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Abstract

We investigate the asymptotic behavior of the q-Racah probability measure on lozenge
tilings of a hexagon whose side lengths scale linearly with a parameter L → ∞, while the
parameters q ∈ (0, 1) and κ ∈ iR remain fixed. This regime differs fundamentally from
the traditional case q ∼ e−c/L → 1, in which random tilings are locally governed by two-
dimensional translation-invariant ergodic Gibbs measures. In the fixed-q regime we uncover
a new macroscopic phase, the waterfall (previously only observed experimentally), where the
two-dimensional Gibbs structure collapses into a one-dimensional random stepped interface
that we call a barcode.

We prove a law of large numbers and exponential concentration, showing that the random
tilings converge to a deterministic waterfall profile. We further conjecture an explicit correla-
tion kernel of the one-dimensional barcode process arising in the limit. Remarkably, the limit
is invariant under shifts by 2Z but not by Z, exhibiting an emergent period-two structure ab-
sent from the original weights. Our conjectures are supported by extensive numerical evidence
and perfect sampling simulations. The kernel is built from a family of functions orthogonal
in both spaces ℓ2(Z) and ℓ2(Z+ 1

2 ), that may be of independent interest.
Our proofs adapt the spectral projection method of Borodin–Gorin–Rains (2009) to the

regime with fixed q. The resulting asymptotic analysis is substantially more involved, and leads
to non-self-adjoint operators. We overcome these challenges in the exponential concentration
result by a separate argument based on sharp bounds for the ratios of probabilities under the
q-Racah orthogonal polynomial ensemble.

1 Introduction

1.1 Overview

Random dimer coverings of graphs — most notably, random tilings of planar regions — form
an exactly solvable setup for understanding phase transitions and emergent large-scale behavior
in two-dimensional statistical mechanics. A prototypical example is uniformly random lozenge
tilings of the hexagon (see Figure 1). When the side lengths of the hexagonal region grow
proportionally to a large parameter L, several universal regimes emerge: (i) a deterministic
limit shape with Gaussian Free Field fluctuations [CKP01], [Ken08], [Pet15], [BG18], [BNR24];
(ii) edge statistics governed by Random-Matrix and Pearcey-type kernels [OR06], [GP15], [OR07],
[AG22], [HYZ24]; (iii) Kardar-Parisi-Zhang class behavior near arctic boundaries [BKMM07],
[Pet14], [Hua24], [AH25]; and (iv) bulk lattice limits described by translation-invariant ergodic
Gibbs measures [OR03], [She05], [KOS06], [Gor08], [Agg23]. For a broader survey, see [Gor21].
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As the extensive list of references demonstrates, a diverse toolkit has emerged for studying
uniformly random lozenge tilings of the hexagon, including the variational principle, orthogonal
polynomial methods (Riemann–Hilbert or spectral projection approaches), determinantal for-
mulas and their asymptotics, loop (Nekrasov) equations, and discrete complex analysis. Many
of these methods survive once the uniform measure is tilted by weights, provided the weights
preserve the underlying orthogonal polynomial structure. We study the most general family of
weights of this kind, namely the q-Racah weights introduced in [BGR10]; they correspond to
a terminal node of the q-Askey scheme [KS96]. (Other deformations, for example the doubly-
periodic weights that necessitate matrix-valued orthogonal polynomials [Cha20], lie outside our
scope.)
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t

x

Figure 1: Left: the three types of lozenges. Center: an example of a lozenge tiling of a hexagon
whose side lengths are all equal to 3. Observe that the plane can be affine transformed so that all
lozenges become congruent; however, it is convenient throughout the paper to use the equivalent
representation shown here. The sides of the hexagon are denoted by a, b, c, a, b, c, but throughout
the paper we use the parameters N = a, T = b+ c, and S = c. Right: a perfect sample of the q-
Racah random tiling with N = 50, T = 100, S = 30, q = 0.7, and κ = 3i obtained by our Python
port of the original algorithm from [BGR10] (provided as an ancillary file to the arXiv version of
the paper). The cross-section of the 3D surface across the middle represents the barcode process.

The q-Racah probability measure on lozenge tilings of a hexagon is defined by assigning the
probability

1

Z

∏
horizontal
lozenges u

wq,κ

(
height(u)

)
, wq,κ(j) := κqj−(S+1)/2 − 1

κqj−(S+1)/2
, (1.1)

to each tiling, where Z is the normalizing constant, S = c is one of the sides of the hexagon, and
the height of a horizontal lozenge is defined as the number of 1× 1× 1 cubes under this lozenge
in the representation of a tiling as a 3D stepped surface. The parameters are1 κ ∈ iR and q > 0.
Note that all of the factors wq,κ(j) are purely imaginary with positive imaginary part, and after
the normalization, (1.1) defines an honest probability measure.

1That is, we consider the so-called imaginary q-Racah case. There are two other cases, real and trigonometric,
introduced in [BGR10, Section 2.2]. Throughout the paper, we focus only on the imaginary case since it leads to
the waterfall behavior.
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Because the total number of horizontal lozenges is fixed at S(T−S), the involution (q, κ) 7→
(q−1, κ−1) leaves it invariant. We therefore fix the convention 0 < q < 1 throughout. The limits
κ → 0 or κ → i∞ reduce the q-Racah measure to the volume-tilted measures qvol and q−vol,
respectively, where vol is the three-dimensional volume under the stepped surface. The further
limit q → 1 gives back the uniform measure.

Until now, asymptotic investigations of the q-Racah model in the regime where the side
lengths of the hexagon grow linearly with a parameter L → ∞ have focused exclusively on the
traditional q → 1 window, i.e. the scaling q = e−c/L → 1. Using the spectral projection framework
developed in [BO07], [Ols08] (see also [Tao12, Chapter 3.3]), Borodin–Gorin–Rains [BGR10]
identified the local (bulk) lattice limits in this window with the same translation-invariant ergodic
Gibbs measures present in the uniform case. Subsequent works by Dimitrov–Knizel [DK19] and
Gorin–Huang [GH24] established Gaussian Free Field fluctuations of the height function via two
complementary loop-equation approaches, while Duits–Duse–Liu [DDL24] confirmed the same
universal behavior through an analysis of the recurrence coefficients of the underlying orthogonal
polynomials.

By contrast, in the fixed-q regime almost nothing is rigorously understood. Aside from the
striking waterfall phase observed in simulations in [BGR10] (see Figure 1, right, for an illustra-
tion), the asymptotic behavior for fixed q and κ has so far escaped a mathematical description.
(For the simpler q±vol measures, the limiting objects were connected in [KO07] to tropical curves,
but those results do not extend to the q-Racah setting.) Describing the fixed-q regime and the
waterfall phase is the central aim of the present work.

Our main results are as follows.

• We prove that, in the fixed-q regime, the q-Racah random tiling converges (with exponential
bounds) to a deterministic waterfall profile. In the waterfall region W (a part of this profile
in which locally one sees two types of lozenges), the two-dimensional lattice behavior collapses
into a one-dimensional random stepped interface (which we call a barcode; this is the central
broken line in the tiling in Figure 1, right).

• Extending the spectral projection framework to the fixed-q regime, we obtain (coefficient-wise)
limits of the relevant difference operators at every macroscopic location. Away from the center
of the waterfall region, i.e. when x ̸∼ 1

2(S+ t), the limiting operators are no longer self-adjoint.
A systematic study of these non-self-adjoint operators is left for future work.

• By matching nonrigorous computations with numerical and perfect sampling data, we propose
a determinantal correlation kernel for the one-dimensional barcode process. The conjectural
kernel exhibits a surprising 2Z-periodicity, breaking the original lattice homogeneity.

Remark 1.1. Most tiling models feature degenerate regions where the two-dimensional Gibbs
structure disappears. The familiar examples are the frozen facets outside an arctic boundary,
in which the 3D stepped surface is parallel to one of the coordinate planes, and exhibits no
fluctuations. Certain boundary conditions or periodic weights can also give rise to semi-frozen
zones [Mkr14], [Mkr21], [BB23], in which locally only two types of lozenges appear, producing a
barcode-type configuration that is, however, fully deterministic and periodic.
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The waterfall phase we uncover is fundamentally different. Here, the bulk two-dimensional
Gibbs structure collapses onto a single random stepped interface (the barcode), while the com-
plementary regions remain fully frozen. To our knowledge, no prior tiling model with nonrandom
weights exhibits a macroscopic facet that is simultaneously random and one-dimensional.

We remark that an effectively one-dimensional random phase, in which two types of lozenges
are arranged as steps of a random walk, is expected to occur in domino tilings of the Aztec
diamond with the random edge weights introduced in [BPZ25]. The randomness of the weights
is essential for this effect, whereas in our model the barcode phase appears under a completely
deterministic choice of weights.

Remark 1.2. The waterfall phase in our model represents a strong form of dimensional reduction:
outside the waterfall region, all fluctuations are frozen, and only the one-dimensional barcode
interface survives in the waterfall region. This can be contrasted with other known instances of
dimensional reduction in statistical mechanics, such as in the scaling limit of the two-dimensional
critical Ising model [WMTB76]. In the Ising case, while the correlation functions are famously
described by lower-dimensional mathematical structures, the underlying two-dimensional field
continues to exhibit non-trivial fluctuations in both spatial dimensions.

In the remainder of the Introduction, we provide a detailed discussion of our methods and
their limitations.

1.2 Spectral projection approach and its limitations

Let X = {(ti, xi)} ⊂ Z2 be the random point configuration marking the positions of the vertical
and square lozenges in a tiling of the hexagon (where t and x are the lattice coordinates defined
as in Figure 1, center). For pairwise distinct (s1, x1), . . . , (sn, xn), define the n-point correlation
function

ρm
(
(s1, x1), . . . , (sm, xm)

)
:= P

{
(si, xi) ∈ X, i = 1, . . . ,m

}
,

where P is the q-Racah probability measure. Because this measure is equivalent to a dimer model
on the bipartite hexagonal graph, the resulting correlation functions are determinantal; see the
lecture notes [Ken09] for a general exposition. That is, there exists a kernel K(s, x; t, y) such that

ρm
(
(s1, x1), . . . , (sm, xm)

)
= det

[
K(si, xi; sj , xj)

]m
i,j=1

, m ≥ 1.

As shown in [BGR10], the kernel is given in terms of the q-Racah orthogonal polynomials:

K(s, x; t, y) =


N−1∑
n=0

(Ct
nC

t+1
n . . . Cs−1

n )−1fs
n(x)f

t
n(y), s ≥ t;

−
∑
n≥N

(Cs
nC

s+1
n . . . Ct−1

n )fs
n(x)f

t
n(y), s < t,

(1.2)

where the constants Ct
n are explicit, and the functions f t

n(x) form an orthonormal basis of the
space ℓ2 on the t-th vertical slice. The functions f t

n(x) are obtained from the relevant q-Racah or-
thogonal polynomials (with parameters depending on q, κ, t, and the side lengths of the hexagon)
by multiplying by the square root of the q-Racah weight function, and then normalising. Complete
formulas are given in Sections 2 and 6.
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On each fixed vertical slice t, the kernel Kt(x, y) := K(t, x; t, y) =
∑N−1

n=0 f t
n(x)f

t
n(y) can be

interpreted as the orthogonal spectral projection onto the positive part of the spectrum of a certain
difference operator with explicit product-form coefficients, see (4.1) and (2.8). We take the limits
of these coefficients for fixed q and κ as T = ⌊LT⌋, S = ⌊LS⌋, and N = ⌊LN⌋ and around a
macroscopic location (t, x), where t = ⌊Lt⌋ and x = ⌊Lx⌋+∆x. The waterfall phase arises only
when N < T, and we assume this condition throughout the rest of the Introduction. Depending
on the scaled location (t, x) on a slice t intersecting the waterfall region W, we obtain various
limiting symmetric Jacobi (tridiagonal) operators which act in the local shift ∆x:(

Tg
)
(∆x) = d(∆x+ 1)g(∆x+ 1) + a(∆x)g(∆x) + d(∆x)g(∆x− 1), (1.3)

Their coefficients are given in the following proposition.

Proposition 1.3 (Lemmas 4.1 and 4.3). • If (t, x) is above or below W, we have d(∆x) = 0 and
a(∆x) = −1, that is, the limiting difference operator is the negative identity (−Id);

• If (t, x) lies on the upper boundary of W, then

d(∆x) = −κ2q2∆x+1/2, a(∆x) = −1− κ2(1 + q)q2∆x+1.

On the lower boundary of W, one has to replace the powers of (q, κ) with those of (q−1, κ−1),
while the factor 1 + q is kept the same.

• Inside W but away from its center line ⌊Lx⌋ = 1
2(S + t), the coefficients in the upper half are

d(∆x) = −κ2q2∆x+1/2, a(∆x) = −κ2(1 + q)q2∆x+1.

The formulas for the lower part are obtained from these by the same symmetry as in the
preceding item.

• On the center line, we get

d(∆x) =
−κ2(1− κ2q2∆x)−1q2∆x+1/2√
(1− κ2q2∆x−1)(1− κ2q2∆x+1)

, a(∆x) =
−κ2(1 + q)q2∆x+1

(1− κ2q2∆x)(1− κ2q2∆x+2)
. (1.4)

If the scaled point (t, x) is either outside the waterfall region W or sits on the center line, the
pre-limit difference operator converges to a bounded, self-adjoint limit — either (−Id), or the
operator given by (1.3)–(1.4). Then, by the spectral projection method based on the strong re-
solvent convergence (developed in [BO07], [Ols08]; we recall the main statement in Theorem 4.7),
the correlation kernel Kt converges to zero outside W and to the identity operator on the center
line. This result essentially parallels the spectral approach that proved successful in the tradi-
tional regime q = e−c/L → 1 in [BGR10], where it yielded the limiting kernel at all macroscopic
points inside the hexagon.

However, for fixed q, on the boundary of W and inside of W but not on the center line, the
coefficients of (1.3) grow rapidly at positive or negative infinity, so the limiting difference operator
is no longer self-adjoint and in fact has von Neumann deficiency indices (1, 1). The non-uniqueness
of self-adjoint extensions of prevents us from singling out a canonical spectral projection. The
most intriguing case is the boundary of W, where one can see a nontrivial random configuration
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with all three types of lozenges — thus, the spectral projection there should yield a new correlation
kernel that is not zero nor the identity operator. We leave the full functional-analytic treatment
of these non-self-adjoint operators for future work.

Although the spectral projection approach breaks down inside the waterfall region away from
the center line, we bridge this gap by performing direct estimates for the q-Racah orthogonal
polynomial ensemble (see Section 1.4 below). These estimates strengthen the kernel convergence
along the center line to an exponential concentration statement, which is the main result of the
present paper.

Theorem 1.4 (Combination of Proposition 4.8, Theorem 5.11, and Corollary 5.12). Assume that
the side lengths of the hexagon, a, b, c, scale proportionally with a parameter L → +∞, while the
q-Racah parameters κ and q remain fixed. Then the fixed-slice correlation kernel converges either
to zero or the identity operator, depending on the scaled location (t, x):2

lim
L→+∞

K⌊L t⌋(⌊Lx⌋+∆x, ⌊Lx⌋+∆y) =

{
1∆x=∆y, if (t, x) ∈ W;

0, otherwise,
for all fixed ∆x,∆y ∈ Z.

Moreover, the probability of finding a horizontal lozenge inside W or a square or vertical lozenge
outside W decays exponentially fast in L.

1.3 Inter-slice transitions and the conjectural barcode kernel

To access inter-slice correlations and the barcode process, one has to look at the full two-
dimensional kernel K(s, x; t, y). Thanks to the structure of the q-Racah orthogonal polynomials,
the coefficients Ct

n in (1.2) can be incorporated into the action of two-diagonal inter-slice opera-
tors Ut:√

λ(t)√
λ(t+ 1)

Ct
nf

t+1
n (x) =

(
Utf

t
n

)
(x),

(
Utg
)
(x) := ut1(x− 1)g(x− 1) + ut0(x)g(x), (1.5)

where λ(·) is a nonvanishing explicit gauge factor (6.3) that does not change the determinantal
process, and the coefficients ut0(x) and ut1(x) have explicit product-form expressions, see Sec-
tion 6.2 for details.

We represent the q-Racah correlation kernel (1.2) as

√
λ(s)√
λ(t)

K(s, x; t, y) =


(
U−1
t U−1

t+1 . . .U
−1
s−1

)
y
Ks(x, y), s > t;

Kt(x, y), s = t;

(Ut−1 . . .Us+1Us)y (−1x=y +Ks(x, y)) , s < t.

(1.6)

where the operators U• act in the variable y.
Fixed-q limits of the coefficients ut0(x) and ut1(x) of the inter-slice operators Ut (1.5) are

immediately accessible. Taking the limit in the operators Ut (together with rescaling and shifting
to the required macroscopic location), we arrive at the operator

(
Ubarcode
t f

)
(x) := a(x− t

2)f(x− 1) + a(x− t
2 + 1

2)f(x), a(x) :=

√
−κ2q2x−1

(1− κ2q2x)(1− κ2q2x−1)
,

2Here and throughout the paper, 1A stands for the indicator of an event or condition A.
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where x belongs to Z or Z+ 1
2 . Due to the rapid decay of the coefficients a(x) at x → ±∞, the

inverse of the operator Ubarcode
t is not well-defined. Therefore, directly taking the fixed-q limit of

the kernel (1.6) is not possible.
However, the bounded operator Ubarcode

t itself admits a family of functions F t
n(x), n ∈ 1

2Z≥0,
orthogonal in both spaces ℓ2(Z) and ℓ2(Z+ 1

2), which satisfy an identity similar to (1.5):

−qnF t+1
n (x) =

(
Ubarcode
t F t

n

)
(x).

We develop properties of these functions in Appendix A. In particular, they may be expressed
through the continuous q−1-Hermite polynomials [KS96, Chapter 3.26], [IM94].

Motivated by this structure, we first conjectured the following series representation for the
density function of the barcode process:

ρbarcode(t) = a(1− t
2)

∑
n∈ 1

2
Z≥0

−q−nF t
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)
. (1.7)

However, this series does not converge. Numerical experiments indicate that its divergence is
rather mild : the tail behaves as . . .+ c− c+ c− c+ . . . . Consequently, the series in (1.7) can be
regarded as having “two distinct sums,” depending on how one pairs adjacent terms. Further
numerical calculations and simulation studies confirm that the barcode process is two-periodic,
with the even- and odd-site densities arising from these two alternative summations of (1.7). This
periodicity is unexpected but can be explained a posteriori, see Remark 1.6 below.

Turning to the full correlation kernel, one would get even more divergent series which need
to be regularized. Based on further numerics, we conjecture the existence of a universal limiting
barcode kernel governing the local statistics inside the waterfall region. This conjectural kernel is
given for s ≥ t by

Kbarcode(s, t) := lim
M→∞

q(M+1)(s−t) × (−1)t−s

√
−κ2q1−s

(1− κ2q2−t)(1− κ2q1−s)

×
M+1/2∑
n=0

(
−qn

)t−1−sFs
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)
,

(1.8)

where M ∈ Z, and the sum is over n ∈ 1
2Z≥0. For s < t, the kernel is extended by symmetry.

Conjecture 1.5 (Combination of Conjectures 7.2, 7.6 and 7.7). Around any macroscopic point
(t, x) in the waterfall region W, the random configuration of square lozenges on a horizontal
slice converges to a determinantal barcode process on Z with the symmetric correlation kernel
Kbarcode(s, t).3 The barcode process depends only on the parameters q and κ, but not on the
geometry of the hexagon or the macroscopic location (t, x) inside W, as long as the waterfall
phase is present, i.e., N < T.

The limiting kernel is 2× 2 block Toeplitz, that is,(
Kbarcode(s, t) Kbarcode(s, t+ 1)

Kbarcode(s+ 1, t) Kbarcode(s+ 1, t+ 1)

)
=

(
Kbarcode

00 (s− t) Kbarcode
01 (s− t)

Kbarcode
10 (s− t) Kbarcode

11 (s− t)

)
, s, t ∈ 2Z,

3In particular, we conjecture that the limit (1.8) exists for all integers s ≥ t.
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and satisfies Kbarcode(0, 0) = 1 − Kbarcode(1, 1) (the plot of this function in q and κ is given in
Figure 10). Consequently, the barcode process has global density 1/2 for every choice of q and κ,
and it is invariant under even but not odd shifts.

Remark 1.6. The period-two behaviour of the barcode process was not anticipated a priori,
since the q-Racah weights wq,κ (1.1) assigned to horizontal lozenges do not possess this period-
icity. However, this property may be explained as follows. In every vertical slice the number of
horizontal lozenges is determined by the geometry of the hexagon, and moving from slice t to slice
t+1 changes this number by exactly one. This extra lozenge is created either above or below the
waterfall region, which introduces an imbalance. The imbalance is rectified after two slices, i.e.,
after an even translation, which accounts for the invariance of the barcode process under even
shifts but not under all integer shifts.

Sections 7.4 and 7.5 corroborate Conjecture 1.5 in two ways. First, we find a very strong
numerical agreement between the conjectural barcode kernel Kbarcode and the pre-limit correlation
kernel K(s, x; t, y) for a large hexagon, regardless of its geometry and the macroscopic location
(t, x) inside the waterfall region W around which the limit is taken. We also observe that the
sequence (1.8) converges with the geometric rate qM , and, moreover, the (suitably rescaled) pre-
limit kernels K(s, x; t, y) also converge to a limit with the geometric rate qL. Second, we ported
the perfect sampling algorithm from [BGR10] to Python to automatically collect large samples
of the barcode process. We compare the sample even- and odd-site densities, as well as two-point
correlations, with the predictions based on Kbarcode, and find a very good agreement.

