! · Hn, distinct from
previously known q-analogs of the Genocchi medians Hn. We begin with a brief survey of three
known q-analogs of the Genocchi medians.

3.1 Known q-analogs of Genocchi medians

Several q-analogs of the Genocchi medians can be obtained by q-deforming the various classi-
cal definitions of these numbers, including generating functions, recurrences, and combinatorial
models obtained by assigning a q-weight to the relevant objects (in particular, Dumont derange-
ments).

First, Randrianarivony [Ran97] simply weights each Dumont derangement σ ∈ S2n by the
usual inversion number inv(σ), and also provides Stieltjes-type continued fraction expansions for
the corresponding generating function. The first few q-deformations from [Ran97] are:

HR
1 (q) = q,

HR
2 (q) = q2(1 + q),

HR
3 (q) = q3(1 + q)3(1− q + q2),

HR
4 (q) = q4(1 + q)3(1 + 2q3 + q5 + 2q6 + q7),

HR
5 (q) = q5(1 + q)5(1− q + q2)2(1 + q + q3 + q4 + 2q5 + 4q6 + 5q7 + 3q8 + q9).

(3.1)

Second, Han and Zeng [HZ99b], [HZ99a] introduced polynomials Cn(x, q) via a q-deformation
of the classical Gandhi recurrence:

∆qf(x) =
f(1 + qx)− f(x)

1 + (q − 1)x
, C1(x, q) = 1, Cn(x, q) = (1 + qx)∆q (xCn−1(x, q)) , n ≥ 2.

The values at x = 1 yield the following q-analogs of the Genocchi medians:

HHZ
1 (q) = 1,

HHZ
2 (q) = 1 + q,

HHZ
3 (q) = (1 + q)3,

HHZ
4 (q) = (1 + q)3(1 + 3q + 2q2 + q3),

HHZ
5 (q) = (1 + q)5(1 + 5q + 5q2 + 5q3 + 2q4 + q5).

(3.2)

These polynomials have a combinatorial interpretation in terms of a certain Denert statistic
on Dumont derangements [HZ99b], which separately treats inversions between odd and even
positions. Feigin [Fei12] identified the polynomials (3.2) (divided by (1 + q)n−1) as the Poincaré
polynomials of degenerate flag varieties.
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Finally, the third q-analog was introduced by Zeng and Zhou [ZZ06] via a q-deformation of
the Seidel triangle recurrence [Sei77]:

g1,1(q) = g2,1(q) = 1,

g2i+1,j(q) = g2i+1,j−1(q) + qj−1g2i,j(q),

g2i,j(q) = g2i,j+1(q) + qj−1g2i−1,j(q).

The q-Genocchi medians are HZZ
n (q) := g2n,1(q):

HZZ
1 (q) = 1,

HZZ
2 (q) = 1 + q,

HZZ
3 (q) = (1 + q)2(1 + q2),

HZZ
4 (q) = (1 + q)2(1 + q2)(1 + q + q2 + 2q3 + q4 + q5),

HZZ
5 (q) = (1 + q)3(1 + q2)2(1− q + q2)(1 + 2q + 2q2 + 3q3 + 4q4 + 4q5 + 2q6 + q7).

(3.3)

These can also be interpreted in terms of a charge statistic on so-called strict alternating pis-
tols [ZZ06].

We see that all of these q-analogs (3.1), (3.2), and (3.3) are different. Moreover, the divisibility
by a power of 2 in the original Genocchi medians (Corollary 2.3) is replaced by divisibility by a
power of (1 + q).

3.2 Inter-level statistic ψ on colored interlacing triangles

The probability measure on colored interlacing triangles coming from the Central Limit Theorem
for LLT processes [ABW24] is decomposed into a product of the top-row contribution (involving
a complicated vertex model with signed configuration weights, which we do not pursue here1)
and simpler inter-level contributions given by powers of q. We focus on the latter: for each pair
of consecutive levels in a colored triangle, define a statistic ψ(λk−1, λk), k = 2, . . . , N :

Definition 3.1 ([ABW24]). Fix k = 2, . . . , N , and let λk = ν and λk−1 = µ be two consecutive
rows of a colored interlacing n-triangle λ. Consider a one-row vertex model in which arrows can
have one of n colors, the horizontal line can carry an arbitrary composition of colors, and vertical
lines can carry only one color:

ν[1]1 · · · ν[1]k+1 · · · · · · · · · ν[n]1 · · · ν[n]k+1

µ[1]1
· · ·
µ[1]k · · · · · · µ[n]1

· · ·
µ[n]k

∅ [1, n] (3.4)

Here, the incoming configuration from the right has an arrow of each color b = 1, . . . , n, the
outgoing configuration on the left is empty, and the colors are conserved in the direction of arrow

1However, for depth N = 1, this complicated vertex model for the top row, denoted by gc
[N]

∆ in [ABW24], yields
the well-known Mallows measure on Sn, under which a permutation σ is weighted proportionally to qinv(σ).
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flow. That is, there are two possible types of vertices:

j

A ∪ {j} A and A \ {j} A

j
(3.5)

Here A ⊂ {1, . . . , n} is an arbitrary subset of colors. Denote

ψ(µ, ν) :=
∑

vertices of the first type in (3.5)

A(j,n], A(j,n] := # (A ∩ {j + 1, . . . , n}) ,

that is, A(j,n] is the number of arrows of colors greater than j which pass over j, when j is inserted
from below.

The conservation of arrows implies that for fixed rows µ and ν which are interlacing in the
sense of Definition 1.1, there is only one configuration of arrows in (3.4).

For the colored interlacing triangle in Figure 1, we have ψ(λ1, λ2) = 2 and ψ(λ2, λ3) = 3.

Combinatorial interpretation of ψ. The statistic ψ(µ, ν) from Definition 3.1 admits an
equivalent description which does not involve a vertex model. Consider the transition from level
k to level k + 1. For a position p in the linear order (1.1) and a color c′, let

T<p(c
′) := #{level-(k + 1) positions of c′ that are to the left of p},

B<p(c
′) := #{level-k positions of c′ that are to the left of p}

denote the number of occurrences of c′ in the top and bottom rows, respectively, to the left of p.
Then

ψ(λk, λk+1) =
∑

positions p at level k

∑
c′>c(p)

(
T<p(c

′)−B<p(c
′)
)
, (3.6)

where c(p) is the color at position p in level k.
For an example, consider the following colored interlacing 4-triangle of depth 2:

k = 1

k = 2

ν

µ3 1

3

i = 1

4 2

1

i = 2

3 4

4

i = 3

1 2

2

i = 4

Let us illustrate teh computation of ψ(µ, ν) via (3.6). For each bottom-row position p with color
c(p), we list the pairs (T<p(c

′), B<p(c
′)) for each c′ > c(p):

c(p) = 3 : c′ = 4: (0, 0), subtotal 0;

c(p) = 1 : c′ = 2: (0, 0), c′ = 3: (1, 1), c′ = 4: (1, 0), subtotal 1;

c(p) = 4 : no c′ > 4, subtotal 0;

c(p) = 2 : c′ = 3: (2, 1), c′ = 4: (2, 1), subtotal 2.

Hence ψ(µ, ν) = 0 + 1 + 0 + 2 = 3.

Define the color complement involution acting on colors by c̄ = n+1−c for each c ∈ {1, . . . , n},
and extend it to sequences entrywise.
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Lemma 3.2 (Color complement symmetry). If µ = λk ≺ λk+1 = ν are interlacing rows in the
sense of Definition 1.1, then µ̄ ≺ ν̄, and

ψ(µ, ν) + ψ(µ̄, ν̄) = k

(
n

2

)
. (3.7)

Proof. The color complement map preserves the interlacing since it is simply a permutation of
colors. Now, consider the vertex model in Definition 3.1. The statistic ψ(µ, ν) counts, for each
vertex of the first type in (3.5) with incoming color j, the number of colors j′ > j that are active
(present in A). Under the bar map, the inequality j < j′ becomes j̄ > j̄′, reversing the color
order. Thus ψ(µ̄, ν̄) counts, for each such vertex, the colors j′ > j that are not active. Since
there are k vertices of the first type for each color, and each pair (j, j′) with j < j′ contributes
exactly once per vertex to either ψ(µ, ν) or ψ(µ̄, ν̄), the sum equals k

(
n
2

)
.

3.3 q-counting polynomial

We now define a q-deformation of the enumeration of colored interlacing triangles TN (n).

Definition 3.3. For a colored interlacing n-triangle λ of depth N , define the total ψ-weight

ψ(λ) :=

N−1∑
k=1

ψ(λk, λk+1).

The q-counting polynomial is

TN (n; q) :=
∑

λ∈TN (n)

qψ(λ).

Clearly, at q = 1, we have TN (n; 1) = TN (n) = #TN (n).

Proposition 3.4. The polynomial TN (n; q) has the following properties:

(i) deg TN (n; q) =
(
n
2

)
·
(
N
2

)
.

(ii) TN (n; q) = q(
n
2)(

N
2 )TN (n; 1/q).