A rigorous derivation of Kbarcode and the proof of Conjecture 1.5 will likely require new tools
for dealing with the inverse of the operator Ubarcode

t . We leave these analytic developments to
future work.

1.4 Exponential concentration

Complementing the spectral projection approach, in Section 5 we also develop a concentration
result on a given vertical slice by working directly with the q-Racah orthogonal polynomial en-
semble:

1

Z

∏
1≤i<j≤N

(
µ(xi)− µ(xj)

)2 N∏
i=1

w(xi), µ(x) := q−x + κ2qx+1−S−t, (1.9)

where the “particles” x1, . . . , xN are the positions of the non-horizontal lozenges, and w(x) is the
q-Racah weight function (under which the q-Racah polynomials are orthogonal).

The key idea is to compare the probabilities of two N -particle configurations that differ only
by moving a single particle from (t, x) to (t, y). The ratio of these probabilities exposes a dominant
factor qE(x,y), where the exponent decomposes into a one-body term W(u) (integrated between x
and y) and an interaction term G(x, y, zi), where zi are the positions of the other particles that
are not moved. We show that the interaction is minimized when the other N − 1 particles form
a densely packed block around the center line.

After this minimisation, the exponent E(x, y) becomes a discrete integral of a piecewise linear
function which has order 1/L inside the waterfall region. This allows us to show that moving a
single particle closer to the center line is advantageous of order q−cL close to the boundary of the
waterfall region, and of order q−c′L2

when move is across the waterfall boundary. These estimates
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translate into the exponential concentration of square and vertical lozenges inside the waterfall
region, and of the horizontal lozenges outside the waterfall region. Together with the spectral
projection results, this establishes Theorem 1.4 for the entire hexagon.

1.5 Outline of the paper

In Section 2 we collect the necessary definitions related to the q-Racah random lozenge tilings,
their connection with q-Racah orthogonal polynomials, and the spectral projection interpretation
of the fixed-slice correlation kernel. We mostly follow the notation of [BGR10]. In Section 3
we introduce the fixed-q scaling regime, and discuss how it differs from the traditional scaling
q → 1. We also outline the heuristics for the waterfall phenomenon which are made rigorous in
the subsequent Sections 4 and 5. Namely, in Section 4 we employ the spectral projection method
to get the limit of the correlation kernel at the center line and outside the waterfall region, and in
Section 5 we complement the analysis by direct estimates in the q-Racah orthogonal polynomial
ensemble, leading to the exponential concentration result. These sections complete the proof of
our main result, Theorem 1.4.

In Section 6 we review the two-dimensional correlation structure of q-Racah random lozenge
tilings and set the stage for a subsequent nonrigorous analysis of their asymptotic behavior that
culminates in the conjectural barcode kernel. The presentation in this section is completely
rigorous; in particular, we derive asymptotic formulas for the inter-slice transition kernel that
yield the limiting operator Ubarcode

t . Section 7 then combines a heuristic derivation of the barcode
kernel with numerical and probabilistic evidence. We first carry out an informal asymptotic
analysis explaining the eventual form of the kernel, and afterwards corroborate the predictions
by means of exact-formula numerics and perfect sampling data.

Appendix A collects several properties of the functions F t
n(x) appearing in the barcode kernel,

which may be of independent interest. Appendix B contains the Mathematica code used for the
numerical analysis of the exact formulas performed in Section 7.4.
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2 Preliminaries on q-Racah random tilings

In this section, we recall the definition and properties of the (imaginary) q-Racah probability
measure on the set of lozenge tilings of a hexagon. This measure was introduced and studied in
[BGR10], and we mostly follow the notation of that paper.
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2.1 Random lozenge tilings and nonintersecting paths

Consider a hexagon drawn on the triangular lattice with integer sides a, b, c, a, b, c. We are inter-
ested in tilings of this hexagon by three types of lozenges. We will always work with an affine
transformed lattice, in which one of the lozenges looks like a unit square. The hexagon with
a = b = c = 3 and an example of its lozenge tiling are given in Figure 2, left.

N = a S = c

T = b+ c

x

t

x1(4)

x2(4)

x3(4)

(0, 0)

Figure 2: Left: An example of a lozenge tiling of a hexagon with sides a = b = c = 3. Right: The
corresponding ensemble of N = a nonintersecting paths.

We set T := b + c, S := c, and N := a, and use the parameters (T, S,N) throughout the
paper. The lozenge tilings of our hexagon are in bijective correspondence with ensembles of N
nonintersecting lattice paths that satisfy the following conditions:

• We view the horizontal axis as the “time” t ∈ {0, 1, . . . , T}. The paths start at locations
(0, 0), (0, 1), . . . , (0, N − 1) at time t = 0.

• The paths end at locations (T, S), (T, S + 1), . . . , (T, S +N − 1) at time t = T .

• The paths make two types of steps:

◦ horizontal, (t, x) → (t+ 1, x),

◦ and diagonal, (t, x) → (t+ 1, x+ 1).

• The paths do not intersect each other.

See Figure 2, right, for an example the path ensemble corresponding to a given lozenge tiling.
We denote by

X(t) := (x1(t) < x2(t) < . . . < xN (t)) (2.1)

the locations of the paths at time t. For example, in Figure 2, right, we have X(4) = (1, 4, 5).
These locations must satisfy

max(0, t+ S − T ) ≤ xi(t) ≤ min(t+N − 1, S +N − 1), i = 1, . . . , N, t = 0, . . . , T. (2.2)
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2.2 The q-Racah random lozenge tilings

Definition 2.1 (q-Racah measure on nonintersecting path ensembles). We put a probability
measure on the set of all nonintersecting path ensembles. The measure depends on the geometry
of the hexagon (parametrized by (T, S,N)), and on two parameters q > 0 and κ ∈ iR. The
probability weight of a nonintersecting path ensemble is proportional to∏

holes in the path ensemble

wq,κ

(
x− t

2 + 1
)
, wq,κ(j) := κqj−(S+1)/2 − 1

κqj−(S+1)/2
. (2.3)

Here the holes are points (t, x) such that x /∈ X(t), but x satisfies the inequalities (2.2). In
other words, holes are lozenges of the type . For example, in Figure 2, right, the holes are
(1, 2), (2, 1), (2, 4), (3, 0), (3, 2), (3, 5), (4, 2), (4, 3), (5, 3). The probability weights are normalized
so that the total probability of all path ensembles is 1. We call the resulting probability measure
the q-Racah measure on nonintersecting path ensembles (equivalently, on lozenge tilings of the
hexagon).

Remark 2.2. The number of holes in the path ensemble is a conserved quantity: it is equal
to S(T − S), which depends on the geometry of the hexagon but not on the path ensemble.
This implies that the q-Racah measure is invariant under the transformation (q, κ) 7→ (1/q, 1/κ).
Throughout the paper, we will assume that q ∈ (0, 1), as this does not restrict the generality.

Proposition 2.3. In terms of the coordinates xi(t), the probability weight of a path ensemble is
equal to

T∏
t=0

const(t, T, S,N)
N∏
i=1

qxi(t)

1− κ2q2xi(t)−S−t+1
. (2.4)

Proof. This is essentially [BGR10, Proposition 3.3]. For the reader’s convenience, we provide a
brief proof here. To get (2.4) from (2.3), replace the product over the holes by the reciprocal of
the product over the points in the path ensemble (this replacement contributes a constant factor
independent of the path ensemble). Then, for j = x− t

2 + 1, we have(
κqj−(S+1)/2 − 1

κqj−(S+1)/2

)−1

=
κq

1
2
(S+t+2x+1)

κ2q2x+1 − qS+t
= const0(t, T, S,N) · qx

1− κ2q2x−S−t+1
,

which completes the proof.

From Proposition 2.3, one can readily notice the following degenerations of the q-Racah mea-
sure on nonintersecting path ensembles:

• As κ → 0, the probability weight of a path ensemble becomes proportional to qvol, where vol is
the volume under the three-dimensional surface corresponding to the lozenge tiling.

• As κ → 0 and further q → 1, the probability measure becomes uniform.

Throughout the paper, we assume that κ ̸= 0. Otherwise, the measure qvol (studied in much more
detail in the literature) does not display a dimensional collapse phenomenon. For definiteness in
some formulas involving κ to the first power, we also assume that κ ∈ iR>0.
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2.3 q-Racah orthogonal polynomial ensemble

Under the q-Racah measure on nonintersecting path ensembles, the tuples {X(t)}0≤t≤T form
a Markov chain, where t plays the role of time. For each fixed t, the distribution of X(t) is
connected to the q-Racah orthogonal polynomial ensemble. We refer to [Kön05] for a general
survey of orthogonal polynomial ensembles.

In this subsection, we recall the q-Racah orthogonal polynomials and define the correspond-
ing orthogonal polynomial ensemble. In the following Section 2.4, we will connect the orthogonal
polynomial ensemble to the distribution of X(t) coming from the nonintersecting paths. For the
notation around the q-Racah polynomials, we follow [KS96, Chapter 3.2]. The connection of ran-
dom nonintersecting paths of Definition 2.1 to q-Racah polynomials follows [BGR10, Theorem 4.1]
(see also [DK19, Theorem 7.3.5] for a compact account of these results).

Throughout the paper, (a; q)k := (1− a)(1− aq) . . . (1− aqk−1) stands for the q-Pochhammer
symbol.4 The q-hypergeometric function 4ϕ3 is given by [GR04, (1.2.22)]:

4ϕ3

(
a, b, c, d
e, f, g

∣∣∣ q; z) :=

∞∑
n=0

(a; q)n(b; q)n(c; q)n(d; q)n
(e; q)n(f ; q)n(g; q)n(q; q)n

zn (2.5)

Let M ∈ Z≥0 and α, β, γ, δ ∈ R be such that γq = q−M . Define the following q-Racah weight
function on {0, 1, . . . ,M}:

wqR(x) :=
(αq; q)x(βδq; q)x(γq; q)x(γδq; q)x

(q; q)x(α−1γδq; q)x(β−1γq; q)x(δq; q)x

(
1− γδq2x+1

)
(αβq)x(1− γδq)

, x ∈ {0, 1, . . . ,M} . (2.6)

The weight wqR is the orthogonality weight for the q-Racah polynomials which are defined as

Rn(µ(x);α, β, γ, δ | q) := 4ϕ3

(
q−n, αβqn+1, q−x, γδqx+1

αq, βδq, γq

∣∣∣ q; q) , n = 0, 1, . . . ,M. (2.7)

These are polynomials of degree n in the variable µ(x) defined as

µ(x) := q−x + γδqx+1. (2.8)

The orthogonality means that

M∑
x=0

wqR(x)Rm(µ(x))Rn(µ(x)) = 1m=nhn, (2.9)

where the squared norms hn have the form

hn =
(αβq2; q)M (δ−1; q)M
(αδ−1q; q)M (βq; q)M

(1− αβq)(δq−M )n

(1− αβq2n+1)

(q; q)n(αβq
M+2; q)n(αδ

−1q; q)n(βq; q)n
(αq; q)n(αβq; q)n(βδq; q)n(q−M ; q)n

. (2.10)

The q-Racah polynomials Rn are eigenfunctions of a distinguished difference operator acting
in x [KS96, (3.2.6)], that is, they satisfy

q−n(1− qn)(1− αβqn+1)Rn(µ(x))

= B(x)Rn(µ(x+ 1))− [B(x) +D(x)]Rn(µ(x))(x) +D(x)Rn(µ(x− 1)),
(2.11)

4Since |q| < 1, the infinite q-Pochhammer symbol (a; q)∞ =
∏∞

k=0(1− aqk) is also well-defined.

12



where

B(x) :=
(1− αqx+1)(1− βδqx+1)(1− γqx+1)(1− γδqx+1)

(1− γδq2x+1)(1− γδq2x+2)
;

D(x) :=
q(1− qx)(1− δqx)(β − γqx)(α− γδqx)

(1− γδq2x)(1− γδq2x+1)
.

(2.12)

In (2.11), we have x = 0, 1, . . . ,M . Indeed, B(M) = D(0) = 0, so the values of Rn(µ(x)) for
x = −1 or x = M + 1 do not enter the eigenrelation (2.11).

Remark 2.4. The q-Racah polynomials admit three parameter regimes (α, β, γ, δ) that ensure
the weight function vanishes for x > M . These regimes are specified by αq = q−M , βδq = q−M ,
or γq = q−M . Accordingly, the norms hn take different forms in each regime. For random tilings,
it suffices to consider only the third regime γq = q−M , in which case hn is given by (2.10).

Let us now describe the N -particle q-Racah orthogonal polynomial ensemble (abbreviated
q-Racah OPE ) on {0, 1, . . . ,M} with parameters α, β, γ, δ,M satisfying

M ≥ N − 1, q ∈ (0, 1), γq = q−M , α ≥ γ, β ≥ γ, δ ≤ 0. (2.13)

With these restrictions on the parameters, one can check that the weights wqR(x) (2.6) are positive
for all x ∈ {0, 1, . . . ,M}.

Definition 2.5. The q-Racah ensemble R
qR(N)
M,α,β,γ,δ depending on the parameters satisfying (2.13),

is a probability measure on N -tuples of particles (x1 < . . . < xN ) in {0, 1, . . . ,M}, with proba-
bility weights given by

R
qR(N)
M,α,β,γ,δ(x1, . . . , xN ) =

1

Z(N,M,α, β, γ, δ)

∏
1≤i<j≤N

(µ(xi)− µ(xj))
2

N∏
i=1

wqR(xi). (2.14)

Here Z(N,M,α, β, γ, δ) is the normalization constant ensuring that the total probability is 1.
The condition M ≥ N − 1 in (2.13) is required so that N particles can fit into {0, 1, . . . ,M}.

2.4 From orthogonal polynomials to lozenge tilings

Let us now connect the random nonintersecting path ensembles of Definition 2.1 to the q-Racah
OPE. For this, we need to define four zones within the hexagon with sides a, b, c, a, b, c (recall
that T = b+ c, S = c, N = a), where the q-Racah parameters take different forms. These zones
are determined by the value of the horizontal coordinate (time) t, and are defined as follows:

0 ≤ t ≤ min(S − 1, T − S − 1) ⇒ M = t+N − 1, α = q−S−N ,
β = qS−T−N , γ = q−t−N , δ = κ2q−S+N ;

(2.15)

S ≤ t ≤ T − S − 1 ⇒ M = S +N − 1, α = q−t−N ,
β = qt−T−N , γ = q−S−N , δ = κ2q−t+N ;

(2.16)

T − S ≤ t ≤ S − 1 ⇒ M = T − S +N − 1, α = q−T−N+t,
β = q−t−N , γ = q−T−N+S , δ = κ2q−T+t+N ;

(2.17)
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max(S, T − S) ≤ t ≤ T ⇒ M = T − t+N − 1, α = q−T−N+S ,
β = q−S−N , γ = q−T−N+t, δ = κ2q−T+S+N ;

(2.18)

For each given hexagon, at most three of these zones are present, as conditions (2.16) and (2.17)
are mutually exclusive. See Figure 3 for illustrations.

N = a

S = c

T = b+ c

x

t

N = a S = c

T = b+ c

x

t

(2.15)

(2.16)

(2.18)

(2.15)

(2.17)

(2.18)

Figure 3: Zones inside the hexagon in which X(t) (the path configuration at a slice t = const)
has the q-Racah OPE distribution with different choices of parameters (see Theorem 2.6). For
all T, S,N , the zones (2.15) and (2.18) are present inside the hexagon. The zone (2.16) is present
if and only if S ≤ T − S, and otherwise we have the zone (2.17). On a border slice between two
zones, the q-Racah parameters can be chosen in either of the two ways (for example, formulas in
(2.15) and (2.16) coincide for t = S).

Theorem 2.6 ([BGR10, Theorem 4.1] and [DK19, Theorem 7.3.5]). Fix T, S,N . In the zones
(2.15) and (2.16), the distribution of X(t) (2.1) under the q-Racah measure (Definition 2.1) is
given by the N -particle q-Racah OPE on {0, 1, . . . ,M}. In the zones (2.17) and (2.18), the
distribution of the shifted configuration

X(t) + T − t− S = (x1(t) + T − t− S < x2(t) + T − t− S < . . . < xN (t) + T − t− S) (2.19)

is given by the N -particle q-Racah OPE on {0, 1, . . . ,M}. In all cases, the parameters M,α, β, γ, δ
are given by the corresponding formulas in (2.15)–(2.18).

2.5 Determinantal correlation kernel and its operator interpretation

It is known [Kön05], [Bor11, Section 4] that orthogonal polynomial ensembles (in particular,
the N -particle q-Racah OPE on {0, 1, . . . ,M}) are determinantal point processes. Moreover,
the two-dimensional random point configuration X := {X(t)}0≤t≤T forms a determinantal point
process on Z2. The two-dimensional statement follows from the particular way of how the distribu-
tions of X(t) on different slices are stitched together, and may be derived from [Bor11, Section 4].
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Alternatively, the determinantal structure of X follows from a dimer interpretation of the q-Racah
random tiling model, cf. [Ken09, Corollary 3].

Let the space-time correlation functions be defined as

ρn(t1, x1; . . . ; tn, xn) := P {the configuration X contains all of (t1, x1), . . . , (tn, xn)} ,

where (t1, x1), . . . , (tn, xn) are n pairwise distinct points. For any n ≥ 1, these correlation func-
tions are given by determinants

ρn(t1, x1; . . . ; tn, xn) = det[K(ti, xi; tj , xj)]
n
i,j=1, (2.20)

coming from a single function of two points inside the hexagon. This function K(t, x; s, y) is
called the correlation kernel.

An explicit expression for K(t, x; s, y) was obtained in [BGR10, Theorem 7.5] in terms of
q-Racah polynomials. We now recall this result, together with an operator interpretation of the
kernel

Kt(x, y) := K(t, x; t, y) (2.21)

on a fixed slice t = const, which also appears in [BGR10].

Consider a q-Racah OPE R
qR(N)
M,α,β,γ,δ on {0, 1, . . . ,M} with parameters satisfying (2.13). Let

us pass from the q-Racah polynomials (2.7) to the functions

fn(x) = fn(x;α, β, γ, δ | q) := Rn(µ(x))√
hn

√
wqR(x), n = 0, 1, . . . ,M, (2.22)

which form an orthonormal basis in the Hilbert space ℓ2 ({0, 1, . . . ,M}). Thanks to (2.11), the
fn(x)’s are eigenfunctions of the difference operator

(
DqRg

)
(x) :=

√
wqR(x)

wqR(x+ 1)
B(x)g(x+ 1)− [B(x) +D(x)]g(x) +

√
wqR(x)

wqR(x− 1)
D(x)g(x− 1),

(2.23)
where B(x) and D(x) are given by (2.12). The eigenvalue of fn(x) is

evqRn := q−n(1− qn)(1− αβqn+1). (2.24)

In particular, evqR0 = 0. Due to our assumptions on the parameters (2.13), the eigenvalues evqRn
are all nonpositive, and strictly decrease in n for 0 ≤ n ≤ M .

Proposition 2.7 ([Meh04], [Kön05, Lemma 2.8]). The correlation kernel of the N -particle q-
Racah OPE on {0, 1, . . . ,M} is given by

KqR(x, y) =

N−1∑
n=0

fn(x)fn(y). (2.25)

This is a kernel of the orthogonal projection operator onto span (f0, f1, . . . , fN−1) in the Hilbert
space ℓ2 ({0, 1, . . . ,M}).
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Following [BGR10, Section 8.2] which implements the operator approach pioneered in [BO07],
[Ols08] (see also [Tao12, Chapter 3.3]), we view KqR as the kernel of the orthogonal spectral
projection onto the subspace of ℓ2 ({0, 1, . . . ,M}) corresponding to the spectral interval[

−q−N+1(1− qN−1)(αβqN − 1), 0
]

(2.26)

of the operator DqR (2.23).

Let us now apply the spectral interpretation of KqR to the correlation kernel Kt(x, y) (2.21)
on a fixed vertical slice inside the hexagon. Observe that in all four zones (2.15)–(2.18), we have
αβqN = q−T−N . Therefore, the spectral interval (2.26) stays the same throughout the hexagon.
Denote

x̃ :=

{
x, if t is in the zone (2.15) or (2.16);

x+ T − t− S, if t is in the zone (2.17) or (2.18).
(2.27)

One can check that the coefficients of the operator DqR (2.23) evaluated at x̃ are also the same
in all four zones (2.15)–(2.18). More precisely, we have

B(x̃) =
q−2N−T (qT − κ2qx+1)(qN+S − qx+1)(qN+t − qx+1)(qS+t − κ2qx+1)

(qS+t − κ2q2x+1)(qS+t − κ2q2x+2)
,

D(x̃) =
(1− qx)q−2N−T+1(qS − κ2qN+x)(qt − κ2qN+x)(qS+t − qT+x)

(qS+t − κ2q2x)(qS+t − κ2q2x+1)
,

(2.28)

and

wqR(x̃)

wqR(x̃+ 1)
=

q(1− qx+1)(qS − κ2qN+x+1)(qt − κ2qN+x+1)(qS+t − κ2q2x+1)(qS+t − qT+x+1)

(qT − κ2qx+1)(qN+S − qx+1)(qN+t − qx+1)(qS+t − κ2qx+1)(qS+t − κ2q2x+3)
;

wqR(x̃)

wqR(x̃− 1)
=

(qT − κ2qx)(qN+S − qx)(qN+t − qx)(qS+t − κ2qx)(qS+t − κ2q2x+1)

(qx − 1)(κ2qN+x − qS)(κ2qN+x − qt)(qS+t+1 − κ2q2x)(qT+x − qS+t)
.