(iii) 2n−1 | TN (n; q) as a polynomial (that is, all coefficients are divisible by 2n−1).

Proof. (i) The maximum value of ψ(λk, λk+1) is k
(
n
2

)
(achieved when all colors j′ > j are active

at each level-k vertex of color j). Summing over k = 1, . . . , N−1 gives
∑N−1

k=1 k
(
n
2

)
=

(
n
2

)(
N
2

)
.

(ii) The color complement involution λ̄ is a bijection on TN (n), and by Lemma 3.2, we have
ψ(λ) + ψ(λ̄) =

(
n
2

)(
N
2

)
. This implies the palindromic property of TN (n; q).

(iii) The n−1 independent involutions from the proof of Proposition 2.4 preserve the ψ-statistic,
since they do not affect the relative positions of the swapped entries within the linear order
(1.1). Thus, all coefficients of TN (n; q) inherit the divisibility by 2n−1.
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3.4 q-enumeration in the Genocchi case

For depth N = 2, the polynomial T2(n; q) is a q-analog of the quantity T2(n) = n! · Hn from
Theorem 2.2. By Proposition 3.4, T2(n; q) is palindromic of degree

(
n
2

)
and divisible by 2n−1.

The first few values are:

T2(1; q) = 1,

T2(2; q) = 2(1 + q),

T2(3; q) = 22(1 + 5q + 5q2 + q3),

T2(4; q) = 23(1 + 10q + 47q2 + 52q3 + 47q4 + 10q5 + q6),

T2(5; q) = 24(1 + 15q + 132q2 + 527q3 + 1019q4 + 1172q5 + palindrome).

See also Section 4.2 for further values. We notice the linear growth of the coefficient by the first
power of q:

Proposition 3.5 (Linear coefficient). Writing T2(n; q) = 2n−1(1+a1q+· · · ), the linear coefficient
satisfies a1 = 5(n− 2) for n ≥ 3.

Proof. We need to count the number of depth-2 colored interlacing triangles with ψ = 1. Let
λ1 = σ ∈ Sn denote the permutation in the bottom row. We claim that the number of inversions
of σ must be either 0 or 1 to have ψ = 1. Modulo this claim, let us first finish the computation of
a1 for n ≥ 3. We have the following contributions (normalized by 2n−1, which counts the top-row
involutions, see Corollary 2.3):

• When σ = id (no inversions), we can achieve ψ = 1 by choosing one of the middle n−2 bottom
positions c = 2, . . . , n−1 to contribute 1 to ψ. This implies that the color crossing this position
must be exactly c+ 1, and forces the configuration, up to top-row involutions.

• When σ is a boundary transposition (1, 2) or (n − 1, n), there are two ways to achieve ψ = 1
(up to top-row involutions). Indeed, for example, the triangle with σ = (2, 1, 3, 4, . . . , n) may
have top row either (2|12|13|34|45| . . .), or (2|13|12|34|45| . . .), where the vertical bars indicate
where the bottom row entries are inserted, and two entries between bars are unordered (due
to top-row involutions).

• Finally, when σ is one of the n− 2 internal transpositions (i, i+1), 2 ≤ i ≤ n− 2, one similarly
sees that there are four ways to achieve ψ = 1 (up to top-row involutions).

The final count is n− 2 + 4 + 4(n− 3) = 5(n− 2), as claimed.

It remains to prove the initial claim that the number of inversions in σ is at most 1 when
ψ = 1. Suppose σ has at least two inversions. Let the last element in the one-line notation of
σ which belongs to an inversion be γ. There are two cases: either γ is involved in at least two
inversions, or γ is involved in exactly one inversion, and there is another inversion in σ disjoint
from it.

In the first case, let α, β > γ precede γ in σ. Suppose that all bottom-row entries to the
right of γ do not contribute to ψ. This means that the top-row entries to the right of γ’s bottom
position are uniquely determined (up to top-row involutions). Therefore, both rightmost copies
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of α and β in the top row must appear to the left of γ’s bottom position, yielding ψ ≥ 2. If, on
the other hand, we wish to place a top-row α or top-row β to the right of γ’s bottom position,
then there is an entry δ > γ that must go to the left of γ’s bottom position, since we chose γ as
the last entry participating in an inversion. Thus, in the first case, we get ψ ≥ 2.

In the second case, let (γ, δ) be the inversion involving γ (so δ > γ precedes γ in σ). Since γ
is the last element participating in an inversion, all elements after γ in σ are in increasing order.
By interlacing, their top-row copies must fill all positions to the right of γ’s bottom position,
otherwise we get at least one contribution to ψ from the right side of γ. But this forces both
copies of δ to appear to the left of γ’s bottom, so δ contributes at least 1 to ψ at γ’s position.
Thus, we see that the inversion (γ, δ) contributes at least 1 to ψ. Similarly, the other inversion
(α, β) also contributes at least 1 to ψ, yielding ψ ≥ 2. This completes the proof.

In Section 4.3 below, we conjecture expressions for the next few coefficients based on the
computed values of T2(n; q).

Remark 3.6. The proof of Proposition 3.5 shows that ψ ≥ 2 whenever inv(σ) ≥ 2, but the
inequality ψ ≥ inv(σ) does not hold in general. For example, with n = 3 and σ = (3, 2, 1), we
have inv(σ) = 3, yet the top row (3|12|23|1) gives ψ = 2.

The polynomials T2(n; q) are q-analogs of n! · Hn, and refining them over the bottom row
yields a q-analog of the Genocchi median Hn for each permutation σ ∈ Sn.

Definition 3.7. For any permutation σ ∈ Sn, the q-Genocchi median conditioned on σ is given
by

Hσ
n (q) :=

∑
λ∈T2(n), λ1=σ

qψ(λ
1,λ2).

For example, for the identity permutation id = (1, 2, . . . , n), we get:

H id
1 (q) = 1,

H id
2 (q) = 2,

H id
3 (q) = 4(1 + q),

H id
4 (q) = 8(1 + 2q + 4q2),

H id
5 (q) = 16(1 + 3q + 9q2 + 16q3 + 9q4).

Proposition 3.8. The polynomials Hσ
n (q) have the following properties:

(i) 2n−1 | Hσ
n (q) for all σ ∈ Sn.

(ii) H σ̄
n (q) = q(

n
2)Hσ

n (1/q), where σ̄ denotes the color complement σ̄(i) = n+ 1− σ(i).

(iii) Hσ
n (1) = Hn, the n-th Genocchi median, for all σ ∈ Sn.

Proof. (i) The n − 1 independent involutions from Proposition 2.4 preserve both the bottom
row and the ψ-statistic.

(ii) By Lemma 3.2, the color complement bijection λ 7→ λ̄ maps triangles with bottom row σ
to triangles with bottom row σ̄, and satisfies ψ(λ̄) =

(
n
2

)
− ψ(λ).
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(iii) When q = 1, we are just counting the number of colored interlacing triangles with a fixed
bottom row σ, and permutations of colors do not affect the interlacing constraints.

Remark 3.9. The inversion map σ 7→ σ−1 does not induce a relation betweenHσ
n (q) andH

σ−1

n (q)
similar to the color complement. For instance, σ = (1, 3, 4, 2) has inverse σ−1 = (1, 4, 2, 3), and

H
(1,3,4,2)
4 (q) = 8(4q2 + 3q3) while H

(1,4,2,3)
4 (q) = 8(5q2 + 2q3).

Remark 3.10. One can check that the polynomials Hσ
n (q) do not coincide with the known q-

analogs of Genocchi medians from Section 3.1. For instance, the polynomials Hσ
n (q) are divisible

by 2n−1, while the ones from Section 3.1 instead contain certain powers of (1+q). Even removing
these prefactors, the resulting polynomials do not generally match for n ≥ 4.

4 Computational results and observations

In this section, we present computational data for colored interlacing triangles beyond the cases
covered by Theorem 2.2 and [GG25].

4.1 Computation of new values of TN(n)

We computed new values of TN (n) using a level-by-level dynamic programming approach with
GPU acceleration. The code related to this subsection is available at the following GitHub
repository:

https://github.com/lenis2000/colored_interlacing_triangles_enumeration/ (4.1)

We enumerate interlacing colored triangles λ = (λ1 ≺ λ2 ≺ · · · ≺ λN ) by computing, for each
level k = 1, . . . , N − 1, the number of ways to extend each configuration λk to a compatible λk+1.
We enumerate only configurations in T̊N (n), that is, those with λ1 = (1, 2, . . . , n). Moreover,
in generating candidates for λk+1, we exploit the 2n−1-symmetry from Proposition 2.4, and also
restrict the search to sequences λk+1 which start with 1 and end with n. To obtain TN (n), we
multiply the final count by n!2n−1.

We implemented the interlacing checks on Apple Metal GPU, achieving throughput of about
1 to 2 billion checked pairs per second on an M2 Pro chip. For large state spaces exceeding
available memory (e.g., T5(4)), we process target states in batches of 50 million with intermediate
results accumulated. The results of the computations are summarized in Table 1. All of the counts
took less than a second to compute, except for T3(6), which took about 14 minutes, and T5(4),
which took about 9 hours.