(2.29)

We conclude that the kernel Kt(x, y) has the following spectral description, which is the same in
all four zones (2.15)–(2.18):

Corollary 2.8. The fixed-slice correlation kernel Kt(x, y) (2.21) of the q-Racah nonintersecting
path ensemble inside the hexagon with sides a, b, c, a, b, c (where T = b+ c, S = c, N = a) is the
kernel of the orthogonal spectral projection onto the subspace corresponding to the spectral interval[

−q−N+1(1− qN−1)(q−T−N − 1), 0
]

(2.30)

of the difference operator

(
Dg
)
(x) :=

√
wqR(x̃)

wqR(x̃+ 1)
B(x̃)g(x+1)− [B(x̃)+D(x̃)]g(x)+

√
wqR(x̃)

wqR(x̃− 1)
D(x̃)g(x−1). (2.31)

This operator on functions of x acts in the (finite-dimensional) ℓ2 space on the t-th vertical slice
of the hexagon. Its coefficients are read off from (2.28) and (2.29).
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Remark 2.9. One can check that√
wqR(x̃− 1)

wqR(x̃)
B(x̃− 1) =

√
wqR(x̃)

wqR(x̃− 1)
D(x̃),

which means that the operator D is self-adjoint with respect to the standard inner product in ℓ2

on the t-th vertical slice.

3 Scaling regime

3.1 Traditional scaling of q-weighted lozenge tilings

We consider the asymptotic regime when the sides of the hexagon are scaled proportionally
to some large parameter L → +∞. Typically, the parameter q (for the qvol or the q-Racah
measure on lozenge tilings) also goes to 1, at the rate exp (−c/L), where c ∈ R is fixed. In this
regime, random tilings develop a so-called liquid region, in which local lattice distributions follow
translation-invariant ergodic Gibbs measures (pure states, for short) on lozenge tilings of the whole
plane Z2. Since in the limit the parameter q becomes 1, the limiting pure states (for both the qvol

and the q-Racah ensembles) satisfy the Gibbs property with respect to the uniform resampling
of a tiling in any finite subregion, conditioned on the boundary of this subregion. Such Gibbs
measures are uniquely determined by two parameters [She05], which in terms of nonintersecting
paths may be taken as their vertical density and horizontal slope. These pure states universally
arise as local lattice limits in uniformly random lozenge tilings of arbitrary polygons [Agg23].

The literature on this asymptotic regime of the measure qvol is vast, and includes [NHB84],
[CLP98], [CK01], [OR03], [FS03], [KOS06], [KO07], [BG13], [MP17], [DFG19], [PT23], [ARVP22].
Main results on the asymptotic behavior of the uniform and qvol measures are summarized in
[Ken09] and [Gor21]. Asymptotic behavior of the q-Racah measure as q → 1 was studied in
[BGR10], [DK19], [GH24], [DDL24]. In these references, the limiting objects within the liquid
region are two-dimensional, such as the pure Gibbs states at the lattice level, Gaussian Free Field
describing global fluctuations, or the GUE corners process at points where the liquid region comes
close to the boundary of the polygon.

The novelty of the present work is that we keep the parameter q fixed while scaling the sides of
the hexagon to infinity. As was first observed in simulations in [BGR10], this leads to formation
of a so-called waterfall region inside the hexagon. We describe this region in Section 3.2 below.

3.2 Waterfall scaling

We consider the limit behavior of the q-Racah nonintersecting path ensemble as the sides of the
hexagon grow proportionally to infinity as L → +∞:

T = ⌊LT⌋, S = ⌊LS⌋, N = ⌊LN⌋, T > S > 0, N > 0; q ∈ (0, 1), κ ∈ iR>0 fixed. (3.1)

In this regime, the q-Racah nonintersecting paths display a very different limit behavior from
the traditional one (Section 3.1). Namely, for fixed q and κ, the two-dimensional lattice behavior
collapses into a one-dimensional random stepped interface (which we call a barcode). One can
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also think that this random interface satisfies (a degenerate version of) the q-deformed Gibbs
property, which does not allow any changes under resampling.

Let us define the macroscopic waterfall region where this new behavior occurs.

Definition 3.1 (Waterfall region). Fix the scaled dimensions T, S,N of the hexagon, and let (t, x)
be the scaled coordinates. Denote by H the scaled hexagon, that is,

H := {(t, x) : 0 < t < T, max(0, t− T+ S) < x < min(S+ N, t+ N)} . (3.2)

Let
tl := |N− S|, tr := min(N+ S, 2T− N− S). (3.3)

Denote the waterfall region by

W := {(t, x) ∈ H : tl < t < tr, |2x− S− t| < N} . (3.4)

Also, let the center line be the following line segment of slope 1
2 :

C :=
{
(t, x) ∈ H : tl < t < tr, x = 1

2(t+ S)
}
⊂ W. (3.5)

See Figure 4 for illustrations of the waterfall region and the corresponding exact samples from
the q-Racah measure generated by the shuffling algorithm of [BGR10].

Remark 3.2. Note that when N ≥ T, we have tl ≥ tr. This means that the waterfall region
is nonempty only for N < T. In Section 5 below, we show that tor N > T, the nonintersecting
paths can only have asymptotic slopes 0 or 1 (depending on the part of the hexagon), so the
waterfall behavior does not occur. It would be interesting to probe the case of “thin waterfall”
when T/N → 1 while T − N ≫ 1 (see Figure 5 for exact samples), but we do not address this
question in the present work.

Definition 3.3. Denote by W± the regions above and below the waterfall, that is,

W+ :=


{(t, x) ∈ H : x > N+ (t− T+ S)+}, if N > T;

{(t, x) ∈ H : tl < t < tr, x > 1
2(S+ t+ N)}

∪{(t, x) ∈ H : t ≤ tl, x > N}1N>S

∪{(t, x) ∈ H : t ≥ tr, x > S+ N+ t− T}1S+N>T, if N < T,

and

W− := {(t, x) ∈ H : tl < t < tr, x < 1
2(S+ t− N)}

∪ {(t, x) ∈ H : t ≤ tl, x < t}1N<S ∪ {(t, x) ∈ H : t ≥ tr, x < S}1S+N<T.

Here the indicator 1N>S means that the subset in the union is present only if N > S, and similarly
for all other indicators. In the samples in Figure 4, right, the regions W± are the lighter-colored
ones. They consist solely of the horizontal lozenges .5

Also denote P := H \ (W+ ∪W−), this is the region inside the hexagon where we expect the
nonintersecting paths to cluster together. We call P the saturation band. It has constant width N
and includes the waterfall region.

5The below region W− exists only if N < T. In Section 5 below, we show that for N > T, the nonintersecting
paths stay as low as they can: First, they go straight with slope 0 until t = T − S, and then continue diagonally
with slope 1.
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Figure 4: Examples of the waterfall region W inside the hexagon in the coordinate system
(t, x), together with an exact sample produced by the shuffling algorithm from [BGR10]. On
the left, we have displayed the large-scale limit of the trajectory of the nonintersecting path
starting in the middle. Inside W, this path stays close to the center line C, and in particular,
has asymptotic slope 1/2. Outside W, the slope is either 0 or 1, and the path proceeds right or
right-up without fluctuations. Limit trajectories of all other nonintersecting paths are parallel
translations of the center one. The parameters of the simulations are, from top to bottom:
(T, S,N, q) = (300, 225, 150, 0.9), (240, 60, 120, 0.8), (240, 120, 60, 0.8), and κ = i throughout. The
horizontal lozenges (the lighter-colored ones) are exponentially (in L) rare in the waterfall region.
This behavior corresponds to the asymptotic clustering of the paths.
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Figure 5: Exact samples from the q-Racah measure generated by the shuffling algorithm of
[BGR10] in the regime N > T . The parameters are q = 0.85, κ = i, and (N,T, S) = (180, 120, 80)
(left) and (N,T, S) = (100, 90, 60) (right). In the left-hand picture no waterfall behavior is
present; presumably the limit shape at scales ≪ N coincides with that for qvol random plane
partitions without boundary studied in [CK01], [FS03], [OR03]. In the right-hand picture we
observe a “thin waterfall,” which appears when T/N is close to 1 (see also Remark 3.2).

3.3 Heuristics for the saturation band and the waterfall region

Heuristically, the appearance of the saturation band P where the nonintersecting paths cluster
together with density 1 can be observed from the weights wq,κ of the holes in the path ensemble,
see (2.3). Indeed, we have

wq,κ(x− t
2 + 1) = κq

1
2
+(x− t+S

2
) −
(
κq

1
2
+(x− t+S

2
)
)−1

. (3.6)

Since κ ∈ iR>0, both summands in (3.6) have the same sign. When (t, x) is close to the center
line C (3.5), both summands are asymptotically of order 1. However, when (t, x) is far from C,
one of the summands dominates and goes to infinity exponentially in L. Therefore, all holes in
the path ensemble are encouraged to stay as far from the center line as possible. There are two
possibilities, depending on whether tl < t < tr:

• If tl < t < tr, there is enough room inside the hexagon H for the holes to stay away from C
symmetrically. This leads to the formation of the waterfall region W: It is a band of width
N centered around C. Since the two summands in (3.6) are symmetric with respect to C, the
waterfall region W indeed must inherit this symmetry.

• When t /∈ [tl, tr] or N > T, there is no room inside H to fit a symmetric band of width N
around C. Then the holes live only on one side of C, and the nonintersecting paths are frozen
and have slope 0 or 1.

In Section 5 below, we engage in a detailed analysis of the q-Racah orthogonal polynomial en-
semble probability weights (2.14) to make this heuristic rigorous, and prove our main result
(Theorem 1.4).
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4 Asymptotic behavior on a vertical slice via spectral projections

In this section, we consider the asymptotic behavior of the fixed-slice correlation kernel Kt(x, y)
(2.21) in the regime described in Section 3.2. We employ the spectral description of Kt via the
difference operator D given by (2.31). It turns out that the spectral approach, which successfully
worked throughout the whole hexagon in the traditional scaling regime q → 1, can only describe
the asymptotic behavior on the center line C when q is fixed.

4.1 Limit of the coefficients

Recall the limit regime (3.1). We consider a fixed vertical slice at t = ⌊Lt⌋ inside the hexagon
(where t is the scaled position of the slice). We aim to find the limit of the (suitably shifted and
scaled) difference operator D (2.31):(

Dscaledg
)
(x) := qN+T+(N−|2⌊Lx⌋−S−t|)+︸ ︷︷ ︸

=:Cx

[(
Dg
)
(x) + q−N+1(1− qN−1)(q−T−N − 1)g(x)

]
. (4.1)

Here and throughout the paper, we use the notation

a+ := max(a, 0), a− := min(a, 0), a ∈ R. (4.2)

We will also abbreviate Cx := qN+T+(N−|2⌊Lx⌋−S−t|)+ , which is the scaling prefactor in (4.1).
The operator Dscaled is symmetric with respect to the standard inner product in ℓ2(Z) (see

Remark 2.9). Its coefficients have compact support in x, so Dscaled is bounded and thus self-
adjoint. The subspace ℓ20(Z) consisting of finite linear combinations of the standard basis vectors
ex(y) := 1y=x is an essential domain6 for Dscaled. Due to the shift in (4.1), the fixed-slice
correlation kernel Kt (2.21) is the kernel of the orthogonal projection operator in ℓ2(Z) onto the
spectral interval [0,+∞) of the operator Dscaled.

Assume that in (3.1) we have N < T, which guarantees the existence of the waterfall region.
Let x = ⌊Lx⌋ + ∆x and t = ⌊Lt⌋, where ∆x ∈ Z is fixed. We also assume that tl < t < tr.
Throughout the rest of this subsection, we consider the asymptotic behavior of the coefficients of
Dscaled one by one, depending on the position of (t, x) inside the hexagon.

Lemma 4.1 (Diagonal coefficient). Let tl < t < tr, and the point (t, x) be inside the scaled
hexagon H (3.2). Under the scaling described before the lemma, the diagonal coefficient of the
operator Dscaled (4.1) has the following limit:

lim
L→+∞

Cx ·
(
q−N+1(1− qN−1)(q−T−N − 1)−B(x̃)−D(x̃)

)

=



−1, x < 1
2(S+ t− N);

−1− κ−2(1 + q)q−1−2∆x, x = 1
2(S+ t− N), ⌊Lx⌋ = 1

2(S + t−N);

−κ−2(1 + q)q−1−2∆x, 1
2(S+ t− N) < x < 1

2(S+ t);

−κ2(1 + q)q2∆x+1

(1− κ2q2∆x)(1− κ2q2∆x+2)
, x = 1

2(S+ t), ⌊Lx⌋ = 1
2(S + t);

−κ2(1 + q)q2∆x+1, 1
2(S+ t) < x < 1

2(S+ t+ N);

−1− κ2(1 + q)q2∆x+1, x = 1
2(S+ t+ N), ⌊Lx⌋ = 1

2(S + t+N);

−1, x > 1
2(S+ t+ N).

(4.3)

6This subspace is also sometimes called the core of an operator.
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Note that depending on the geometry of the hexagon (determined by T,S,N), not all of the
above cases may be present.

Remark 4.2. In the three border cases (when x is not in an interval), we need to make more
precise discrete assumptions about the parameters to fix the shift of the x-coordinate around the
border. We also assume that the integers multiplied by 1

2 are even. The latter can always be
achieved by replacing S with S ± 1. This shift does not affect the generality of the asymptotic
analysis because the limiting quantity S can still be an arbitrary real number within a suitable
interval.

Proof of Lemma 4.1. Combining all the terms in q−N+1(1 − qN−1)(q−T−N − 1) − B(x̃) −D(x̃),
we have

Cx ·
(
q−N+1(1− qN−1)(q−T−N − 1)−B(x̃)−D(x̃)

)
=

q(N−|2⌊Lx⌋−S−t|)+

(qS+t − κ2q2x)(qS+t − κ2q2x+2)

([
q2S+t+T+x+1 + qS+2t+T+x+1 − q2S+2t+T+1

− q2S+2t + q−N+S+t+T+x+1 − q−N+S+t+T+2x+1

− q−N+S+t+T+2x+2 + q−N+2S+2t+x+1
]

− κ2
[
−qN+S+t+T+x+1 − qS+t+T+2x+1 − qS+t+T+2x+3 + qN+S+t+T+2x+1

+ qN+S+t+T+2x+2 − q2S+t+x+1 − qS+2t+x+1 − qN+2S+2t+x+1

− qS+t+2x − qS+t+2x+2 + q2S+t+2x+1 + q2S+t+2x+2 (4.4)

+ qS+2t+2x+1 + qS+2t+2x+2 + qS+T+2x+1 + qS+T+2x+2

− qS+T+3x+2 + qt+T+2x+1 + qt+T+2x+2 − qt+T+3x+2

+ q−N+S+t+2x+1 + q−N+S+t+2x+2 − q−N+S+t+3x+2 − q−N+T+3x+2
]

+ κ4
[
−qN+S+t+2x+1 − qN+S+t+2x+2 + qN+S+t+3x+2 + qS+3x+2

+ qt+3x+2 + qN+T+3x+2 − qT+4x+3 − q4x+2
])

.

Let us now consider the cases in (4.3) one by one.

Case x < (S+ t− N)/2. We have (N − |2⌊Lx⌋ − S − t|)+ = 0. The dominant contribution from
the denominator in (4.4) is κ−4q−4x−2. Combining this power with all the powers in the long sum
in the numerator, one can directly check that all terms except for κ−4q−4x−2 · (−κ4q4x+2) = −1
vanish. This yields the first case of (4.3).

Case x = (S + t − N)/2. Here, we still have (N − |2⌊Lx⌋ − S − t|)+ = 0, and the dominant
contribution from the denominator is the same as in the previous case. Plugging x = ∆x +
1
2(S + t−N) into (4.4), one can directly check that there are three surviving terms in the limit
as L → +∞. One term is (−1), as in the previous case. The other two terms arise from the
coefficient by −κ2, and after multiplication by the contribution of the denominator, they have
the form

−κ−2(1 + q)q−N+S+t−2x−1 = −κ−2(1 + q)q−2∆x−1. (4.5)

This yields the second case of (4.3).
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Case (S + t − N)/2 < x < (S + t)/2. Here the extra factor q(N−|2⌊Lx⌋−S−t|)+ = qN−S−t+2⌊Lx⌋ is
not 1 anymore, while the contribution from the denominator stays the same as in the previous
two cases. One can check that with this extra factor, there are no new surviving terms in the
limit. The summand (−1) multiplied by qN−S−t+2⌊Lx⌋ vanishes in the limit. The two remaining
terms become the same as in (4.5):

−κ−2qN−S−t+2⌊Lx⌋(1 + q)q−N+S+t−2x−1 = −κ−2(1 + q)q−2∆x−1.

This establishes the third case of (4.3).

Case x = (S+ t)/2. In the denominator in (4.4), the contribution comes from all terms:

(qS+t − κ2q2x)(qS+t − κ2q2x+2) = q2S+2t(1− κ2q2∆x)(1− κ2q2∆x+2).

The combined prefactor in front of the numerator is thus q(N−|2⌊Lx⌋−S−t|)+−2S−2t = qN−2S−2t.
One can check that with this prefactor, all terms in the long sum in (4.4) except two vanish in
the limit. These two terms come from the same summands as in (4.5):

−κ2qN−2S−2t(1 + q)q−N+S+t+2x+1 = −κ2(1 + q)q2∆x+1.

This establishes the fourth case of (4.3).

Remaining cases x > (S+ t)/2. The remaining three cases in (4.3) are symmetric with the first
three cases. In all of them, the dominant contribution from the denominator in (4.4) is q−2S−2t,
and the rest of their computation is very similar to the first three cases. We omit the details.

Lemma 4.3 (Off-diagonal coefficients). Let tl < t < tr, and the point (t, x) is inside the scaled
hexagon H (3.2). Under the scaling described before Lemma 4.1, the off-diagonal coefficients of the
operator Dscaled (4.1) have the following limits (cf. Remark 4.2 for a discussion of assumptions
in the border cases):

lim
L→+∞

Cx ·

√
wqR(x̃− 1)

wqR(x̃)
B(x̃− 1) = lim

L→+∞
Cx ·

√
wqR(x̃)

wqR(x̃− 1)
D(x̃)

=



0, x < 1
2(S+ t− N);

−κ−2q−2∆x+1/2, x = 1
2(S+ t− N), ⌊Lx⌋ = 1

2(S + t−N);

−κ−2q−2∆x+1/2, 1
2(S+ t− N) < x < 1

2(S+ t);

−κ2q2∆x+1/2

(1− κ2q2∆x)
√
(1− κ2q2∆x−1)(1− κ2q2∆x+1)

, x = 1
2(S+ t), ⌊Lx⌋ = 1

2(S + t);

−κ2q2∆x+1/2, 1
2(S+ t) < x < 1

2(S+ t+ N);

−κ2q2∆x+1/2, x = 1
2(S+ t+ N), ⌊Lx⌋ = 1

2(S + t+N);

0, x > 1
2(S+ t+ N).

(4.6)

Proof. The equality between the two quantities in the first line in (4.6) holds before the limit,
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see Remark 2.9. Thus, we can consider only the first one. We have using (2.28)–(2.29):

qN+T

√
wqR(x̃− 1)

wqR(x̃)
B(x̃− 1) =

q−N+1/2

(qS+t − κ2q2x)
√
(qS+t − κ2q2x−1)(qS+t − κ2q2x+1)

×
(
(1− qx)(qS+t − qT+x)(qN+S − qx)(qN+t − qx)

× (qS − κ2qN+x)(qt − κ2qN+x)(qT − κ2qx)(qS+t − κ2qx)
) 1

2
.

(4.7)

We have for all seven cases in (4.6):

1− qx ∼ 1, qS+t − qT+x ∼ qS+t, qN+S − qx ∼ −qx, qN+t − qx ∼ −qx.

Thus, it remains to address the product of the four other factors that contain κ. When x < 1
2(S+t),

the dominant contribution coming from the denominator in (4.7) is κ−4q−4x. Let us expand:[
κ−4q−4x−N+1/2

√
qS+t+2x(qS − κ2qN+x)(qt − κ2qN+x)(qT − κ2qx)(qS+t − κ2qx)

]2
= κ−8q−6x−2N+S+t+1

[
q2S+2t+T − κ2qS+t+x

(
qN+S+T + qN+t+T + qS+t + qT

)
+ κ4q2x

(
q2N+S+t+T + qN+2S+t + qN+S+2t + qN+S+T + qN+t+T + qS+t

)
− κ6qN+3x

(
qN+S+t + qN+T + qt + qS

)
+ κ8q2N+4x

]
.

(4.8)

We consider the limits of (4.8) in the first three cases in (4.6), namely, when x < 1
2(S+ t).

Case x < (S + t − N)/2. One can readily check that the limit of each individual power of q in
(4.8) is 0. This establishes the first case in (4.6).

Case x = (S+ t− N)/2. Setting ⌊Lx⌋ = 1
2(S + t−N) and x = ∆x+ 1

2(S + t−N), we see that
the only surviving term in the limit in (4.8) is κ−4q−2N+2S+2t−4x+1 = κ−4q−4∆x+1. Taking the
square root, we get the second case in (4.6).

Case (S + t − N)/2 < x < (S + t)/2. In this case, the expansion (4.8) gets an additional factor
qN−S−t+2⌊Lx⌋ coming from Cx. This factor keeps the only surviving term in the expansion (4.8)
to be the same as in the previous case:

κ−4q−2N+2S+2t−4x+1q2(N−S−t+2⌊Lx⌋) = κ−4q4⌊Lx⌋−4x+1 = κ−4q−4∆x+1.

This establishes the third case in (4.6).