Beyond the values reported in Table 1 and the known cases N ≤ 2 or n ≤ 3, the num-
ber of configurations to be checked at the final level grows extremely rapidly, and the required
computation time stretches to multiple days or weeks.

The elements in Table 1 contain large prime factors. For instance, T5(4) is divisible by 331,897,
and T3(6) is divisible by 457,871, and both of these divisors are primes. This indicates that a
simple product formula for the TN (n)’s is highly unlikely. On the other hand, the 2-adic valuations
(that is, the highest powers of 2 dividing the numbers) of the normalized counts TN (n)/n! may
exhibit certain patterns, see Table 2.
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TN (n) n = 2 n = 3 n = 4 n = 5 n = 6 . . . n

N = 1 2 6 24 120 720 . . . n!
N = 2 4 48 1,344 72,960 6,796,800 . . . n! ·Hn

N = 3 8 528 191,232 257,794,560 1,012,737,392,640 . . . ?
N = 4 16 8,160 72,099,840 ? ? . . . ?
N = 5 32 179,520 73,410,306,048 ? ? . . . ?
N = 6 64 5,666,304 ? ? ? . . . ?
. . . . . . . . . . . . . . . . . . . . . . . .

N 2N 1
4g

∆
N (4) ? ? ? . . .

Table 1: Known and unknown values of TN (n), the number of colored interlacing n-
triangles with N levels. Bold-faced question marks indicate unknown series of values.
The columns n = 2 and n = 3 are [ABW24] and [GG25], respectively. The row N = 2
is our Theorem 2.2.

n = 2 n = 3 n = 4 n = 5 n = 6

N = 1 0 0 0 0 0

N = 2 1 3 3 5 5

N = 3 2 3 5 6 10

N = 4 3 4 8 ? ?

N = 5 4 5 10 ? ?

Table 2: 2-adic valuations of the normalized counts TN (n)/n!.

4.2 Computation of q-polynomials for two levels

We computed the q-counting polynomials T2(n; q) defined in Section 3 by finding the statistic ψ
for all colored interlacing triangles of depth N = 2. The code and data of the statistic ψ are
available at the following GitHub repository:

https://github.com/lenis2000/colored_interlacing_triangles_q_enumeration (4.2)

For N = 2, a colored interlacing n-triangle consists of a permutation λ1 ∈ Sn (level 1) and
a sequence λ2 of length 2n where each color appears exactly twice (level 2). The interlacing
condition requires that for each color c, its position in λ1 lies strictly between its two positions
in λ2.

The algorithm explores the same symmetries as in Section 4.1 to reduce the search space.
For each “canonical” triangle from T̊2(n) (with identity permutation at level 1), we compute the
ψ-statistic for all n! color permutations in the whole triangle. Namely, for each valid interlacing
triangle (λ1, λ2), we compute ψ(λ1, λ2) using bitmask operations: we process positions right-
to-left, maintaining a bitmask of “active” colors (those that have entered from the right but
not yet exited upward). The contribution to the q-power is computed via hardware-accelerated
population count (popcount) instructions. The available data on GitHub also accounts for the
distribution of q-statistics over all n! permutations for each canonical triangle.

The implementation uses C++ template metaprogramming to specialize the inner loop for each
n, enabling complete loop unrolling and instruction-level parallelism (processing 4 permutations
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simultaneously). Combined with OpenMP parallelization, we achieve the following benchmarks
on an Apple M2 Pro (6 performance cores):

n Canonical triangles Time

6 295 < 1 second

7 3,098 < 1 second

8 42,271 ≈ 28 seconds

9 726,734 ≈ 1 hour

Writing T2(n; q) = 2n−1Pn(q), the polynomials Pn(q) are of degree
(
n
2

)
and are palindromic

(indicated by the symbol ⟲ below). Here are their explicit forms for n up to 9:

P1(q) = 1,

P2(q) = 1 + q,

P3(q) = 1 + 5q + 5q2 + q3,

P4(q) = 1 + 10q + 47q2 + 52q3 + 47q4 + 10q5 + q6,

P5(q) = 1 + 15q + 132q2 + 527q3 + 1019q4 + 1172q5+ ⟲,

P6(q) = 1 + 20q + 245q2 + 1825q3 + 7295q4 + 19534q5 + 34465q6 + 42815q7+ ⟲,

P7(q) = 1 + 25q + 383q2 + 3977q3 + 26645q4 + 115165q5 + 365346q6

+ 878276q7 + 1563964q8 + 2226948q9 + 2626230q10+ ⟲,

P8(q) = 1 + 30q + 546q2 + 7018q3 + 64622q4 + 411692q5 + 1914780q6

+ 6889907q7 + 19865655q8 + 46208719q9 + 88274748q10

+ 141139717q11 + 193232778q12 + 231337829q13 + 245670636q14+ ⟲,

P9(q) = 1 + 35q + 734q2 + 11064q3 + 125319q4 + 1059757q5 + 6649287q6 + 32573212q7

+ 129428316q8 + 424672873q9 + 1174423848q10 + 2770263242q11 + 5640036376q12

+ 9998171117q13 + 15583534941q14 + 21645762974q15 + 27163602028q16

+ 31055190622q17 + 32466222428q18+ ⟲ .

Conjecture 4.1. The coefficients of each polynomial Pn(q) are log-concave: if Pn(q) =
∑

k ak(n)q
k,

then we have ak(n)
2 ≥ ak−1(n)ak+1(n) for all n, k. We have verified this for n ≤ 9.

4.3 Coefficients of Pn(q)

We implemented a different strategy to access low-degree coefficients of Pn(q) beyond n = 9,
where the full polynomial computation becomes too slow. The code for this approach is available
at the repository (4.2).

Rather than generating all Dumont derangements for a given n (corresponding to interlacing
triangles of depth 2 with identity permutation at the bottom row) and then computing the ψ-
statistics for all n! permutations of colors, we invert the loops: the outer loop iterates over all n!
bottom row permutations λ1, while the inner loop generates Dumont derangements on-the-fly via
backtracking. The key observation is that the ψ-statistic accumulates during the backtracking
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process. When computing only coefficients by qk for k < Kmax (with Kmax small), we prune any
branch where the partial ψ-value reaches Kmax. This pruning eliminates a large portion of the
Dumont search space.

A further optimization exploits the relationship between the inversion number of the bottom
row permutation λ1 and the ψ-statistic. Empirically, permutations with large inversion numbers
tend to produce only high ψ-values across all Dumont derangements. By restricting to bottom
row permutations with inv(λ1) ≤ Imax for a suitable threshold Imax, we reduce the outer loop
dramatically while still capturing all contributions to low-degree coefficients. Combined, these
optimizations make it feasible to compute low-degree coefficients up to n = 15. We obtain the
following initial pieces of further polynomials Pn(q):

P10(q) = 1 + 40q + 947q2 + 16240q3 + 214297q4 + 2207081q5 . . . ,

P11(q) = 1 + 45q + 1185q2 + 22671q3 + 338129q4 + 4033256q5 . . . ,

P12(q) = 1 + 50q + 1448q2 + 30482q3 + 504040q4 + 6762968q5 . . . ,

P13(q) = 1 + 55q + 1736q2 + 39798q3 + 719880q4 + 10663371q5 . . . ,

P14(q) = 1 + 60q + 2049q2 + 50744q3 + 994124q4 + 16045700q5 . . . ,

P15(q) = 1 + 65q + 2387q2 + 63445q3 + 1335872q4 + 23268315q5 . . . .

Based on this data, we conjecture the following polynomial behavior of all the remaining
coefficients of Pn(q), with concrete polynomials for the next four (recall that the linear coefficient
is a1(n) = 5(n− 2), see Proposition 3.5):

Conjecture 4.2. For each fixed k ≥ 0, and all n ≥ n0(k), the coefficient ak(n) of q
k in Pn(q) is

a polynomial in n of degree k. Specifically, we conjecture the following polynomials for the next
four coefficients:

a2(n) =
25n2 − 49n− 116

2
, n ≥ 5,

a3(n) =
125n3 + 15n2 − 3104n+ 1980

6
, n ≥ 7,

a4(n) =
625n4 + 2650n3 − 36877n2 − 31390n+ 244728

24
, n ≥ 9,

a5(n) =
3125n5 + 32500n4 − 290925n3 − 1585240n2 + 7120060n+ 5588400

120
, n ≥ 11.

(4.3)

Conjecture 4.3 (Leading coefficient). As polynomials in n, the expressions k!ak(n) have integer
coefficients for all k ≥ 0, and their leading coefficient is 5k.

Remark 4.4. The polynomials (4.3) (together with a1(n) = 5n − 10) satisfy log-concavity
ak(n)

2 ≥ ak−1(n)ak+1(n) for k = 2, 3, 4 and all n > 0. This supports our Conjecture 4.1.