Case x = (S+ t)/2. In this case, all terms in the denominator in (4.7) are of the same order:

(qS+t − κ2q2x)
√
(qS+t − κ2q2x−1)(qS+t − κ2q2x+1)

= q2(S+t)(1− κ2q2∆x)
√
(1− κ2q2∆x−1)(1− κ2q2∆x+1).
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Combining the dominant power q−2(S+t) with the prefactor qN coming from Cx, we see that the
numerator in (4.7) behaves as

q∆x+1/2

√
(q

1
2
(S−t) − κ2qN+∆x)(q

1
2
(t−S) − κ2qN+∆x)(qT− 1

2
(S+t) − κ2q∆x)(q

1
2
(S+t) − κ2q∆x)

∼ q∆x+1/2
√
κ4q2∆x = −κ2q2∆x+1/2.

This yields the fourth case in (4.6).

Remaining cases x > (S + t)/2. When x > 1
2(S + t), the dominant contribution from the

denominator is q−2(S+t), and the remaining limits in (4.7) are obtained in a symmetric manner.
We omit the details.

Lemmas 4.1 and 4.3 complete the proof of Proposition 1.3 from the Introduction. There, we
assumed that N < T and tl < t < tr. Let us record the limits in all the other cases when (t, x)
belongs to a region with asymptotically no nonintersecting paths. These are the lighter-colored
regions inside the hexagons in the exact samples in Figures 4 and 5. Recall the notation W±

(Definition 3.3).

Lemma 4.4. Assume that t /∈ (tl, tr) and (t, x) ∈ W+ ∪W−. Then Cx = qN+T , and the limits
as in the two previous lemmas take the form

lim
L→+∞

qN+T
(
q−N+1(1− qN−1)(q−T−N − 1)−B(x̃)−D(x̃)

)
= −1,

lim
L→+∞

qN+T

√
wqR(x̃− 1)

wqR(x̃)
B(x̃− 1) = lim

L→+∞
qN+T

√
wqR(x̃)

wqR(x̃− 1)
D(x̃) = 0.

(4.9)

Proof. The proof is very similar to the cases in the proofs of Lemmas 4.1 and 4.3 when (t, x) is
outside the waterfall region, so we omit it.

4.2 Diagonalization on the center line

We can explicitly diagonalize the operator that emerges in the limit along the center line. Define(
Tctrg

)
(x) := dctr(x+ 1)g(x+ 1) + actr(x)g(x) + dctr(x)g(x− 1), (4.10)

where

dctr(x) :=
−κ2q2x+1/2

(1− κ2q2x)
√

(1− κ2q2x−1)(1− κ2q2x+1)
, actr(x) :=

−κ2(1 + q)q2x+1

(1− κ2q2x)(1− κ2q2x+2)
,

and we used the variable x ∈ Z instead of ∆x to simplify the notation. Thanks to the exponential
decay of the coefficients as x → ±∞, the symmetric operator (4.10) is bounded in ℓ2(Z), hence
self-adjoint.

Consider the functions

gn(x) := qx(x+1)(−κ2)x
√
q−x − κ2qx+1

n∑
i=0

κ2iq(2i−n)x−i(n−i−1) (q; q)n
(q; q)i(q; q)n−i

, (4.11)

where n = 0, 1, 2, . . . and x ∈ Z.
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Proposition 4.5. The functions gn(x), x ∈ Z, n = 0, 1, 2, . . ., given by (4.11) form an orthogonal
basis in ℓ2(Z) and are eigenfunctions of the operator Tctr. The eigenvalue of gn(x) is qn+1,
n = 0, 1, 2, . . ..

Proof. Define

wctr(x) := q2x(x+1)(−κ2)2x(q−x − κ2qx+1), g̃n(x) :=
gn(x)√
wctr(x)

. (4.12)

For each n ∈ Z≥0, g̃n(x) is a Laurent polynomial in qx which contains powers q(2n−i)x, i = 0, . . . , n.
These Laurent polynomials must be eigenfunctions of the modified operator(

T̃ctrg̃
)
(x) := Bctr(x) g̃(x+ 1) + actr(x) g̃(x) + dctr(x) g̃(x− 1),

where

Bctr(x) := dctr(x+ 1)

√
wctr(x+ 1)

wctr(x)
=

q4(x+1)κ4

(1− κ2q2x+1)(1− κ2q2x+2)
,

dctr(x) := dctr(x)

√
wctr(x− 1)

wctr(x)
=

q

(1− κ2q2x+1)(1− κ2q2x)
.

The eigenrelation
(
T̃ctrg̃n

)
(x) = qn+1g̃n(x), n = 0, 1, . . ., is equivalent to an identity of Laurent

polynomials in qx. The latter identity is verified in a straightforward manner using their explicit
coefficients.

The functions gn(x) belong to ℓ
2(Z) thanks to the rapid decay of the power qx(x+1) at x → ±∞.

Since they are eigenfunctions of Tctr, they are orthogonal in ℓ2(Z).
Each normalized function g̃n(x) ∈ ℓ2(Z, wctr) is a polynomial in (q−x + κ2qx+1) of degree n.

This follows by combining the opposite powers q(2i−n)x and q(n−2i)x with the same q-binomial
coefficients in front. The powers (q−x + κ2qx+1)m, m ∈ Z≥0, span the weighted space ℓ2(Z, wctr).
This implies that the gn(x)’s span ℓ2(Z), and completes the proof.

Proposition 4.5 implies that the operator Tctr has positive spectrum. Note that the orthogonal
spectral projection onto the nonnegative part of the spectrum of Tctr is the identity operator Id
in ℓ2(Z), which has the kernel 1x=y, x, y ∈ Z.

Remark 4.6. The Laurent polynomials g̃n (4.12) are the Stieltjes-Wigert orthogonal polynomials
Sn(y; q) (e.g., see [KS96, Chapter 3.27]), up to normalization and change of variable:

g̃n(x) = q−nx(q; q)n Sn

(
−κ2q2x−(n−1)+ ; q

)
, Sn(y; q) :=

1

(q; q)n
1ϕ1

(
q−n

0

∣∣∣ q;−qn+1y

)
.

The Stieltjes-Wigert polynomials are at the same level of the q-Askey scheme as the q-Hermite
ones, and their orthogonality weight wctr(x) on Z (given by (4.12)) may be thought of as a
q-analogue of the usual Gaussian distribution. However, due to this change of variable, the form
of the difference equation for the g̃n’s in the proof of Proposition 4.5 is very different from the
one for the Stieltjes-Wigert polynomials [KS96, (3.27.5)]. We do not use the connection to the
Stieltjes-Wigert polynomials in Proposition 4.5 or elsewhere in the paper.
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4.3 Convergence of spectral projections

The limits of the difference operator Dscaled (4.1) on the center line and outside the waterfall
region are bounded operators in ℓ2(Z) (namely, Tctr (4.10) and the negative identity (−Id),
respectively). This allows us to obtain the convergence of the correlation kernel Kt (2.21) on a
slice in these parts of the hexagon. We employ the following general result:

Theorem 4.7 ([RS72, combination of Theorems VIII.24(b) and VIII.25(a)]). Assume that AN

and A are self-adjoint operators on the same Hilbert space H, and they have a common essential
domain H0 ⊂ H. Assume that ANφ → Aφ as N → +∞ for all φ ∈ H0.

7 Let a, b ∈ R ∪ {±∞},
a < b, be such that a, b are not eigenvalues of A. Then

P(a,b)(AN )φ → P(a,b)(A)φ as N → +∞ for all φ ∈ H,

where P(a,b)(AN ) denotes the orthogonal spectral projection onto the interval (a, b) corresponding
to the operator AN , and similarly for P(a,b)(A).

Let us now recall the limit regime for the kernel. We assume that the sides of the hexagon
T, S,N grow proportionally to L → +∞ as in (3.1), and the point (t, x) belongs to the scaled
hexagon H (3.2). Recall the notation tl, tr (3.3). We have the following convergence of the
correlation kernel Kt on the center line and outside the waterfall region:

Proposition 4.8 (Convergence of the correlation kernel). We have the following limits of the
correlation kernel Kt on a slice. On the center line, that is N < T, tl < t < tr, x =

1
2(S+ t), and

⌊Lx⌋ = 1
2(S + t), we have

lim
L→+∞

K⌊L t⌋(⌊Lx⌋+∆x, ⌊Lx⌋+∆y) = 1∆x=∆y for all ∆x,∆y ∈ Z. (4.13)

Outside the waterfall region, that is, for (t, x) ∈ W+ ∪W−, we have

lim
L→+∞

K⌊L t⌋(⌊Lx⌋+∆x, ⌊Lx⌋+∆y) = 0 for all ∆x,∆y ∈ Z. (4.14)

Proof. The correlation kernel Kt is the kernel of the orthogonal projection operator in ℓ2(Z) onto
the spectral interval [0,+∞) of the operator Dscaled (4.1). By (2.24), the eigenvalues of Dscaled

around 0 are equal to

{. . . ,−(1− q)(1− qT ), 0, q−1(1− q)(1− qT+2), . . .} ∼ {. . . ,−(1− q), 0, q−1(1− q), . . .},

so, for large L, the spectral projection onto the open interval (−(1 − q)/2,+∞) yields the same
operator Kt.

We now apply the general Theorem 4.7. The operatorDscaled and the limiting operators (−Id)
and Tctr are bounded inH = ℓ2(Z). TakingH0 = ℓ20(Z) (the space of finitely supported functions),
we see that the convergence of the coefficients of Dscaled (Lemmas 4.1, 4.3 and 4.4) implies the
required convergence on the common essential domain H0. This completes the proof.

7The convergence on the common essential domain implies that AN → A in the strong resolvent sense.
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Remark 4.9. Inside the waterfall region but not on the center line, the limiting operators arising
from the coefficients of Dscaled (Lemmas 4.1, 4.3 and 4.4) are not bounded. Moreover, they are
symmetric, but not self-adjoint. One can check that each of these operators has von Neumann
deficiency indices (1, 1). Thus, these limiting operators each possess a one-parameter family of
self-adjoint extensions. Therefore, the general Theorem 4.7 does not immediately apply in these
regions. We do not address the spectral analysis of the limiting non-self-adjoint operators outside
the center line further in this paper.

Proposition 4.8 implies that the probability to find a path at any given location outside the
saturation band P goes to zero. In principle, it does not rule out the presence of individual
random paths that roam in H \P, nor the presence of holes between the paths in the saturation
band. In Section 5 below, we address these questions using a different approach based on the
heuristics discussed in Section 3.3.

5 Concentration in the q-Racah ensemble. Proof of Theorem 1.4

In this section we employ a method different from the one used in Section 4. Specifically, we work
with the explicit probability weights of the q-Racah orthogonal polynomial ensemble (OPE) (2.14)
to derive a concentration-type estimate for the probability that a hole appears in the nonin-
tersecting path ensemble inside the saturation band P ⊂ H (see Definitions 3.1 and 3.3). This
probability is expected to be small because, by Proposition 4.8, the nonintersecting paths do not
typically wander outside the saturation band P as L → +∞. Our objective, however, is to obtain
a uniform bound that applies to every location where paths might stray into H\P, or holes might
appear within P. We establish an exponential upper bound for this probability by considering
the ratio of q-Racah OPE probabilities of two N -particle configurations on the same slice that
differ only by moving one particle from (t, x) to (t, y).

Our plan is as follows. In Section 5.1 we identify the exact leading power of q in this ratio of
the q-Racah OPE probabilities. Then, in Sections 5.2 and 5.3, we bound this leading power in
the asymptotic regime where the sides of the hexagon grow proportionally. These bounds yield
the main result of the section, Theorem 5.11, and complete the proof of Theorem 1.4 from the
Introduction.

5.1 Ratio of the q-Racah probabilities

Fix the dimensions of the hexagon (T, S,N) as in Section 2.1, and consider two points (t, x)
and (t, y) on a given vertical slice. Let us move a particle from (t, x) to (t, y), and estimate the
ratio of the corresponding q-Racah OPE probabilities (2.14). Let z⃗ = (z1 < . . . < zN−1) (with
zi ̸= x, y for all i) denote the configuration of the particles which do not move. Recall the q-Racah
orthogonality measure wqR (2.6) on the segment {0, 1, . . . ,M}, the four zones (2.15)–(2.18) inside
the hexagon for the q-Racah parameters (M,α, β, γ, δ), and the notation µ(x) (2.8) and x̃ (2.27).
We have

P (X(t) = z⃗ ∪ {x})
P (X(t) = z⃗ ∪ {y})

=
wqR(x̃)

wqR(ỹ)

N−1∏
i=1

(
µ(x̃)− µ(z̃i)

µ(ỹ)− µ(z̃i)

)2

. (5.1)
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Our first objective is to extract the leading powers of q in this product. Denote

k :=
log(−κ2)

log q
∈ R, so that −κ2 = qk. (5.2)

Define the functions

Wk(x | T, S,N, t) := S + t− 2x− 1 + min(S,N + x+ k+ 1)

+ min(t,N + x+ k+ 1) + min(S + t,k+ 2x+ 1)

−min(T, x+ k+ 1)−min(S + t, x+ k+ 1)−min(S + t,k+ 2x+ 3),

(5.3)

and

Gk(x, y, z | A) := (z − x)− + (z −A+ x+ k+ 1)− − (z − y)− − (z −A+ y + k+ 1)−. (5.4)

In (5.4), we used the notation (4.2). In the next two Lemmas 5.1 and 5.2 we obtain estimates
(up to multiplicative constants) for the factors in the product in (5.1). These estimates are given
in terms of the functions Wk and Gk.

Lemma 5.1. There exists an absolute constant c1 = c1(q, κ) > 0 not depending on the size of
the hexagon, such that for all T, S,N, t and points x, y on the t-th vertical slice of the hexagon,
we have

c1 < q
sgn(x−y)

∑max(x,y)−1
u=min(x,y)

Wk(u|T,S,N,t) · w
qR(x̃)

wqR(ỹ)
< c−1

1 . (5.5)

Proof. We use the first formula in (2.29) which provides a unified expression for the ratio wqR(ũ)
wqR(ũ+1)

in all four zones in the hexagon. From each linear factor in this product, we extract q raised to
the minimal power. In the factors not containing κ, the dominating term which we extract
is always the same. For example, in (qN+t − qx+1), we always have N + t ≥ x + 1, so the
dominating term is qx+1. In factors containing κ, we write −κ2 = qk, and include expressions

involving k in the comparison. The combined power of q thus arising from wqR(ũ)
wqR(ũ+1)

becomes

equal to Wk(u | T, S,N, t) (5.3). Representing wqR(x̃)
wqR(ỹ)

as a telescoping product of consecutive

ratios, we get the desired power of q in (5.5). Indeed, if x < y, then the compensating sum is

from x to y − 1 with the minus sign, and if x > y, then we write wqR(x̃)
wqR(ỹ)

=
(wqR(ỹ)
wqR(x̃)

)−1
, and the

compensating sum is from y to x− 1, but with the plus sign.

There could be a multiplicative correction in extracting the power qWk(u|T,S,N,t) from wqR(ũ)
wqR(ũ+1)

if u ∈ Z is such that both terms in a given linear factor in (2.29) are comparable (for example, if
qS+t ∼ −κ2q2u+1). However, the product over all such values u is bounded, as one can see from
the following computation:∏

u∈Z
(qA − κ2qu)q−min(A,u+k) = (−q{k}; q)∞(−q1−{k}; q)∞, (5.6)

where {k} = k − ⌊k⌋ is the fractional part of k. The right-hand side of (5.6) is bounded away
from 0 and +∞ by an absolute constant depending only on q and κ. Combining these bounds
for the six linear factors in (2.29) containing κ, we obtain the multiplicative bounds by c1, c

−1
1

in (5.5). This completes the proof.

29



Lemma 5.2. There exists an absolute constant c2 = c2(q, κ) > 0 not depending on the size of
the hexagon, such that for any t, any configuration z⃗ = (z1 < . . . < zN−1), and any x, y on the
t-th vertical slice of the hexagon (with zi ̸= x, y for all i), we have

c2 < q−2
∑N−1

i=1 Gk(x,y,zi|S+t) ·
N−1∏
i=1

(
µ(x̃)− µ(z̃i)

µ(ỹ)− µ(z̃i)

)2

< c−1
2 . (5.7)

Proof. For pairwise distinct x, y, zi on the t-th vertical slice inside the hexagon, in all four zones
(2.15)–(2.18), we have(

µ(x̃)− µ(z̃i)

µ(ỹ)− µ(z̃i)

)2

=

(
1− qzi−x

1− qzi−y

1− κ2qzi−S−t+x+1

1− κ2qzi−S−t+y+1

)2

. (5.8)

Extracting the smallest power of q from each linear factor in (5.8), exactly as in the proof of
Lemma 5.1, we obtain the factor q2Gk(x,y,zi|S+t) (see (5.4)). This provides the required power of
q in (5.7). The multiplicative bounds by c2 and c−1

2 follow in the same way as in Lemma 5.1.

5.2 Minimizing over the (N − 1)-point configurations

By Lemmas 5.1 and 5.2, to estimate the ratio (5.1) of the q-Racah OPE probabilities, it suffices
to consider the exponent

Ek(x, y) = Ek(x, y | T, S,N, t | z⃗)

:= − sgn(x− y)

max(x,y)−1∑
u=min(x,y)

Wk(u | T, S,N, t) + 2

N−1∑
i=1

Gk(x, y, zi | S + t).
(5.9)

We aim to find pairs (x, y) for which Ek(x, y) is positive and grows with L. If this is the case,
then it is advantageous (under the q-Racah OPE measure) to replace the configuration z⃗ ∪ {x}
by z⃗ ∪ {y}. For an integer A, denote

dAk (x; y) :=
∣∣x− 1

2(A− k− 1)
∣∣− ∣∣y − 1

2(A− k− 1)
∣∣ , (5.10)

where k is given by (5.2). Let us begin to lower bound (5.9) by first picking a configuration z⃗
which minimizes the second sum:

Lemma 5.3. Fix A ∈ Z, and let dAk (x; y) > 0. Then for any (N − 1)-point configuration z⃗ in Z,
we have

N−1∑
i=1

Gk(x, y, zi | A) ≥ min
{∑

i∈I
Gk(x, y, i | A),

∑
i∈I′

Gk(x, y, i | A)
}
, (5.11)

where I and I ′ are (N − 1)-point intervals in Z defined as

I :=
[
⌊12(A− k− 1)⌋ − ⌊N−1

2 ⌋+ 1, ⌊12(A− k− 1)⌋+ ⌊N2 ⌋
]
∩ Z,

I ′ :=
[
⌊12(A− k− 1)⌋ − ⌊N2 ⌋+ 1, ⌊12(A− k− 1)⌋+ ⌊N−1

2 ⌋
]
∩ Z.

(5.12)

See Remark 5.4 below for a discussion of the intervals I and I ′ (5.12).
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Figure 6: The plot of Gk(x, y, z | A) as a function of z, where x = 4, y = 10, A = 15, and k = 4.3.

Proof of Lemma 5.3. Under the assumptions on x, y, Gk is nonpositive as a function of z. More-
over, it weakly decreases for z ≤ 1

2(A − k − 1), weakly increases afterwards, and stays constant
in an interval around 1

2(A− k− 1). See Figure 6 for an illustration.
This behavior of Gk implies that to minimize the sum (5.11), we should pick the N − 1 points

zi to be as close as possible to the midpoint 1
2(A−k−1). This is achieved by densely packing the

zi’s together, symmetrically around the middle point 1
2(A− k− 1). Therefore, the configuration

z⃗ must fill the interval I or I ′ (5.12).
The intervals I and I ′ are the same for odd N . For even N , we need to account for the

(possibly non-integer) shift in one of the strictly monotone parts of the plot in Figure 6 which
arises because of the presence of k. This completes the proof.

Remark 5.4. The shift-by-one difference between the intervals I and I ′ in Lemma 5.3 matters
only for even N . Then the two sums in the right-hand side of (5.11) differ by∣∣∣Gk(x, y, ⌊12(A− k− 1)⌋+N/2 | A)− Gk(x, y, ⌊12(A− k− 1)⌋ −N/2 + 1 | A)

∣∣∣.
One can check that this expression is always ≤ 1, and thus the difference between I and I ′ will
be inessential for our asymptotic estimates in Section 5.3 below.

Notice that in Lemma 5.3, we tacitly assumed that the minimizing configuration of the N − 1
particles z⃗ fits in an interval around the middle point 1

2(A− k− 1) = 1
2(S + t− k− 1). However,

in Ek(x, y) (5.9), depending on T, S,N, t, the middle point may be at a distance less than ∼ N/2
from the boundary of the hexagon. In these cases, the minimizing configuration z⃗ must still
be densely packed, but contained in an interval bordering the boundary of the hexagon. This
corresponds to t being outside the waterfall bounds ⌊Ltl⌋ ≤ t ≤ ⌊Ltr⌋. In more detail, we have:

Lemma 5.5. Fix A ∈ Z, and let dAk (x; y) > 0. Assume that the configuration z⃗ is restricted to
an interval a ≤ z1 < . . . < zN ≤ b, and

a ≥ ⌊12(A− k− 1)⌋ − ⌊N−1
2 ⌋+ 1 or b ≤ ⌊12(A− k− 1)⌋+ ⌊N−1

2 ⌋. (5.13)

Then for any such restricted (N − 1)-point configuration z⃗, we have in the two cases in (5.13),
respectively:∑N−1

i=1
Gk(x, y, zi | A) ≥

∑a+N−2

i=a
Gk(x, y, i | A) or ≥

∑b

i=b−N+2
Gk(x, y, i | A).
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Proof. This is established similarly to the proof of Lemma 5.3.

Lemmas 5.3 and 5.5 establish a lower bound for the second sum in the leading q-power
Ek(x, y) (5.9) over all configurations z⃗. The minimizing configuration z⃗ is always densely packed.
For uniformity of notation, we denote it by z⃗∗ = {z0, z0 + 1, . . . , z0 +N − 2}.

In our estimates, the point y (into which we move the particle from x) is in the saturation band.
This allows us to strengthen (increase) the lower bounds of Lemmas 5.3 and 5.5 by recalling that
the configuration z⃗ must satisfy y ̸= zi for all i. Thus, instead of y, the minimizing configuration z⃗
must include one of the particles at distance 1 from the boundary of z⃗∗. The next statement,
which formalizes this observation, is straightforward.

Lemma 5.6. In the setting of Lemma 5.3 or 5.5, assume that y ∈ z⃗∗, where z⃗∗ is the densely
packed configuration defined above. Then for any (N − 1)-point configuration z⃗ in Z satisfying
zi ̸= x, y for all i (and additional restrictions of Lemma 5.5, if applicable), we have

N−1∑
i=1

Gk(x, y, zi | A) ≥
z0+N−2∑
i=z0

Gk(x, y, i | A)

− Gk(x, y, y | A) + min
{
Gk(x, y, z0 − 1 | A),Gk(x, y, z0 +N − 1 | A)

}
.

(5.14)

The first line of (5.14) coincides with the bound established in Lemmas 5.3 and 5.5. In
the proof of Lemma 5.10 below, we will show that the terms appearing in the second line are
non-negative; hence, the lower bound in (5.14) is indeed stronger.

5.3 Estimates of the leading power and the probability of a hole

If the configuration z⃗ = z⃗∗ = {z0, z0 + 1, . . . , z0 +N − 2} is densely packed, then we can rewrite
the leading q-power Ek(x, y | T, S,N, t | z⃗∗) (5.9) as a discrete integral between x and y:

Lemma 5.7. With the above notation, we have

Ek(x, y | T, S,N, t | z⃗∗) = sgn(y − x)
∑max(x,y)−1

u=min(x,y)
Hk(u, z0 | T, S,N, t), (5.15)

where

Hk(u, z0 | T, S,N, t) := Wk(u | T, S,N, t) + 2
[
(z0 − S − t+ u+ k+ 1)− − (z0 − u− 1)−

− (z0 − S − t+ u+N + k)− + (z0 − u+N − 2)−
]
.

(5.16)

Proof. This follows by two telescopings. First, observe that

Gk(x, y, z | A) = sgn(y − x)
∑max(x,y)−1

u=min(x,y)
gk(u, z | A),

where

gk(x, z | A) = (z − x)− + (z −A+ x+ k+ 1)− −
(
(z − x− 1)− + (z −A+ x+ 1 + k+ 1)−

)
.

Then, the sum of Gk(x, y, i | A) over i ∈ z⃗ = z⃗∗ becomes

2 sgn(y − x)
∑max(x,y)−1

u=min(x,y)

∑z0+N−2

z=z0
gk(u, z | S + t).

The inner sum telescopes to the last four terms in (5.16), and we are done.
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Let us interpret Hk (5.16) viewed as a function of u through cumulative distribution functions
(cdfs) of Lebesgue measures on certain segments of R. Denote the cdf of the density 1 Lebesgue
measure on [A,B] by FA,B(u). The next statement is checked directly:

Lemma 5.8. We have

Hk(u, z0 | T, S,N, t) = S + t− 2u− 1− FS−N−k−1,T−k−1(u)− Ft−N−k−1,t+S−k−1(u)

+ 2Fz0−1,z0+N−2(u) + 2FS+t−N−k−z0,S+t−1−k−z0(u) + 2F 1
2
(S+t−k−1)−1, 1

2
(S+t−k−1)(u).

(5.17)

Recall that our limit regime (3.1) is T = ⌊LT⌋, S = ⌊LS⌋, N = ⌊LN⌋, t = ⌊Lt⌋, and L → +∞.
We are interested in the regime when T > N and tl < t < tr (see (3.3) for the notation), that
is, when there is waterfall behavior at the t-th vertical slice of H. In the other cases when there
is no waterfall on the t-th vertical slice (either N < T and t /∈ [tl, tr], or N > T), one can use
Lemmas 5.3 and 5.5 to 5.8 to obtain exponential estimates similarly to Lemmas 5.9 and 5.10
below. They will imply that the nonintersecting paths are clustered when they have slope 0 or 1,
which corresponds to the frozen behavior of the paths. We do not explicitly formulate these
similar estimates here, as they are not needed for the waterfall region.

We begin with a simpler exponential estimate of order L2, which illustrates our approach
when the point y is inside the saturation band while x is outside.

Lemma 5.9. Let tl < t < tr, ∣∣y − S+t
2

∣∣ ≤ 1
2N,

∣∣x− S+t
2

∣∣ > 1
2N,

such that the points (t, x) and (t, y) are inside H. There exists a constant c > 0 depending on
T, S,N, t,k,

∣∣x− S+t
2

∣∣− 1
2N, such that for any z⃗ with x, y ̸= zi for all i, any fixed ∆x,∆y ∈ Z, and

any L large enough, we have

Ek(x, y | T, S,N, t | z⃗) > cL2, x = ⌊Lx⌋+∆x, y = ⌊Ly⌋+∆y.

Proof. We can use the estimate of Lemma 5.3, since the condition dS+t
k (x; y) > 0 (5.10) holds

for large enough L. Let us lower bound the expression Ek(x, y | T, S,N, t | z⃗∗) given by (5.15)
and (5.17). Since our slice contains the waterfall region, we have L−1z0 → 1

2(S + t − N) as
L → +∞. The function Hk grows proportionally to L:

Hk

(
⌊Lu⌋, z0 | T, S,N, t

)
= L

(
S+ t− 2u− FS−N,T(u)− Ft−N,t+S(u) + 4F 1

2
(S+t−N), 1

2
(S+t+N)(u)︸ ︷︷ ︸

=:H(u)

)
+O(1). (5.18)

To see that the error terms are indeed of order O(1), observe that∣∣F⌊La⌋+∆a,⌊Lb⌋+∆b(⌊Lu⌋)− LFa,b(u)
∣∣ = L

∣∣FL−1⌊La⌋+L−1∆a,L−1⌊Lb⌋+L−1∆b(L
−1⌊Lu⌋)− Fa,b(u)

∣∣
≤ |∆a|+ |∆b|+ 3,

uniformly in u.
The last cdf in (5.17) corresponds to a distribution supported on an interval of length 1, and

so it is of order O(1) and can be incorporated into the error term. Let us deal with the other
four cdf terms in (5.17).
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The discrete integral (5.15) of Hk is the Riemann sum of a continuous integral from x to y,
which provides one more power of L in the asymptotics. Namely, we have

Ek(x, y | T, S,N, t | z⃗) ≥ L2

ˆ y

x
H(u)du+O(L).

The integrand H(u) defined in (5.18) is a piecewise linear function. One readily sees that
H(u) = 0, u ∈

[
1
2(S+ t− N), 12(S+ t+ N)

]
,

H(u) > 0, u < 1
2(S+ t− N),

H(u) < 0, u > 1
2(S+ t+ N),

see Figure 7, right, for an illustration. Under our assumptions on x, y, the integral from x to y is
always positive, which produces the desired estimate.
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Figure 7: Left: The plot of L−1Hk(⌊Lu⌋, z0 | T, S,N, t) as a function of u. Right: The plot of
its continuous analogue H(u) on a larger interval. The parameters are (T,S,N) = (4, 2, 1), t = 2,
k = −2.2, and L = 25, and the saturation band is (1.5, 2.5). In the left plot, the values close to
zero are equal to ±L−1.

When x can be close to the boundary of the saturation band, we need a more delicate estimate.

Lemma 5.10. Assume that tl < t < tr and y = ⌊Ly⌋ + ∆y, where y is in the saturation band,
that is,

∣∣y − S+t
2

∣∣ ≤ 1
2N. Let x be such that dS+t

k (x; y) > K. For any δ > 0, sufficiently large fixed
K > 0, all L large enough, and any configuration z⃗ with x, y ̸= zi for all i, we have

Ek(x, y | T, S,N, t | z⃗) > min
{
1
8 d

S+t
k (x; y), δL

}
. (5.19)

In Lemma 5.10 we assume that the parameters T, S,N, t scale with L in the usual way, and that
y, lying inside the saturation band, also scales with L. For x we require that it stay at distance
at least K from both y and the point S + t − k − 1 − y (the mirror image of y with respect to
the midpoint of the saturation band), that is, dS+t

k (x; y) > K (recall the notation (5.10)). The
constant K may depend on T,S,N, t,k, δ but not on L. This allows x to be close to the boundary
of the saturation band, and even go inside the band.

Note that if x/L → x and x /∈ {y,S+ t− y}, then the right-hand side of (5.19) grows as O(L),
which produces an upper bound exp(−const · L) for the ratio of the q-Racah probabilities (5.1).
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Proof of Lemma 5.10. Throughout the proof, we assume that x is to the left of the midpoint of
the saturation band 1

2(S + t− k− 1). The other case is analogous.

Case 1. When x < (S+ t−N)/2−α
√
L for some sufficiently large constant α > 0 (independent

of L), an argument analogous to the proof of Lemma 5.9 immediately yields a lower bound of
order δL. Indeed, consider the discrete integral of Hk in (5.15) taken from (S+ t−N)/2−α2

√
L

to (S+t−N)/2−α1

√
L with α2 > α1 > 0. Because Hk is linearly decreasing on this interval with

slope at most −1, this integral is of magnitude βL. By choosing α1 large enough (still independent
of L) we can make the constant β arbitrarily large. The resulting positive contribution βL offsets
the discrete integral of Hk(u) = ±1 over u inside the saturation band, which can be negative and
is of order O(L). We analyze this negative contribution in the next case.

Case 2. It remains to consider the case when x > (S + t − N)/2 − α
√
L for some α > 0. We

use Lemma 5.6, and lower bound the right-hand side of (5.14). As in Lemmas 5.7 and 5.8, we
can rewrite the first sum over i = z0, z0 +1, . . . , z0 +N − 2 (this is the sum over z⃗∗) as a discrete
integral of Hk between x and y. Under our hypotheses, this discrete integral may be negative.
However, we can lower bound it for large L as

sgn(y − x)

max(x,y)−1∑
u=min(x,y)

Hk(u, z0 | T, S,N, t) > −dS+t
k (x; y)− C(K,k), C(K,k) > 0. (5.20)

Indeed, −dS+t
k (x; y) is (up to an additive constant) equal to

sgn(y − x)

max(x,y)−1∑
u=min(x,y)

(
−1u<(S+t−k−1)/2 + 1u>(S+t−k−1)/2

)
,

where the above summand mimics Hk in the saturation band, see Figure 7, left. The additive
constant C(K,k) in (5.20) is independent of L. This constant accounts for discrete effects coming
from the presence of k, and these effects are negligible for large L. When x is in Case 1, the
right-hand side of (5.20) can be lower bounded by −β′L for fixed β′ > 0. Thus, we obtain a
bound of order δL in Case 1, which completes the proof of that case.

Continuing with Case 2, notice that for y in the saturation band, we have the extra second
line in (5.14). This second line turns out to be nonnegative. More precisely, to complete the
proof, it remains to show that for large L and for x, y satisfying our assumptions, we have

2min
{
Gk(x, y, z0−1 | S+t),Gk(x, y, z0+N−1 | S+t)

}
−2Gk(x, y, y | S+t) > 5

4 d
S+t
k (x; y). (5.21)

Let us derive the estimate (5.21) for large L from its limiting version. To obtain the latter, we
replace (x, y, S, t,N) by (x, y, S, t,N), and set k = −1 (which eliminates the additive constants
k+ 1 in Gk and dS+t

k ). We also replace z0 − 1 and z0 +N − 1 by 1
2(S + t−N) and 1

2(S + t+N),
respectively. Observe that then G−1(x, y,

1
2(S + t−N) | S+ t) = G−1(x, y,

1
2(S + t+N) | S+ t), so

no minimum is required in (5.21).
The resulting difference of the two sides in the limiting version of (5.21) has the form

2G−1(x, y,
1
2(S + t− N) | S+ t)− 2G−1(x, y, y | S+ t)− 5

4 d
S+t
−1 (x; y). (5.22)
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Observe that (5.22) is invariant under simultaneous shifts of x, y by B and S+ t by −2B, so we
can assume that S+ t = 0. Moreover, (5.22) is homogeneous under the simultaneous rescaling of
x, y,N, so we can set N = 1. The resulting expression is an even function separately in x and y,
so we can further assume that x ≥ y > 0 (note that d0−1(x; y) = |x| − |y| must be nonnegative).
Then, the resulting specialization of (5.22) has the form

3
4 (x− y) + (1− 2x)− − (1− 2y)−. (5.23)

This explicit function is positive for 0 < x < 4
5 and 0 ≤ y ≤ min{x, 4−5x

3 }, see Figure 8.

Figure 8: The plot of the function (5.23) for x ≥ y > 0, and its horizontal cross-section at
height zero. We see that the positive part of the function lies above the triangle with vertices
(0, 0), (45 , 0), and (12 ,

1
2).

Since (5.23) is piecewise linear, we conclude that (5.21) holds for x > (S + t − N)/2 − γL,
where the constant γ > 0 depends only on the distance from y to the boundary of the saturation
band. This range is larger than the assumption x > (S + t−N)/2− α

√
L, so we are done with

Case 2. This completes the proof.

We can now formulate and prove the main result of this section:

Theorem 5.11. Let the parameters T, S,N, t grow proportionally to L as in (3.1). Fix their
scaled values T, S,N, t. For any ε > 0, there exists c > 0 (depending on T, S,N, t, ε) such that

P
(
there exists a hole in the nonintersecting path ensemble at some point (t, y),

where tl + ε <
t

L
< tr − ε and

∣∣∣∣ yL − S+ t

2

∣∣∣∣ < N− ε

2

)
< e−cL,

for all L large enough.

Proof. Fix (t, y) satisfying the hypotheses of the theorem. We need to upper bound
∑

C : y/∈C
P[C],

where the sum is over all N -particle configurations on the t-th vertical slice of the hexagon. Due

36



to the assumption on y, for each such C, there exists xC such that, by Lemma 5.10, we have the
bound

P[C] < qε
′L P[(C ∪ {y}) \ {xC}], (5.24)

where ε′ > 0 depends on ε. Indeed, since y is (Lε/2)-inside the waterfall region, we can pick a
particle xC with dS+t

k (xC ; y) positive and of order L. In other words, since not all particles can fit
(Lε/4)-inside the waterfall region, we can pick a particle xC which did not fit. Then, the estimate
(5.19) from Lemma 5.10 immediately leads to the desired bound (5.24).

To bound the sum over C, let us rewrite it as∑
C : y/∈C

P[C] < qε
′L
∑
x

∑
C : y/∈C
xC=x

P[(C ∪ {y}) \ {xC}] < const · Lqε
′L
∑
C

P[C] ≤ const · Lqε
′L,

where the sum over x on the t-th vertical slice produces a factor O(L), and we bound the sum
over some configurations by the sum over all configurations, which is at most 1.

Thus, we have obtained an exponential upper bound on the probability that a hole appears at
(t, y). This bound is uniform over all (t, y) such that tl+ε < t/L < tr−ε and |y/L− (S+ t)/2| <
(N− ε)/2. Applying a union bound over all such pairs (t, y) yields the desired result.

Using Theorem 5.11, we can enlarge the region where the correlation kernel Kt converges to
the identity to the whole slice inside the waterfall region:

Corollary 5.12. Let N < T, tl < t < tr, and
1
2(S+ t− N) < x < 1

2(S+ t+ N). Then

lim
L→+∞

K⌊L t⌋(⌊Lx⌋+∆x, ⌊Lx⌋+∆y) = 1∆x=∆y for all ∆x,∆y ∈ Z. (5.25)

Corollary 5.12 complements Proposition 4.8 which dealt with the center line and the regions
outside the waterfall.

Proof of Corollary 5.12. The clustering of the paths (Theorem 5.11) immediately implies that all
local correlations (in the vertical direction) inside the waterfall region go to one. This means that
all principal minors of K⌊L t⌋ converge to 1. Since the one-dimensional kernel Kt(x, y) living on
a slice is symmetric in (x, y), we conclude that all its off-diagonal elements converge to 0. This
completes the proof.

We have completed the proof of Theorem 1.4 from the Introduction.

6 Correlations across vertical slices

In this section, we recall the full two-dimensional correlation kernel K(s, x; t, y) of the q-Racah
nonintersecting paths ensemble from [BGR10, Section 7], together with the inverse Kasteleyn
matrix for the q-Racah measure on lozenge tilings of the hexagon (equivalently, on dimer config-
urations on the underlying hexagonal grid). We also present the pre-limit correlation kernel of
the barcode process, which is the one-dimensional random stepped interface appearing inside the
waterfall region. In the last part (Section 6.5), we prove several partial asymptotic results that
point toward the limiting barcode kernel, which will be discussed in Section 7 below.
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Remark 6.1. We focus in this section and the next on the first parameter zone of the hexagon,
see (2.15). Doing so streamlines the notation and simplifies several computations. The remaining
three zones, (2.16)–(2.18), can be treated in exactly the same way, with only straightforward
modifications.

6.1 Two-dimensional kernel and gauge transformations

Recall from Section 2.5 the two-dimensional correlation kernel K(s, x; t, y) which encodes the
distribution of the q-Racah nonintersecting path ensemble. Here, we present a representation of
K in terms of the q-Racah orthogonal polynomials first obtained in [BGR10, Section 7.1]. This
representation extends the kernel Kt(x, y) = K(t, x; t, y) from Proposition 2.7. This extension is
an instance of a general principle [Bor11, Section 4] for correlation kernels of measures given by
products of determinants.

Recall the notation of the orthonormal q-Racah polynomials fn(x) (2.22), and let f t
n(x) denote

the specialization of fn(x) onto the t-th vertical slice of the hexagon. That is, in f t
n(x), we have

substituted the q-Racah parameters (α, β, γ, δ) in terms of the hexagon parameters T, S,N, t,
assuming that t ≤ min(S − 1, T − S − 1) since we work in the first zone (2.15). Similarly, denote
by wt(x) the weight function wqR(x) (2.6) specialized to the t-th slice. From (2.6), we have in
the first zone (2.15):

wt(x) =
qx(2N+T−1)(q1−N−S ; q)x(q

1−N−t; q)x(q
1−Tκ2; q)x(q

1−S−tκ2; q)x
(q; q)x(q1−S−t+T ; q)x(qN−S+1κ2; q)x(qN−t+1κ2; q)x

1− κ2q1−S−t+2x

1− κ2q1−S−t
. (6.1)

To connect to formulas from [BGR10], it is more convenient to renormalize the weight function
wt as in [BGR10, Theorem 4.1]. Indeed, while the functions f t

n(x) (orthonormal in the standard
ℓ2(R) space on the t-th slice) are defined canonically, the weight function wt(x) may be gauge
transformed into w̃t(x) = λ(t)wt(x), where λ(t) is any nonvanishing function of t which does not
depend on x, but may depend on the hexagon parameters T, S,N . This gauge transformation
does not affect the fixed-slice kernel Kt(x, y), but modifies K(s, x; t, y) into

K̃(s, x; t, y) = K(s, x; t, y)
√
λ(s)/λ(t). (6.2)

Clearly, the determinants (2.20) of the new kernel K̃ are the same as those of the original kernel,
so this change does not affect the determinantal process.

Denote the normalization of the q-Racah weight in [BGR10, Theorem 4.1] by w̃t(x). Let us
pick the gauge factor λ(t) to be

λ(t) := (−1)t
w̃t(x)

wt(x)
=

(−1)tq
1
2
t(2N+t−1)(qNκ2; 1q )t(q

T−S ; 1q )t

(qN ; q)t(q1−Sκ2; 1q )t

× (−1)S(1− κ2q1−S)

(1q ;
1
q )N−1(

1
q ;

1
q )N+S−1(q; q)T−S(q1−Sκ2; q)N (q1−Tκ2; q)N+T

.

(6.3)

These these factors are independent of x. Note that the product in the second line in (6.3) is
also independent of t, so it does not play a role in gauge transformations. We included it only
for completeness.
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Denote

at0(x) := (1− qx+T−t−S)
1− κ2qx+N−t

1− κ2q2x−t−S+1
;

at1(x) := qT+N−1−t(qx−S−N+1 − 1)
1− κ2qx−T+1

1− κ2q2x−t−S+1
.

(6.4)

Define

C̃t
n :=

(
(qn−t−N − 1)(1− qT+N−t−n−1)

) 1
2 . (6.5)

By [BGR10, (24)], we have

C̃t
nf

t+1
n (x) =

√
w̃t(x− 1)

w̃t+1(x)
f t
n(x− 1)at1(x− 1) +

√
w̃t(x)

w̃t+1(x)
f t
n(x)a

t
0(x) (6.6)

for all n and all x on the t-th vertical slice.

Remark 6.2. We have changed the signs of at0(x), a
t
1(x) (6.4) compared to the coefficients in

[BGR10, (24)] (given by Lemma 7.4 in that paper), and also multiplied C̃t
n by an extra factor i to

make the expression under the square root in (6.5) positive. These sign changes are convenient
in our case of imaginary κ, and come from the sign (−1)t in (6.3).