Evidence for Conjecture 4.3. Let us briefly explain why one expects

ak(n) =
5k

k!
nk +O(nk−1), n→ ∞.
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In the proof of Proposition 3.5, for each internal interface between the i-th and (i+1)-st bottom
positions (i ∈ {2, . . . , n − 2}), there are five canonical local modifications (modulo the 2n−1

involutions) which create exactly one unit of ψ while keeping the rest of the triangle as forced as
possible: one coming from σ = id and four coming from σ having a single adjacent transposition
(i, i + 1). Each such modification is confined to a bounded window around that interface and
contributes exactly 1 to ψ.

Fix k and choose k internal interfaces i1 < · · · < ik with ir+1 ≥ ir + 2, so the corresponding
windows are disjoint. Starting from the canonical ψ = 0 configuration, we may independently
insert at each ir one of the five local defects; disjointness prevents interactions, so the resulting
triangle has ψ = k. Hence

ak(n) ≥ 5k ·Mn,k,

where Mn,k is the number of k-subsets of {1, . . . , n− 1} with no adjacent elements (equivalently,
k-matchings in a path of length n− 1). Thus,

Mn,k =

(
n− k

k

)
=

1

k!
nk +O(nk−1), and so ak(n) ≥ 5k

k!
nk +O(nk−1).

Conversely, for fixed k the condition ψ = k is expected (and consistent with all computed
data) to force the triangle to differ from the canonical ψ = 0 configuration only at O(k) such
local interfaces. Any overlaps of defect windows, boundary effects, or other interactions reduce
the number of free choices by at least one, contributing only O(nk−1) possibilities. Thus the
top-degree term should come precisely from choosing k independent internal defect locations (a
k-matching) and, at each, one of the 5 defect types, giving the desired leading term.

4.4 Linear cumulant phenomenon

If we apply the classical “moment-cumulant” transformation (corresponding to taking the log-
arithm of the exponential generating function) to the sequence of the normalized coefficients
mk(n) := k!ak(n) coming from (4.3), then we obtain the following linear functions of n:

m1 = 5n− 10,

m2 −m2
1 = 51n− 216,

m3 − 3m2m1 + 2m3
1 = 166n− 3500,

m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1 = −28854n+ 84360,

m5 − 5m4m1 − 10m3m2 + 20m3m
2
1 + 30m2

2m1 − 60m2m
3
1 + 24m5

1 = −1258080n+ 10684800.

Conjecture 4.5. This pattern of linear cumulants continues for all k ≥ 1.

The linear cumulant phenomenon aligns with the local independence picture discussed after
Conjectures 4.2 and 4.3: if the ψ-statistic arises from choosing independent local defects at
disjoint interfaces, then the distribuion of ψ should be approximately a sum of independent
random variables, one per interface. For such sums, cumulants grow linearly in the number of
summands.
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4.5 Moment sequences

By agreement, let us add the initial value T2(0; q) = 1. Let us consider the question whether the
sequence T2(n; q) = 2n−1Pn(q), n ≥ 0, is a Stieltjes moment sequence in n for each fixed q ∈ [0, 1],
that is, there exists a nonnegative Borel measure µq on [0,+∞) such that

T2(n; q) =

∫ +∞

0
xn dµq(x), n = 0, 1, 2, . . . .

We know that this is the case for q = 0 and q = 1:

T2(n; 0) =

{
1, n = 0;

2n−1, n ≥ 1,
T2(n; 1) = n! ·Hn.

Indeed, for q = 0, we have µ0 =
1
2δ0 +

1
2δ2, and for q = 1, the sequences {n!} and {Hn} are both

Stieltjes moment sequences, so their product is also a Stieltjes moment sequence.
For other values of q ∈ (0, 1), we employ the classical test based on two Hankel determinants,

det[T2(i+j−2; q)]ki,j=1 and det[T2(i+j−1; q)]ki,j=1, for k up to 5. We find that both determinants
may be negative for sufficiently small q > 0, for instance:

det[T2(i+ j − 2; q)]5i,j=1 < 0, 0 < q < c1, c1 ≈ 0.08462 . . . ,

and
det[T2(i+ j − 1; q)]3i,j=1 < 0, 0 < q < c2, c2 ≈ 0.04641 . . . .

The values c1 and c2 are the smallest positive roots of the respective determinants viewed as
polynomials in q. Thus, for sufficiently small q > 0, the sequence {T2(n; q)}n≥0 is not a Stieltjes
moment sequence in n. Since the property holds at the endpoints q = 0 and q = 1, the moment
sequence property undergoes a transition at q = 0+, ruling out a uniform representation of
T2(n; q) as moments of a family of nonnegative Borel measures varying in q over [0, 1].