With the notation developed above in this subsection, we can now write down the two-
dimensional correlation kernel:

Proposition 6.3 ([BGR10, Theorem 7.5]). The two-dimensional correlation kernel K̃(s, x; t, y)
of the q-Racah nonintersecting path ensemble is given by

K̃(s, x; t, y) =


N−1∑
n=0

(C̃t
nC̃

t+1
n . . . C̃s−1

n )−1fs
n(x)f

t
n(y), s ≥ t;

−
∑
n≥N

(C̃s
nC̃

s+1
n . . . C̃t−1

n )fs
n(x)f

t
n(y), s < t.

(6.7)

Clearly, for s = t, expression (6.7) reduces to the fixed-slice kernel Kt (2.25).

6.2 Operator for transitions between vertical slices

Using (6.6), define the operator Ut by

(
Utf
)
(x) :=

√
w̃t(x− 1)

w̃t+1(x)
at1(x− 1)f(x− 1) +

√
w̃t(x)

w̃t+1(x)
at0(x)f(x), (6.8)

where the coefficients at0(x), a
t
1(x) are given by (6.4). It is useful to view Ut as an operator that

maps functions on the t-th vertical slice to functions on the (t+ 1)-st slice. Recall that the t-th
slice in the first zone (2.15) is {0, 1, . . . , N + t− 1}. In particular, identity (6.6) implies that

(Utf
t
n)(y) = C̃t

nf
t+1
n (y), 0 ≤ n ≤ N + t− 1, 0 ≤ y ≤ N + t. (6.9)
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The (t + 1)-st slice has one more point than the t-th slice. Let us define the (partial) inverse of
Ut as follows:

U−1
t f t+1

n =

{
(C̃t

n)
−1f t

n, 0 ≤ n ≤ N + t− 1;

0, n = N + t.
(6.10)

Note also that C̃t
N+t = 0, while the formula for f t

N+t(y) (2.22) also yields zero for 0 ≤ y ≤ N + t.

The composition U−1
t Ut is the identity operator on the t-th slice, while the composition UtU

−1
t in

the opposite order maps f t+1
N+t to zero, and all the other basis functions f t+1

n , 0 ≤ n ≤ N + t− 1,
to themselves.

The operators (6.8) and (6.10) provide the following operator interpretation of the kernel:

Proposition 6.4 ([BGR10, Section 8]). We have

K̃(s, x; t, y) =


(
U−1
t U−1

t+1 . . .U
−1
s−1

)
y
Ks(x, y), s > t;

Kt(x, y), s = t;

(Ut−1 . . .Us+1Us)y (−1x=y +Ks(x, y)) , s < t.

(6.11)

Here the subscript y indicates that the operators act on functions in the variable y.

Proof. We have for s < t:

K̃(s, x; t, y) = −
∑
n≥N

(C̃s
nC̃

s+1
n . . . C̃t−1

n )fs
n(x)f

t
n(y)

= − (Ut−1 . . .Us+1Us)y
∑
n≥N

fs
n(x)f

s
n(y)

= (Ut−1 . . .Us+1Us)y (−1x=y +Ks(x, y)) ,

where we used the fact that the sum of fs
n(x)f

s
n(y) over all n ≥ 0 produces the identity operator,

since the functions f s
n(x) are orthonormal. Similarly, for s > t, we have:

K̃(s, x; t, y) =
N−1∑
n=0

(C̃t
nC̃

t+1
n . . . C̃s−1

n )−1fs
n(x)f

t
n(y) =

(
U−1
t U−1

t+1 . . .U
−1
s−1

)
y
Ks(x, y), (6.12)

as desired. Note that the application of the inverse operators in (6.12) is valid since in the sum
we have n ≤ N − 1 < N + t.

6.3 Inverse Kasteleyn matrix

The two-dimensional correlation kernel K̃(s, x; t, y) (6.7) describes the determinantal structure of
the nonintersecting paths. As is evident from the correspondence between nonintersecting paths

and lozenge tilings (see Figure 2), K̃ lets us access only the non-horizontal lozenges and , and
it does not distinguish between these two types. These are precisely the lozenges that appear in
the waterfall region (see Figures 4 and 9), and we would like to tell them apart. Therefore, we
must upgrade the correlation kernel to the inverse Kasteleyn matrix which can access all three
types of lozenges. For a general overview of Kasteleyn theory in the context of random dimer
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coverings (and, in particular, lozenge tilings), see [Ken09, Chapter 3]. An expression for the
inverse Kasteleyn matrix through the kernel K̃(s, x; t, y) is given in [BGR10, Section 7.2].

Represent each lozenge in a tiling as an occupied edge of a dimer covering of the underlying
hexagonal lattice. It is useful to coordinatize this lattice as follows. Divide the two-dimensional
triangular lattice (dual to the hexagonal lattice) into black and white triangles (the black triangles
point left, and the white one point right), such that each lozenge is a union of two neighboring
triangles as follows:

(s, x)(t, y)

Let the lattice coordinates of a triangle be the coordinates of the midpoint of its vertical side.
These triangles represent vertices in the hexagonal grid, and lozenges (unions of two neighboring
triangles) correspond to edges included in a dimer covering. To each lozenge, we associate its
white and black triangle’s coordinates. The Kasteleyn matrix has rows and columns indexed by
the white and black triangles, respectively, and is defined by

Kast (t, y; s, x) :=


wq,κ

(
y − t

2 + 1
)
, s = t, x = y;

1, s = t+ 1, x = y + 1;

1, s = t+ 1, x = y;

0, otherwise.

(6.13)

where wq,κ(·) is the weight of a horizontal lozenge (2.3).
The role of the inverse of the matrix (6.13) is that for any (ti, yi) and (si, xi), i = 1, . . . ,m, the

probability that a random lozenge tiling contains all m lozenges [(ti, yi); (si, xi)] (the coordinates
refer to the white and black triangles forming the lozenge) is given by [Ken09, Corollary 3]:

m∏
i=1

Kast(ti, yi; si, xi) · det
[
Kast−1(si, xi; tj , yj)

]m
i,j=1

. (6.14)

Proposition 6.5 ([BGR10, Theorem 7.6]). The inverse Kasteleyn matrix is expressed through
the two-dimensional correlation kernel K̃ (6.7) as follows:

Kast−1 (s, x; t, y) =
G(s, x)

G(t, y)

1s=t1x=y − K̃(s, x; t, y)

wq,κ(x− s
2 + 1)

, (6.15)

where (s, x) and (t, y) are the coordinates of a black (resp., white) triangle. The factor G is

G(t, x) :=
1√
w̃t(x)

(−1)xκ−tqx(T+N−t−1)+t(S/2−1/2)+t(t+1)/4
(
1− κ2q2x−t−S+1

)
(1q ;

1
q )S+N−1−x(q; q)T−S+x−t(κ2qx−T+1; q)T+N−t

. (6.16)

Remark 6.6. The function G(t, x) (6.16) differs from the one in [BGR10, (25)] by the sign (−1)t,
which reflects the sign gauge in the definition of the correlation kernel, see Remark 6.2.
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6.4 Pre-limit barcode kernel for a specific hexagon

Let us now focus on the waterfall region of the q-Racah random lozenge tiling ensemble, see
Figure 9 for an illustration. The one-dimensional random stepped interface (the barcode) we see

Figure 9: Local structure of the one-dimensional random stepped interface in the waterfall region
(see Figure 4 for the global picture). This barcode configuration is encoded as a sequence of par-
ticles (square lozenges, the lighter ones in the figure) and holes (vertical lozenges, the darker ones
in the figure). The binary sequence (encoding particles and holes) for this barcode configuration
is 110110101010110101100101100110100101010101100001101.

in the waterfall region can be represented as a random sequence of square and vertical lozenges,

and . Let us interpret each square lozenge [(t− 1, x); (t, x)] as a particle at t ∈ Z. We may pick
the vertical coordinate x arbitrarily so that (t, x) asymptotically lies in the waterfall region W
(recall Definition 3.1). Indeed, this is possible thanks to the clustering of the nonintersecting paths
in W (which is equivalent to the absence of the horizontal lozenges in W), see Theorem 5.11.
Thus, we arrive at the (pre-limit) barcode point process on Z.

To access the (conjectural) barcode kernel in the limit, throughout the rest of the paper, we
fix a hexagon with the specific scaled side lengths T = 8L and N = S = 4L.8 This leads to the
following definition.

Definition 6.7 (Pre-limit barcode kernel). Let L be a positive integer. Consider the hexagon
with parameters T = 8L, N = S = 4L. Denote T0 := 2L, and X0 := 3L. The point (T0, X0) is in
the first zone of the hexagon (2.15), and asymptotically lies on the center line x = 1

2(t+ S) of the
waterfall region. Let s, t ∈ Z be such that |s|, |t| < L. We define the pre-limit barcode kernel by

Kbarcode
(L) (s, t) := Kast−1 (T0 + s,X0;T0 + t− 1, X0) , (6.17)

where Kast−1 is the inverse Kasteleyn matrix for the q-Racah measure on lozenge tilings of our
specific hexagon. In other words, the pre-limit barcode kernel describes the joint distribution of
the square lozenges around the point (T0, X0) in the waterfall region.

Proposition 6.8. For the hexagon with L-dependent sides as in Definition 6.7, for any m and
any distinct t1, . . . , tm ∈ Z, |ti| < L, we have

P
{
there are square lozenges at (ti + T0, X0), i = 1, . . . ,m

}
= det

[
Kbarcode

(L) (ti, tj)
]m
i,j=1

. (6.18)

Proof. This follows from the general formula (6.14) for the probability of finding a given set of
lozenges in a random tiling. Note that the prefactor involving the Kasteleyn matrix is equal to
1, since we are considering only square lozenges for which the edge weight is 1, see (6.13).

8While we believe that the limiting barcode kernel is the same for any hexagon, a specific choice of side lengths
simplifies many of the formulas in the remainder of this Section 6 and in the next Section 7. See also examples in
Sections 7.4.2 and 7.5.2 below.
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6.5 Asymptotics of inter-slice coefficients and some prefactors

In this subsection, we prove a number of lemmas on the asymptotic behavior of various compo-
nents entering the pre-limit barcode kernel (6.17). Recall that for the rest of the paper we assume
that the hexagon has the specific side lengths T = 8L and N = S = 4L. Moreover, as in (6.17),
we set t = T0 + t = 2L+ t and x = X0 = 3L.

First, we need the following preliminary result. We use the notation and properties of the
Jacobi theta function θq(z) from Appendix A.1.

Lemma 6.9. Let α, β > 0 be fixed. Then

lim
L→∞

(αqL; q)∞
(βqL; q)∞

= 1,

and

lim
L→−∞

(
β

α

)L (−αq−L; q)∞
(−βq−L; q)∞

=
θq(−α)

θq(−β)
.

Proof. The first statement is evident, since both the numerator and the denominator rapidly ap-
proach 1 as L → ∞. The second statement follows from standard properties of the q-Pochhammer
symbols, for example, see [GR04, Exercise 1.1].

Let us denote

a(x) :=

[
−κ2q2x−1

(1− κ2q2x)(1− κ2q2x−1)

] 1
2

, x ∈ 1
2Z. (6.19)

Note that this expression rapidly decays as x → ±∞.

Lemma 6.10. The coefficients of the operator Ut (6.8) have the following asymptotic behavior at
coordinates (T0 + t,X0 + x), where t, x ∈ Z are fixed:

lim
L→∞

q3L

√
w̃T0+t(X0 + x− 1)

w̃T0+t+1(X0 + x)
aT0+t
1 (X0 + x− 1) = q−

t
2 a(x− t

2);

lim
L→∞

q3L

√
w̃T0+t(X0 + x)

w̃T0+t+1(X0 + x)
aT0+t
0 (X0 + x) = q−

t
2 a(x− t

2 + 1
2).

Proof. We have

w̃T0+t(X0 + x− 1)

w̃T0+t+1(X0 + x)
=

q−11L(1− q3L+x)(1− κ2q3L+x)(qt+1 − κ2q2x)(q1−5L+xκ2; q)∞
(qx − q5L)(qt − κ2q2x)(q−5L+xκ2; q)∞

;

w̃T0+t(X0 + x)

w̃T0+t+1(X0 + x)
=

(q−3L−t+x − 1)(qt − q2x+1κ2)(q−3L−t+xκ2; q)∞
(1− q5L−t+x)(qt − q2xκ2)(1− q5L−t+xκ2)(q1−3L−t+xκ2; q)∞

;

aT0+t
1 (X0 + x− 1) =

(qx − q5L)(q5L − κ2qx)

qt+1 − κ2q2x
;

aT0+t
0 (X0 + x) =

(1− q5L−t+x)(1− κ2q5L−t+x)

1− κ2q1−t+2x
.

Using Lemma 6.9, we immediately get the desired limits.
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Lemma 6.11. The ratio of the prefactors G (6.16) in the pre-limit barcode kernel has the following
asymptotic behavior:

lim
L→∞

q−3L(t−1−s) G(T0 + s,X0)

G(T0 + t− 1, X0)wq,κ(X0 − T0+s
2 + 1)

= −it−sq
1
2(

t−1
2 )− 1

2(
s−1
2 )+1−s

√
−κ2

(1− κ2q2−t)(1− κ2q1−s)
.

(6.20)

Proof. One can check that the ratio G(T0+s,X0)
G(T0+t−1,X0) it−1−s is positive for all s, t. Its square is given

by(
G(T0 + s,X0)

G(T0 + t− 1, X0)it−1−s

)2

=
(−1)t+s(qs − κ2q)κ−2s+2t−2q−3L(s−t+1)+t−s

κ2q2 − qt

× (q5L−s+1; q)∞(q3L+t−1; q)∞(q−3L−s+1κ2; q)∞(q5L−s+1κ2; q)∞
(q3L+s; q)∞(q5L−t+2; q)∞(q−3L−t+2κ2; q)∞(q5L−t+2κ2; q)∞

.

By Lemma 6.9, the expression in the second line behaves as ∼
(
q1−sκ2

q2−tκ2

)3L θq(q1−sκ2)
θq(q2−tκ2)

. Using the

quasi-periodicity of the theta function and simplifying, we arrive at the desired result.

Remark 6.12. When the expression (6.20) appears inside the barcode kernel, certain factors

on the right-hand side of (6.20) (specifically it−sq
1
2(

t−1
2 )− 1

2(
s−1
2 )) can be removed through a con-

jugation (gauge transformation) of the correlation kernel. In addition, the factor q−3L(t−s) on
the left-hand side of (6.20) is likewise a conjugation factor applied before taking the limit. The
latter factor is necessary for the convergence of the ratio of the G prefactors, but in the full
barcode kernel, it can be adjusted (by a conjugation) to ensure the convergence of the kernel (see
Conjecture 7.6 below).

7 Barcode kernel. Conjectures and numerical evidence

7.1 Obstacles posed by the limiting inter-slice operator

In Section 6 we expressed the pre-limit barcode kernel Kbarcode
(L) (s, t) (encoding the one-dimen-

sional random stepped interface that emerges in the waterfall region) in terms of the two-dimen-
sional correlation kernel K̃(T0+s,X0;T0+t−1, X0) of the q-Racah nonintersecting path ensemble.
Recall that we focus on the hexagon with the specific side lengths T = 8L and N = S = 4L, and
we set T0 = 2L andX0 = 3L. Thanks to Proposition 6.4, K̃ admits an operator representation via
the family of linear operators UT0+t given by (6.8). Recall that Lemma 6.11 provides additional
explicit scaling and normalization for K̃ to get to Kbarcode

(L) .
Along the center line of the waterfall region, the coefficients of UT0+t converge to expressions

involving the function a(x) (6.19), see Lemma 6.10. This enables us to define the limiting linear
operators:(

Ubarcode
t f

)
(x) := a(x− t

2)f(x− 1) + a(x− t
2 + 1

2)f(x), x ∈ Z or Z+ 1
2 , (7.1)
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so that
q3L+

t
2
(
UT0+tf

)
(X0 + x) ∼

(
Ubarcode
t f

)
(x), L → ∞. (7.2)

The functions Fn(x) defined by (A.2) in Appendix A play the same role for the limiting operators
as the orthonormal q-Racah polynomials f t

n(x) do for the pre-limit ones. Namely, define

F t
n(x) := Fn(x− t−1

2 ), (7.3)

then by Proposition A.2, we have (compare with (6.9)):(
Ubarcode
t F t

n

)
(x) = −qnF t+1

n (x), t, x ∈ Z, n ∈ 1
2Z≥0. (7.4)

A natural idea would be to replace UT0+t with Ubarcode
t in the operator representation of K̃

and expect that the resulting expression (rewritten in terms of the F t
n(x)’s) yields the limit of

Kbarcode
(L) . Let us explain why this seemingly straightforward step in fact requires a considerably

more delicate analysis, which will be carried out in another work.

When q → 1 while qL remains bounded (the regime analyzed in [BGR10, Section 8]), the
operators UT0+t converge to a bounded two-diagonal operator with constant coefficients. In
Fourier space, both the limiting operator and its inverse act by multiplication by a function
and its reciprocal, respectively. This makes it possible to obtain the limiting local lattice kernel
simply by inverting the Fourier transform. The kernel in the limit as q → 1 is given by the same
expressions as before the limit Proposition 6.4, In this way one recovers the celebrated incomplete
Beta kernel [OR03], which describes correlations in the Gibbs pure phase (see Section 3.1 for
further discussion and references). We see that for bounded lattice operators, the operator method
(in particular, the results from [RS72] quoted in Theorem 4.7) provides a rigorous derivation of
the local limiting kernel.

In our case of fixed q, the situation is dramatically different. While the two-diagonal operators
Ubarcode
t are bounded, their coefficients decay exponentially at ±∞. Therefore, their inverses are

unbounded, and, for example, applying
(
Ubarcode
t

)−1
in the variable y to the limit of Ks(x, y)

(which is the delta function at y = x) does not yield a function in ℓ2.

Throughout the remainder of this section we outline the main computations (which, in fact,
reveal further obstacles to the operator approach based on the functions F t

n), derive the conjec-
tural limiting density of the barcode process, and compare it with both the numerical pre-limit
barcode kernel and with probabilistic simulations of the q-Racah ensemble. We also discuss a pos-
sible approach towards the full limiting barcode kernel. In computations in Sections 7.2 and 7.3,
we will explicitly indicate nonrigorous steps.

7.2 Nonrigorous limit of the barcode kernel. Density

We first consider the diagonal elements of the pre-limit barcode kernel, which define the density
function

ρbarcode(L) (t) := Kbarcode
(L) (t, t), t ∈ Z. (7.5)

From (6.17) and Lemma 6.11, we have the asymptotic equivalence as L → ∞:

ρbarcode(L) (t) ∼ q−3L− t−1
2 K̃(T0 + t,X0;T0 + t− 1, X0)

√
−κ2q1−t

(1− κ2q2−t)(1− κ2q1−t)︸ ︷︷ ︸
a(1− t

2
)

. (7.6)
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The “time” arguments in K̃ are ordered as in the first case in (6.11). Thus, we need to compute
the limit of

q−3L− t−1
2
(
U−1
T0+t−1

)
y
KT0+t(X0, X0), (7.7)

where we apply the inverse operator to the function y 7→ KT0+t(X0, X0 + y), and then set y = 0.
Let us now replace this function in y by its limit 1y=0 (that follows from Proposition 4.8), and
also use the asymptotic equivalence (7.2) for the inverse operator U−1

T0+t−1, which reads

q−3L− t
2
(
U−1
T0+tf

)
(X0 + x) ∼

(
(Ubarcode

t )−1f
)
(x), L → ∞. (7.8)

Therefore, we have

(7.7) ∼
(
Ubarcode
t

)−1
1y=0

∣∣∣
y=0

, (7.9)

where the operator acts on the variable y. Using the representation of the identity in Proposi-
tion A.8, we have

ρbarcode(L) (t) ∼ a(1− t
2)
(
Ubarcode
t

)−1
∑

n∈ 1
2
Z≥0

F t
n(0)F t

n(y)

∥Fn∥2ℓ2(Z)

∣∣∣∣
y=0

= a(1− t
2)

∑
n∈ 1

2
Z≥0

−q−nF t
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)
.

(7.10)

Remark 7.1. Passing to the limit separately in KT0+t and U−1
T0+t−1 in (7.7) is nonrigorous.

Moreover, we did not rigorously define (Ubarcode
t )−1, either, so the right-hand side of (7.9) does

not formally make sense.

Let us examine the final formula for the density more closely. First, numerically one can check
that the series in n in the right-hand side of (7.10) diverges for any t ∈ Z. However, this series
diverges only “mildly”, in the sense that the terms are approaching the same nonzero constant
as n → ∞, but they have alternating signs. Therefore, the series in (7.10) may be thought of as
having “two different sums”, coming from two possible ways of pairing the neighboring terms.
We make a precise conjecture:

Conjecture 7.2. The following limits

ρ0(t) := lim
M→∞

a(1− t
2)

M+1/2∑
n=0

−q−nF t
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)
, ρ1(t) := lim

M→∞
a(1− t

2)
M∑
n=0

−q−nF t
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)

exist for all t ∈ Z, where M ∈ Z, and the sums are over n ∈ 1
2Z≥0. Moreover, they take only two

different values, depending on the parity of t:

ρbarcodeeven := ρ0(2k) = ρ1(2k + 1), ρbarcodeodd := ρ0(2k + 1) = ρ1(2k + 2),

and ρbarcodeeven + ρbarcodeodd = 1.
The pre-limit barcode density has the following asymptotic behavior for all t ∈ Z:

lim
L→∞

ρbarcode(L) (t) =

{
ρbarcodeeven , if t is even;

ρbarcodeodd , if t is odd.
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Let us make a few comments on this conjecture. Recall that ρbarcode(L) (t) is the density of the

square lozenges .

Remark 7.3. The conjectural limits ρ0(t) and ρ1(t) may be equivalently written as infinite sums,
for example,

ρ0(t) = −a(1− t
2)

∞∑
k=0

(
q−kF t

k(0)F
t−1
k (0)

∥Fk∥2ℓ2(Z)
+

q−(k+1/2)F t
k+1/2(0)F

t−1
k+1/2(0)

∥Fk+1/2∥2ℓ2(Z)

)
.

Here the sum is over integer k. A similar series representation can be written down for ρ1(t); in
that case one first isolates the term corresponding to k = 0 and then groups together the terms
with indices k− 1

2 and k for k = 1, 2, . . .. The convergence of these infinite series is equivalent to
the first part of Conjecture 7.2.

Remark 7.4. The conjectural limit of the barcode density becomes periodic in t with period
two. This periodicity was not expected a priori, since the q-Racah measure on lozenge tilings of
the hexagon did not have any such periodicity. A posteriori, this periodicity may be explained
as follows.

The number of horizontal lozenges in the t-th vertical slice of the hexagon is determined
by the shape of the hexagon and grows linearly with t. Thus, increasing t by one adds exactly one
horizontal lozenge to that slice. In the scaling limit, with probability exponentially close to one,
these horizontal lozenges concentrate in the two regions W± lying outside the waterfall region (see
Definition 3.3). When t is incremented by one, the newly added horizontal lozenge can be placed
only in one of the two regions, either W+ or W−. This asymmetry introduces an imbalance in
the limiting density. By contrast, when t increases by an even amount, the additional horizontal
lozenges can be evenly distributed between W+ and W−, which leads to the observed period-two
translation invariance of the limiting density.

Remark 7.5. The fact that ρbarcodeeven +ρbarcodeodd = 1 means that on larger scales, the proportion of

the square lozenges (and similarly the vertical lozenges ) tends to 1
2 . This is consistent with

the fact that the waterfall region has slope 1
2 , see Figure 4 for illustrations.

7.3 Nonrigorous limit of the barcode kernel. General case

First, based on numerics (detailed in Section 7.4 below), we are able to conjecture the right gauge
of the pre-limit barcode kernel which leads to a convergent expression.

Conjecture 7.6. The following limit exists for all t, s ∈ Z:

lim
L→∞

it−sq2L(s−t)Kbarcode
(L) (s, t) =: Kbarcode(s, t). (7.11)

The limit kernel Kbarcode(s, t) is symmetric in s and t, and is 2× 2 block Toeplitz:(
Kbarcode(s, t) Kbarcode(s, t+ 1)

Kbarcode(s+ 1, t) Kbarcode(s+ 1, t+ 1)

)
=

(
Kbarcode

00 (s− t) Kbarcode
01 (s− t)

Kbarcode
10 (s− t) Kbarcode

11 (s− t)

)
, s, t ∈ 2Z.
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In particular, Kbarcode
00 (0) = ρbarcodeeven and Kbarcode

11 (0) = ρbarcodeodd .

We can express the limiting kernel Kbarcode(s, t) for s ≥ t in terms of the orthogonal func-
tions F t

n(x) (7.3). Since the kernel is conjecturally symmetric, specifying it for s ≥ t uniquely
determines Kbarcode(s, t) for all s, t ∈ Z.

To access Kbarcode(s, t) for s ≥ t, we use the operator representation of the two-dimensional
correlation kernel K̃(T0 + s,X0;T0 + t − 1, X0), which involves the inverse operators U−1

T0+j ; see
Proposition 6.4. Arguing as in Section 7.2, we obtain an expression involving an infinite series of
the form:

(−1)t−s

√
−κ2q1−s

(1− κ2q2−t)(1− κ2q1−s)

∑
n∈ 1

2
Z≥0

(
−qn

)t−1−sFs
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)
. (7.12)

As we discussed in Section 7.2, for s = t, the series in (7.12) diverges “mildly”, as its tail behaves
like +c−c+c−c+ . . .. For s ≥ t+1, however, the presence of the negative powers of qn (starting
from q−2n) in the summands make them rapidly growing, and so the series diverges “worse” than
in the case s = t. However, it turns out that if we regularize the partial sums of the series, we
get a well-defined limit which (numerically) coincides with the limit in Conjecture 7.6:

Conjecture 7.7. The following limit exists for all s, t ∈ Z, s ≥ t:

lim
M→∞

q(M+1)(s−t) × (−1)t−s

√
−κ2q1−s

(1− κ2q2−t)(1− κ2q1−s)

M+1/2∑
n=0

(
−qn

)t−1−sFs
n(0)F t−1

n (0)

∥Fn∥2ℓ2(Z)
, (7.13)

where M ∈ Z, and the sum is over n ∈ 1
2Z≥0. The limit (7.13) coincides with Kbarcode(s, t).

Moreover, if we take the sum until M instead of M + 1/2, and correspondingly replace the

regularization factor q(M+1)(s−t) by q(M+ 1
2
)(s−t), then the limit also exists, and coincides with the

shifted kernel Kbarcode(s+ 1, t+ 1).

7.4 Numerics

Here we present numerical evidence in support of our Conjectures 7.2, 7.6 and 7.7 on the asymp-
totic behavior of the barcode kernel. We use Mathematica for symbolic and precise numerical
computations. The code defining all the functions and kernels is reproduced in Appendix B.
Throughout the rest of this section, we denote by Kbarcode

(M) (s, t) the renormalized partial sum of

the series in (7.13) up to M + 1
2 . We also set

K̂barcode
(L) (s, t) := it−sq2L(s−t)Kbarcode

(L) (s, t) (7.14)

for the renormalized (conjugated) pre-limit kernel.

7.4.1 Rate of convergence

The pre-limit kernel K̂barcode
(L) (s, t) and the partial sums Kbarcode

(M) (s, t) both converge at a geometric
rate q in L and M , respectively, see Table 1.
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L q = 2/3 ratios q = 1/3 ratios
10 0.46557005 0.69146 0.43591993 0.3333278
11 0.46659216 0.68248 0.43592101 0.3333315
12 0.46729892 0.67691 0.43592137 0.3333327
13 0.46778127 0.67336 0.43592149 0.3333331
14 0.46810778 0.67107 0.43592153 0.3333332
15 0.46832764 0.66958 0.43592154 0.3333333
16 0.46847518 0.66860 0.43592155 0.3333333
17 0.46857397 0.66795 0.43592155 0.3333333
18 0.46864002 0.66752 0.43592155 0.3333333
19 0.46868414 0.43592155
20 0.46871359 0.43592155

L q = 2/3 ratios q = 1/3 ratios
10 0.05154306 0.64841 0.01901038 0.3331699
11 0.05233498 0.65338 0.01901074 0.3332788
12 0.05284846 0.65728 0.01901086 0.3333152
13 0.05318396 0.66016 0.01901090 0.3333273
14 0.05340448 0.66222 0.01901091 0.3333313
15 0.05355006 0.66365 0.01901092 0.3333327
16 0.05364646 0.66463 0.01901092 0.3333331
17 0.05371044 0.66530 0.01901092 0.3333333
18 0.05375296 0.66575 0.01901092 0.3333333
19 0.05378125 0.01901092
20 0.05380008 0.01901092

Table 1: Convergence of the pre-limit barcode kernel for various q and for κ = 2i. Left: density
K̂barcode

(L) (0, 0). Right: elements K̂barcode
(L) (6, 1) of the kernel. Here and in Table 2, we take ratios

of a sequence ak defined as (ak+1 − ak+2)/(ak − ak+1). We see that the ratios become close to q.

M q = 2/3 ratios q = 1/3 ratios
12 0.46719254 0.66801 0.43592134 0.3333333
13 0.46771795 0.66757 0.43592148 0.3333333
14 0.46806893 0.66727 0.43592153 0.3333333
15 0.46830323 0.66707 0.43592154 0.3333333
16 0.46845957 0.66693 0.43592155 0.3333333
17 0.46856386 0.66684 0.43592155 0.3333333
18 0.46863342 0.66678 0.43592155 0.3333333
19 0.46867980 0.66675 0.43592155 0.3333333
20 0.46871072 0.66672 0.43592155 0.3333333
21 0.46873134 0.43592155
22 0.46874509 0.43592155

M q = 2/3 ratios q = 1/3 ratios
12 0.05141315 0.64925 0.01901026 0.3333306
13 0.05224775 0.65456 0.01901070 0.3333324
14 0.05278962 0.65836 0.01901085 0.3333330
15 0.05314430 0.66102 0.01901089 0.3333332
16 0.05337781 0.66286 0.01901091 0.3333333
17 0.05353216 0.66411 0.01901092 0.3333333
18 0.05363448 0.66495 0.01901092 0.3333333
19 0.05370242 0.66552 0.01901092 0.3333333
20 0.05374761 0.66590 0.01901092 0.3333333
21 0.05377768 0.01901092
22 0.05379770 0.01901092

Table 2: Convergence of the renormalized series Kbarcode
(M) (0, 0) (left) and Kbarcode

(M) (6, 1) (right) for
various q and for κ = 2i.

7.4.2 Density function

The diagonal values (i.e., the density function) of the pre-limit barcode kernel, together with
those of its conjectural limit, are collected in Table 3. We chose smaller L in the former to
show some dependence on t, while also took larger M in the latter to demonstrate that the
limiting density depends on t only through its parity. In particular, the values Kbarcode

(M) (t, t) and

Kbarcode
(M) (t+ 2, t+ 2) in Table 3 match up to ten decimal places. One can see that∣∣Kbarcode

(M) (7, 7)−Kbarcode
(M) (−7,−7)

∣∣ ≈ 2.7 · 10−16.

We can also evaluate the inverse Kasteleyn matrix at other macroscopic coordinates (T0, X0) ̸=
(2L, 3L), to confirm that the limiting barcode kernel is independent of the global location, and
depends only on the parameters (q, κ). For example, for q = 1

7 , κ = 3i, L = 16, and the global
locations (T0, X0) = (L2 ,

9L
4 ) (on the center line) and (T0, X0) = (L2 , 3L) (off the center line), we

have the values given in Table 4.
In both Tables 3 and 4, we set q = 1

7 , a relatively small value chosen to accelerate convergence
and get the limiting barcode kernel with higher precision.

We plot the density at (0, 0), i.e. the quantity ρbarcodeeven from Conjecture 7.2, as a function of the
parameters q and κ. The resulting surface, displayed in Figure 10, exhibits a striking system of
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t K̂barcode
(L)

(t, t) t Kbarcode
(M)

(t, t)

−7 0.5523372977 −7 0.5611174103
−6 0.4387439934 −6 0.4388825896
−5 0.5598645425 −5 0.5611174103
−4 0.4388625943 −4 0.4388825896
−3 0.5609384574 −3 0.5611174103
−2 0.4388797292 −2 0.4388825896
−1 0.5610918461 −1 0.5611174103
0 0.4388821809 0 0.4388825896
1 0.5611137582 1 0.5611174103
2 0.4388825313 2 0.4388825896
3 0.5611168883 3 0.5611174103
4 0.4388825813 4 0.4388825896
5 0.5611173341 5 0.5611174103
6 0.4388825883 6 0.4388825896
7 0.5611173877 7 0.5611174103

Table 3: Diagonal values K̂barcode
(L) (t, t) and Kbarcode

(M) (t, t) for −7 ≤ t ≤ 7. Parameters: L = 6,

M = 20, q = 1
7 , κ = 3i. All numbers are truncated to 10 decimal digits.

t Kast−1(L
2
+ t, 9L

4
; L
2
+ t− 1, 9L

4
) Kast−1(L

2
+ t, 3L; L

2
+ t− 1, 3L)

−2 0.438744002701398029726330344950846261091117 0.438744002701397996670004043029846077414593
−1 0.559864542689336428941964543890893079446439 0.559864542689336428425425841013168294080068
0 0.438862595645192998493904028142472069596241 0.438862595645192993780780403343843713850882
1 0.560938457463989285851404171643209418839516 0.560938457463989285776297216171385214228610
2 0.438879729391405022754197543436512517729097 0.438879729391405022081083055826078202044213

Table 4: Entries of the inverse Kasteleyn matrix at two different macroscopic locations, where
L = 16, q = 1

7 , and κ = 3i. We see that the values for the same T0 = L/2 and different X0

agree extremely closely, which reflects the exponential concentration established in Theorem 5.11.
These values also agree with the ones in Table 3.

waves whose frequency increases as q → 1 or as κ/i → 0. Several one-dimensional cross-sections
of this surface are shown in Figure 11.

Remark 7.8. Figures 10 and 11 suggest the existence of a well-defined limit of ρbarcodeeven as q → 0.
In this limit, many of our formulas should simplify, while the waterfall phenomenon in lozenge
tilings persists for arbitrarily small q. We do not pursue this limit here.

7.4.3 Correlation decay

The covariance between the events to find a particle in the barcode process at 0 and t is given by

Cov (1barcode(0),1barcode(t)) = −Kbarcode
(M) (0, t)2.

As for all determinantal point processes with a symmetric kernel, the covariance is negative,
which indicates repulsion. The plot of the function

t 7→
log
∣∣Kbarcode

(M) (0, t)
∣∣

log q
, t = 1, 2, . . . , 24,
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Figure 10: The even density function ρbarcodeeven = Kbarcode
(M) (0, 0) as a function of the parameters

q and κ/i. Here we take M = 10, 1
10 ≤ q ≤ 9

10 ,
1
13 ≤ κ/i ≤ 4, and the discretization in

both parameters is 1/100. Note that the theta functions in the denominator of (A.2) lead to
singularities when q and κ/i are mutual inverses.
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Figure 11: Cross-sections of the surface ρbarcodeeven as one of the parameters q or κ/i is fixed.
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Figure 12: Two-point correlations in the barcode process as a function of t, for q = 1
7 ,

2
7 ,

3
7 , and

4
7 .

The other parameters are M = 20 and κ = 3i
2 . The two-periodicity in t is apparent, and the

approximately linear growth corresponds to the hypothetical exponential decay of correlations.

for various values of q is shown in Figure 12. This plot suggests a conjecture that correlations
decay exponentially in t.

The exponential decay of correlations stands in stark contrast to the polynomial decay exhib-
ited under ergodic Gibbs measures on lozenge tilings with uniform resampling; see [KOS06] and
the further references in Section 3.1 above. This numerical observation distinguishes the barcode
process from the sine process (a cross-section of an ergodic Gibbs configuration), whose correla-
tions also decay polynomially. For the continuous sine process this decay was already observed
in [Dys62].

7.5 Probabilistic simulations

7.5.1 Porting the perfect sampling algorithm

Apart from numerics based on explicit formulas (Section 7.4), we can also test our Conjectures 7.2,
7.6 and 7.7 with the help of the exact sampling algorithm for the q-Racah random lozenge
tilings [BGR10]. The key observation underlying the algorithm is that one can construct explicit
Markov transition matrices on the space of lozenge tilings; these transitions transport the q-Racah
measure for a hexagon with parameters (T, S,N) to the corresponding measures with parameters
(T, S +1, N) or (T, S − 1, N). For nearly twenty years, the only available implementation of this
algorithm was Vadim Gorin’s original Compaq Visual Fortran code, whose source he kindly
shared with us. With the assistance of modern AI-based coding tools we have ported the relevant
parts of this program to Python; the resulting script is provided as an ancillary file to the arXiv
version of the paper. We have also created an interactive web-based simulator [Pet25]; the latter
samples the measure qvol, i.e. the specialization κ = 0, which does not display the waterfall
phenomenon.

The new Python implementation is particularly well suited for batch generation of random
lozenge tilings. As in [BGR10], the algorithm starts with the unique tiling of the hexagon with
parameters (T, 0, N) (that is, a parallelogram), and then performs the sequence of Markov moves
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that increment S by one, thereby producing an exact sample from the q-Racah distribution with
parameters (T, S,N). For the final tiling, we also record the barcode process, encoding it as a
binary sequence. See Figure 13 for an example.9 A key advantage of the script is that it can
operate in a “head-less” mode: it need not render the tiling and thus can produce large collections
of barcode process samples in a short time.

Figure 13: Graphical output of the Python script. Here T = 50, S = 10, N = 20, q = 7
10 , and κ =

3i. The barcode process realization is 11111111111111101001111001111010011011011111111111.

In the rest of this subsection, we compare empirical pattern counts in the barcode process
with the predictions of Conjectures 7.2 and 7.6, and also demonstrate fluctuations of the height
function of the barcode process.

7.5.2 Density and correlations

In Table 5 we present empirical density counts for various choices of (T, S,N) (including the base
case (8L, 4L, 4L), but also with other choices of the size), with parameters q = 1

7 and κ = 4.3i.
This particular value of κ is chosen since it induces a comparatively strong bias between the
densities on even and odd sites, namely,

Kbarcode
(M) (0, 0) = 0.345174 . . . , Kbarcode

(M) (1, 1) = 0.654826 . . . , M = 20. (7.15)

For Table 5, we compute the frequency of ones on even and odd sites, inside the waterfall region.
Indeed, note that when the hexagon is not symmetric (i.e., outside the base case (8L, 4L, 4L); see
Figure 13 for an example), the barcode process may start and end with a frozen string of zeroes
or ones, and we needed to cut these out.

Similarly, we can count the number of patterns of the form 11 (length 2) and 1⋆1 (length 3) in
the realizations of the barcode process (where ⋆ is either 0 or 1), and confirm the two-periodicity
of these correlations, as well as the agreement with the theoretical predictions

det

[
Kbarcode

(M) (t, t) Kbarcode
(M) (t, t+ 1)

Kbarcode
(M) (t+ 1, t) Kbarcode

(M) (t+ 1, t+ 1)

]
= 0.132142 . . . ;

det

[
Kbarcode

(M) (t, t) Kbarcode
(M) (t, t+ 2)

Kbarcode
(M) (t+ 2, t) Kbarcode

(M) (t+ 2, t+ 2)

]
=

{
0.108658 . . . , if t is even;

0.418309 . . . , if t is odd,

9Examples in Figures 4 and 5 were generated by the original Fortran program.
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T S N Even 1’s count Odd 1’s count Normalization Even frequency Odd frequency
400 200 200 6,730 12,764 19,500 0.345128 0.654564
300 180 140 3,626 6,886 10,500 0.345333 0.65581
400 20 20 6,68 1,238 1,900 0.351579 0.651579
400 200 50 1,716 3,367 5,000 0.3432 0.6734

Table 5: Each row is based on 100 independently generated samples. For example, in the first
row we have 100 realizations of a barcode sequence of length 400; removing five sites from each
end to eliminate the boundary effects leaves 390 positions per sample. Thus the number of even
(and, separately, odd) sites contributing to the empirical counts equals 390×100/2 =19,500. The
parameters are q = 1

7 and κ = 4.3, i. In all cases, we observe a strong agreement of the sample
densities with the theoretical ones (7.15).

for q = 1
7 , κ = 4.3i, and M = 20. Note that the first two-point correlation is fully translation-

invariant. For the data used for the first line in Table 5, we observe the frequency 0.133933 of
the pattern 11 (over all offsets, even or odd), and 0.10653 and 0.413419 for the patterns 1⋆1 with
even and odd offsets, respectively.

7.5.3 Height function of the barcode process

Finally, let us consider fluctuations of the height function of the barcode process in the bulk of
the waterfall region. For a barcode process realization b⃗ = (b1, b2, . . . , bT ), bj ∈ {0, 1}, we define
the height function by

h(t) :=
∑t

j=K
bj ,

where K is a fixed offset chosen to reduce the effect of the left boundary of the waterfall region.
Since the density of particles in the barcode process is 1

2 , we consider the fluctuations h(t) − t
2 .

Plots of fluctuations are given in Figure 14. Based on them, we conjecture that the fluctuations
of the height function grow slower than any power of L.

7.6 Conclusion

The nonrigorous analysis carried out in the present Section 7 paints the following conjectural
picture. There exists a family of determinantal point processes on Z with the correlation kernels

Kbarcode(s, t | q, κ)

depending on the parameters q ∈ (0, 1) and κ ∈ iR>0. These processes governs the local statistics
in the waterfall regime of the q-Racah random lozenge tilings of the hexagon. The limiting
local process is universal — it depends only on the parameters (q, κ), and not on the side lengths
(T, S,N) of the hexagon (as long as the waterfall phase is present, i.e., N ≪ T ), or the macroscopic
point of observation around which we consider the local statistics.

This conjecture is supported by high-precision numerical computations with the determinantal
kernel of the q-Racah measure on lozenge tilings, as well as by analyzing the results of the perfect
sampling algorithm for the measure.
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Figure 14: Fluctuations h(t) − t
2 of the height function of the barcode process arising in the

hexagon with parameters (T, S,N) = (8L, 4L, 4L) for L = 100 and 200, where q = 4
5 , κ = 3i.

The offset is K = L/10. On the left, the middle (bold) graph is the moving average, and there
are also upper and lower envelopes (dashed lines). On the right, we show the histogram of the
fluctuation values.

A Limiting orthogonal functions

In this appendix, we establish several properties of the orthogonal functions Fn(x) that enter
Conjectures 7.2 and 7.7 on the asymptotic behavior of the barcode kernel. This part of the
paper is self-contained, its proofs are rigorous, and properties of the functions Fn(x) may be of
independent interest.

A.1 Definition of the functions

We need the Jacobi theta function, its quasi-periodicity, and the triple product identity:

θq(z) := (z; q)∞(q/z; q)∞,

θq (q
mz) = (−1)mq−

m(m−1)
2 z−mθq(z), m ∈ Z, (A.1)

θq(z) =
1

(q; q)∞

∑
m∈Z

(−1)mq
m(m−1)

2 zm.

Let 1
2Z be the set of all integers and half-integers. We abbreviate Z′ = Z+ 1

2 , so
1
2Z = Z∪Z′.