5 Sampling depth-2 colored interlacing triangles

Here, we describe a simple Markov chain which preserves the q-weighted distribution on depth-
2 colored interlacing triangles. That is, each triangle λ ∈ T2(n) is sampled with probability
proportional to qψ(λ). The code is available at the GitHub repository

https://github.com/lenis2000/colored_interlacing_triangles_q_sampling (5.1)

Define a Markov chain on the state space T2(n) that uses two types of local moves.

Definition 5.1 (Level-2 swap). Given a position p ∈ {1, . . . , 2n−1}, the level-2 swap at position
p exchanges λ2p and λ2p+1. The move is valid if the resulting configuration still satisfies the
interlacing constraint.

Definition 5.2 (Level-1 swap with reconciliation). Given a position i ∈ {1, . . . , n−1}, let a = λ1i
and b = λ1i+1. The level-1 swap at position i exchanges a and b in λ1, then applies a deterministic
reconciliation to λ2 to restore interlacing.

Let the between region consist of positions λ22i−1 and λ22i (the level-2 entries that lie between
the i-th and (i+1)-st positions in the linear order (1.1)). The reconciliation proceeds as follows:
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(i) If neither a nor b appears in the between region, no change to λ2 is needed.

(ii) If only a appears in the between region, replace it with b, then a copy of b to the right of
the between region, and replace it with a.

(iii) If only b appears in the between region, then act symmetrically to (ii): replace b with a in
the between region, then replace a copy of a to the left of the between region with b.

(iv) If both a and b appear in the between region, find a to the left of the between region and b
to the right, and swap them.

This move is always valid: one readily sees that interlacing is preserved.

Proposition 5.3 (Connectedness of the state space). The two types of swaps from Definitions 5.1
and 5.2 connect all states in T2(n).

Proof. We show that any triangle can be transformed to the identity one with λ1 = (1, 2, . . . , n)
and λ2 = (1, 1, 2, 2, . . . , n, n). First, level-1 swaps can sort λ1 to the identity permutation. The
reconciliation ensures that λ2 is adjusted to maintain interlacing.

Second, once λ1 = (1, 2, . . . , n), the level-2 swaps can rearrange λ2 within the constraints
imposed by interlacing. Indeed, one copy of 1 in the second level is fixed at position 1. Let us
move the other copy of 1 to position 2 using level-2 swaps which move 1 leftward. The only
obstruction to the leftward movement of 1 is a configuration of the form (. . . ba|a|1c . . .), which
prevents swapping 1 and a on the second level. However, since a ̸= b, we can first swap a and b on
the second level, and then swap 1 and b, resulting in the configuration (. . . 1a|a|bc . . .). This allows
to proceed with moving 1 leftward. After the other copy of 1 is at position 2, we can remove the
leftmost triangle consising of all 1’s, and repeat the same procedure for 2, 3, . . . , n.

We can thus apply the Metropolis–Hastings (also called the Markov Chain Monte Carlo)
algorithm with our swaps. In detail, at each step, uniformly choose one of the 3n − 2 possible
swap positions at both levels, attempt the corresponding move (in particular, check the validity of
the level-2 swap), and accept or reject according to the Metropolis–Hastings rule with acceptance
probability

α(λ → λ′) = min
(
1, qψ(λ

′)−ψ(λ)).
It is well-known [LP17] that this procedure defines a Markov chain with stationary distribution
proportional to qψ(λ).

The results of sampling are illustrated in Figures 2 to 4. The effect of the q-weighting is visible
both in the sampled triangles and in the heatmaps. The latter resemble the permuton limit of
the Mallows measure on permutations [Sta09]. Figure 4 shows the empirical distribution of the
ψ-statistic; it looks approximately Gaussian.
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Figure 2: Sampled depth-2 colored interlacing triangles with n = 50 colors, ordered
as a rainbow from color 1 (red) to color 50 (violet). The two triangles were obtained
after MCMC runs of 107 steps each. Top: q = 0.2 (here the ψ-statistic is 55). Bottom:
q = 0.98 (here ψ = 541). Lines connect each color’s occurrences across levels, and
indicate the interlacing properties.
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steps, with 104 steps between samples (so, a total of 109 MCMC steps), where n = 25.
Left column: Level 1 (n × n). Right column: Level 2 (n × 2n). Top row: q = 0.2.
Bottom row: q = 0.9.
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Figure 4: Empirical distribution of ψ with n = 25, q = 0.9, from the same samples as
in Figure 3.
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[HZ99b] Guo-Niu Han and Jiang Zeng, q-polynômes de Gandhi et statistique de Denert, Discrete Mathematics
205 (1999), no. 1-3, 119–143. ↑6

[KN24] D. Keating and M. Nicoletti, Shuffling Algorithm for Coupled Tilings of the Aztec Diamond, Ann. Henri
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