If i− j ∈ Z, we say that i and j have the same half-parity.
Define

Fn(x) :=
√

1− κ−2q−2x

n∑
i=−n

(−1)n+iq−i/2

(q; q)n−i(q; q)n+i

1

θ√q

(
|κ|qx+i+ 1

2

) , (A.2)
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where 0 < q < 1 and κ ∈ iR>0 are the q-Racah parameters, n, x ∈ 1
2Z, and n ≥ 0. By convention,

in (A.2) and throughout this appendix, the sum runs only over those i that have the same
half-parity as n. Any sum over all half-integers will be indicated explicitly.

Remark A.1. The functions Fn can be expressed in a q-hypergeometric form as

Fn(x) =
(−1)2n+2x+1q(n−x)2+x/2|κ|2x−2n+1

√
1− κ−2q−2x

(q; q)2nθ√q(|κ|)
2ϕ0

(
q2n, 0
−

∣∣∣∣q−1;κ2q2(x−n)

)
. (A.3)

The series 2ϕ0 is terminating, and can be identified with the continuous q-Hermite orthogonal
polynomial H2n(κq

x | q−1), where [KS96, Chapter 3.26]:

Hn(λ | q) = λ−n
2ϕ0

(
q−n, 0
−

∣∣∣∣q;λ2qn
)
. (A.4)

Since 0 < q < 1 and the polynomials involve the inverse parameter q−1, they are often referred
to as the continuous q−1-Hermite polynomials.

The occurrence of the orthogonal polynomial H2n, with the index doubled from n to 2n,
reflects the fact that the parameter n in Fn may be a (proper) half-integer.

In the remainder of this appendix, we establish the following properties of the functions Fn(x):

• (Proposition A.2 in Appendix A.2) Three-term relation in x;

• (Proposition A.4 in Appendix A.3) Orthogonality of the functions Fn(x), n ∈ 1
2Z≥0, in each of

the three spaces ℓ2(Z), ℓ2(Z′), and ℓ2(12Z);

• (Proposition A.5 in Appendix A.4) Explicit expression for ℓ2-norms of Fn;

• (Proposition A.8 in Appendix A.5) Completeness of the functions in ℓ2(Z) and ℓ2(Z′), and the
corresponding representation of the identity operator.

All of these properties, except the last one, are proved directly using the definition (A.2) and
the properties of the Jacobi theta function (A.1). To establish completeness, however, we employ
the q-hypergeometric representation from Remark A.1, together with the q-Mehler formula (an
explicit Poisson kernel) for the continuous q−1-Hermite polynomials obtained in [IM94].

A.2 Three-term relation

Proposition A.2. We have

a(x)Fn(x− 1
2) + a(x+ 1

2)Fn(x+ 1
2) = −qnFn(x), n, x ∈ 1

2Z, n ≥ 0, (A.5)

where a is given by

a(x) :=

[
−κ2q2x−1

(1− κ2q2x)(1− κ2q2x−1)

] 1
2

, x ∈ 1
2Z.
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Proof. Using the quasi-periodicity (A.1) and after the necessary simplifications, the three-term
relation becomes

n∑
i=−n

(−1)n+iq−i/2

(q; q)n−i(q; q)n+i

(
qi

2− 1
2
i|κ|2iq2ix√

1− κ2q2x
+

qi
2+ 3

2
i|κ|2i+2q(2i+2)x√
1− κ2q2x

)
1

θ√q(|κ|qx)

= −qn
n∑

i=−n

√
1− κ−2q−2x

(−1)n+iq−i/2

(q; q)n−i(q; q)n+i

−qi
2+ 1

2
i|κ|2i+1q(2i+1)x

θ√q (|κ|qx)

(up to sign (−1)2i = ±1 which is the same on both sides). This identity reduces to

n∑
i=−n

qi
2 (

ziq−i − zi+1qi − ziqn + zi+1qn
)

(q; q)n−i(q; q)n+i
= 0, (A.6)

where z = κ2q2x. Using the fact that (q; q)n−i(q; q)n+i = qi
2+n2+n(q−1; q−1)n−i(q

−1; q−1)n+i, we
can remove the factor qi

2
from the numerator in (A.6) by changing q to q̂ := 1/q. Moreover,

by symmetry, we can replace i by (−i) in the first and the third summands in the numerator
in (A.6). Thus, we need to show that

n∑
i=−n

z−iq̂−i − zi+1q̂−i − z−iq̂−n + zi+1q̂−n

(q̂; q̂)n−i(q̂; q̂)n+i
= 0. (A.7)

Factorizing z−iq̂−i− zi+1q̂−i− z−iq̂−n+ zi+1q̂−n = −(1− q̂n−i) q̂−n(z−i− zi+1), we see that (A.7)
is equivalent to

n−1∑
i=−n

z−i − zi+1

(q̂; q̂)n−i−1(q̂; q̂)n+i
= 0.

The latter identity follows directly from the symmetry under i 7→ − i − 1. Consequently, we
obtain the desired three-term relation (A.5). Moreover, this relation is valid for all x, because
the argument reduces to an identity of rational functions in the variable z = κ2q2x.

Remark A.3. Alternatively, Proposition A.2 can also be derived directly from the difference
equation [KS96, (3.26.5)] satisfied by the continuous q−1-Hermite orthogonal polynomials, which
are related to Fn(x) (see Remark A.1).

A.3 Orthogonality

Proposition A.4. The functions Fn(x), n ∈ 1
2Z≥0, are orthogonal in the variable x in each of

the three spaces ℓ2(Z), ℓ2(Z′), and ℓ2(12Z).

Proof. Once we have the three-term relation (Proposition A.2), the orthogonality of Fn(x) in
ℓ2(12Z) (as functions of x) readily follows. Indeed, the left-hand side of (A.5) defines a symmetric
operator

f(x) 7→ a(x)f(x− 1
2) + a(x+ 1

2)f(x+ 1
2) (A.8)

in ℓ2(12Z). This operator is bounded because its coefficients a(·) rapidly decay at ±∞. Therefore,
it is self-adjoint in ℓ2(12Z).
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The functions Fn are eigenfunctions of (A.8) with distinct eigenvalues −qn, n ∈ 1
2Z≥0, and

hence they are orthogonal in ℓ2(12Z).
Next, the square of the operator (A.8) is also bounded and self-adjoint, but preserves each

of the spaces ℓ2(Z) and ℓ2(Z′). The functions Fn are eigenfunctions of the square of (A.8) with
distinct eigenvalues q2n, and hence they are orthogonal in ℓ2(Z) and ℓ2(Z′). This completes the
proof.

A.4 Norms

Proposition A.5. For all n ∈ 1
2Z≥0, we have

∥Fn∥2ℓ2(Z) = ∥Fn∥2ℓ2(Z′) =
1

2
∥Fn∥2ℓ2(12Z) =

(q; q)∞(−κ2)θq(κ
−2)

qn(q; q)2nθ√q(|κ|)2
. (A.9)

Proof. The functions Fn(x) are real-valued (as n and i are of the same half-parity), so we can
sum their squares to compute the norms. We have

(Fn(x))
2 =

1

θ√q(|κ|)2
(1− κ−2q−2x)

∑
i,j

(−1)2n+i+jq−(i+j)/2

(q; q)n−i(q; q)n+i(q; q)n−j(q; q)n+j

× |κ|4x+2+2i+2jq(i+x)(i+x+1/2)+(j+x)(j+x+1/2).

(A.10)

Here the sum is over −n ≤ i, j ≤ n of the same half-parity as n. Next, let us sum the x-dependent
part of (A.10) over x ∈ Z. We have, using the triple product identity (A.1):∑
x∈Z

(1− κ−2q−2x)(−κ2)2xq2x
2+(2i+2j+1)x = (q4; q4)∞

[
θq4(−κ4q2i+2j+3)− κ−2θq4(−κ4q2i+2j+1)

]
.

(A.11)
We can simplify this expression depending on the parity of i+ j. If i+ j is even, we have

(A.11) = (q4; q4)∞(−κ−2)i+j
[
θq4(−κ4q3)q−(i+j)(i+j+1)/2 − κ−2θq4(−κ4q)q−(i+j)(i+j−1)/2

]
.

If i+ j is odd, we have

(A.11) = (q4; q4)∞(−κ−2)i+j−1
[
κ−4θq4(−κ4q)q−(i+j)(i+j+1)/2 − κ−2θq4(−κ4q3)q−(i+j)(i+j−1)/2

]
.

Multiplying this by the remaining terms in (A.10), we have for i+ j even:

− (−1)2n+i+jκ2q(i−j)2/2(q4; q4)∞
[
θq4(−κ4q3)q−(i+j)/2 − κ−2θq4(−κ4q)q(i+j)/2

]
= (−1)2n+i+jq(i−j)2/2(q4; q4)∞

[
θq4(−κ4q)q(i+j)/2 − κ2θq4(−κ4q3)q−(i+j)/2

]
,

and for i+ j odd:

(−1)2n+i+jq(i−j)2/2(q4; q4)∞
[
θq4(−κ4q)q−(i+j)/2 − κ2θq4(−κ4q3)q(i+j)/2

]
.

Utilizing the symmetry of the summation intervals for i, j, we see that the power q−(i+j)/2 can
always be replaced by q(i+j)/2. This eliminates the dependence on the parity of i + j, and thus
we have:∑

x∈Z
(Fn(x))

2 =
(q4; q4)∞

(
θq4(−κ4q)− κ2θq4(−κ4q3)

)
θ√q(|κ|)2

∑
i,j

(−1)2n+i+jq(i−j)2/2+(i+j)/2

(q; q)n−i(q; q)n+i(q; q)n−j(q; q)n+j
.

58



By Lemma A.6 below, the prefactor is equal to
(−κ2)(q;q)∞ θq(κ−2)

θ√q(|κ|)2
. The remaining sum over i, j is

simplified to q−n(q; q)−1
2n in Lemma A.7 below. Thus, we arrive at the desired norm in ℓ2(Z).

Let us obtain the norm in ℓ2(Z′). The sum in (A.11) over Z′ is equal to∑
x∈Z′

(1− κ−2q−2x)(−κ2)2xq2x
2+(2i+2j+1)x =

∑
y∈Z

(1− κ−2q−2y−1)(−κ2)2y+1q2y
2+(2i+2j+3)y+i+j+1

= −κ2qi+j+1(q4; q4)∞
[
θq4(−κ4q2i+2j+3)− κ−2q−1θq4(−κ4q2i+2j+1)

]
.

Summing this expression (together with the remaining factors from (A.10)) over i, j is analogous
to the case of ℓ2(Z), and we omit the details. In the end, one can check that the norms in ℓ2(Z)
and ℓ2(Z′) are equal to each other. This completes the proof of Proposition A.5 modulo the two
lemmas below.

Lemma A.6. We have

(q4; q4)∞
(
θq4(−κ4q)− κ2θq4(−κ4q3)

)
= (−κ2)(q; q)∞θq(κ

−2).

Proof. Using the Jacobi triple product identity (A.1), we have

(q4; q4)∞
(
θq4(−κ4q)− κ2θq4(−κ4q3)

)
=
∑
m∈Z

(q4)m(m−1)/2
(
κ4mqm − κ2κ4mq3m

)
.

We aim to show that this sum is equal to
∑

j∈Z(−1)j+1κ2−2jqj(j−1)/2. Indeed, for j = 2m + 1,

the j-th summand is equal to (q4)(−m)(−m−1)/2κ−4mq−m, and for j = 2m, the j-th summand is
−(q4)(−m)(−m−1)/2κ2κ−4mq−3m. This completes the proof.

Lemma A.7. We have for all n ∈ 1
2Z≥0:

n∑
i=−n

n∑
j=−n

(−1)2n+i+jq(i−j)2/2+(i+j)/2

(q; q)n−i(q; q)n+i(q; q)n−j(q; q)n+j
=

1

qn(q; q)2n
, (A.12)

where the sums are over i, j of the same half-parity as n.

Proof. Let us show that, for a fixed i, the sum over j in (A.12) is zero unless i = −n. Indeed,

n∑
j=−n

(−1)n+jqj(j+1)/2zj

(q; q)n−j(q; q)n+j
=

z−nqn(n−1)/2

(q; q)2n

n∏
r=−n+1

(1− zqr), (A.13)

which is a direct consequence of the q-binomial theorem (it allows one to extract the coefficient of
zj on the right-hand side). The polynomial on the right-hand side of (A.13) vanishes at z = q−i

for every i with −n+1 ≤ i ≤ n. Therefore, the sum over j in (A.12) is zero unless i = −n. When
i = −n, substituting z = q−n yields the desired result.
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A.5 Representation of the identity and completeness

Proposition A.8. For all x, y ∈ 1
2Z with x− y ∈ Z, we have

∑
n∈ 1

2
Z≥0

Fn(x)Fn(y)

∥Fn∥2ℓ2(Z)
= 1x=y. (A.14)

This implies that the orthonormal functions Fn/∥Fn∥ℓ2(Z), n ∈ 1
2Z≥0, are complete in each of the

spaces ℓ2(Z) and ℓ2(Z′).

Proof. We need to show that∑
n∈ 1

2
Z≥0

qn(q; q)2nFn(x)Fn(y) = 1x=y
(−κ2)(q; q)∞θq(κ

−2)

θ√q(|κ|)2
. (A.15)

We employ the so-called q-Mehler formula for the continuous q−1-Hermite polynomials Hn (A.4)
with q > 1, which is available from [IM94, Theorem 2.1]. In our notation, it reads

∞∑
m=0

Hm(λ | q−1)Hm(µ | q−1)qm(m−1)/2zm

(q; q)m

=
(−zλµ; q)∞(−z/(λµ); q)∞(−zλ/µ; q)∞(−zµ/λ; q)∞

(z2/q; q)∞
.

(A.16)

The summands in the left-hand side of (A.15) are expressed through the continuous q−1-Hermite
polynomials as

qn(q; q)2nFn(x)Fn(y) =
(−1)2x+2yqx

2+y2+(x+y)/2|κ|2(x+y+1)
√
(1− κ−2q−2x)(1− κ−2q−2y)

θ√q(|κ|)2

× H2n(κq
x | q−1)H2n(κq

y | q−1)q2n(2n−1)/2(−q)2n

(q; q)2n
.

Applying (A.16) with z = −q, λ = κqx, and µ = κqy, we see that the sum in the left-hand side
of (A.15) becomes

(−1)2x+2yqx
2+y2+(x+y)/2|κ|2(x+y+1)

√
(1− κ−2q−2x)(1− κ−2q−2y)

θ√q(|κ|)2

× (κ2qx+y+1; q)∞(κ−2q1−x−y; q)∞(qx−y+1; q)∞(qy−x+1; q)∞
(q; q)∞

.

(A.17)

Thanks to the factors (qx−y+1; q)∞(qy−x+1; q)∞, if x − y ∈ Z, then expression (A.17) vanishes
unless x = y.
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To complete the proof of Proposition A.8, it remains to simplify (A.17) for y = x and match
it to the right-hand side of (A.15). We have

(A.17) =
q2x

2+x|κ|4x+2(1− κ−2q−2x)

θ√q(|κ|)2
(κ2q2x+1; q)∞(κ−2q1−2x; q)∞(q; q)∞

=
q2x

2+x|κ|4x+2(q; q)∞θq(κ
−2q−2x)

θ√q(|κ|)2

=
(−κ2)(q; q)∞θq(κ

−2)

θ√q(|κ|)2
,

where in the last line we used the quasi-periodicity (A.1).

Remark A.9. When x and y have different half-parities, the product (qx−y+1; q)∞(qy−x+1; q)∞,
and hence the whole expression (A.17), does not vanish. Consequently, the functions Fn(x) are
not complete in the larger space ℓ2(12Z).

B Mathematica code

Here we present the Mathematica definitions of the two-dimensional q-Racah kernel K̃ (6.7), the
pre-limit barcode kernel Kbarcode

(L) (6.17), and the conjectural limit Kbarcode(s, t) (7.11). These
code snippets are involved in the numerical verification of Conjectures 7.2, 7.6 and 7.7 which is
described in Section 7.4. All Mathematica formulas are written only for the first parameter zone
in the hexagon (2.15). Note that in code, we refer to N as NN.

Listing 1: The orthonormal q-Racah polynomials f t
n(x) (2.22)

w[t_, x_] := (

(q^(1 - 2 NN - T))^-x (1 - q^(1 - S - t + 2 x) \[Kappa]^2)

QPochhammer[q^(1 - NN - S), q, x] QPochhammer[q^(1 - NN - t), q, x]

QPochhammer[q^(1 - S - t) \[Kappa]^2, q, x] QPochhammer[q^(1 - T) \[Kappa]^2, q, x]

) / (

(1 - q^(1 - S - t) \[Kappa]^2) QPochhammer[q, q, x] QPochhammer[q^(1 - S - t + T), q, x]

QPochhammer[q^(1 + NN - S) \[Kappa]^2, q, x] QPochhammer[q^(1 + NN - t) \[Kappa]^2, q, x]

)

R[n_, t_, x_] := QHypergeometricPFQ[

{q^-n, q^(1 + n - 2 NN - T), q^-x, q^(1 - S - t + x) \[Kappa]^2},

{q^(1 - NN - S), q^(1 - NN - t), q^(1 - T) \[Kappa]^2},

q, q

]

h[n_, t_] := (

(1 - q^(1 - 2 NN - T)) (q^(1 - S - t) \[Kappa]^2)^n QPochhammer[q, q, n]

QPochhammer[q^(2 - 2 NN - T), q, -1 + NN + t] QPochhammer[q^(1 - NN + S - T), q, n]

QPochhammer[q^(1 - NN + t - T), q, n] QPochhammer[q^(1 - 2 NN) / \[Kappa]^2, q, n]

QPochhammer[q^(-NN + S) / \[Kappa]^2, q, -1 + NN + t]

) / (

(1 - q^(1 + 2 n - 2 NN - T)) QPochhammer[q^(1 - NN - S), q, n] QPochhammer[q^(1 - NN - t), q, n]

QPochhammer[q^(1 - 2 NN - T), q, n] QPochhammer[q^(1 - NN + S - T), q, -1 + NN + t]

QPochhammer[q^(1 - 2 NN) / \[Kappa]^2, q, -1 + NN + t] QPochhammer[q^(1 - T) \[Kappa]^2, q, n]

)

f[n_, t_, x_] := R[n, t, x] Sqrt[w[t, x] / h[n, t]]
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Listing 2: The two-dimensional kernel K̃(s, x; t, y) (6.7)

CTilde[n_, t_] := Sqrt[(q^(n - t - NN) - 1) * (1 - q^(T + NN - t - n - 1))]

Ker[s_, x_, t_, y_] :=

Which[

s >= t,

Sum[

1/Product[CTilde[n, j], {j, t, s - 1}] * f[n, s, x] * f[n, t, y],

{n, 0, NN - 1}

],

s < t,

-Sum[

Product[CTilde[n, j], {j, s, t - 1}] * f[n, s, x] * f[n, t, y],

{n, NN, NN + s - 1}

]

]

Listing 3: The inverse Kasteleyn matrix (6.15)

wLozenge[j_] := \[Kappa] q^(j - (S + 1)/2) - 1/(\[Kappa] q^(j - (S + 1)/2))

wTilde[t_, x_] := (

(-1)^(t + S) * q^(x * (2 * NN + T - 1)) * (1 - \[Kappa]^2 * q^(2 * x - t - S + 1))

) / (

QPochhammer[q, q, x] * QPochhammer[q, q, T - S - t + x] *

QPochhammer[q^(-1), q^(-1), t + NN - x - 1] *

QPochhammer[q^(-1), q^(-1), S + NN - x - 1] *

QPochhammer[\[Kappa]^2 * q^(x - T + 1), q, T + NN - t] *

QPochhammer[\[Kappa]^2 * q^(x - t - S + 1), q, NN + t]

)

G[t_, x_] := (

(-1)^(x) * \[Kappa]^(-t) * q^(x * (T + NN - t - 1) + t * (S/2 - 1/2) + t * (t + 1)/4) *

(1 - \[Kappa]^2 * q^(2 * x - t - S + 1))

) / (

QPochhammer[q^(-1), q^(-1), S + NN - 1 - x] *

QPochhammer[q, q, T - S + x - t] *

QPochhammer[\[Kappa]^2 * q^(x - T + 1), q, T + NN - t]

) / Sqrt[wTilde[t, x]]

KastInv[s_, x_, t_, y_] := G[s, x] / G[t, y] / wLozenge[x - s/2 + 1] *

(If[x == y && s == t, 1, 0] - Ker[s, x, t, y])

Listing 4: The pre-limit barcode kernel Kbarcode
(L) (s, t) (6.17)

T := 8 L; NN := 4 L; S := 4 L;

Kbar[s_, t_] := KastInv[2 L + s, 3 L, 2 L + t - 1, 3 L]

Listing 5: The orthogonal functions Fn(x) (A.2)

th[q_, z_] := QPochhammer[z, q] * QPochhammer[q/z, q]

F[n_, x_] := Sqrt[1 - \[Kappa]^(-2) * q^(-2 * x)] * Sum[

(-1)^(n + i) * q^(-i/2) / QPochhammer[q, q, n - i] /

QPochhammer[q, q, n + i] / th[Sqrt[q], q^(x + i + 1/2) * \[Kappa]/I],

{i, -n, n}

]

fsqnorm[n_] := (

QPochhammer[q, q] * (-\[Kappa]^2) * th[q, \[Kappa]^(-2)] / q^n /

QPochhammer[q, q, 2 * n] / th[Sqrt[q], \[Kappa]/I]^2
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)

Listing 6: The partial sum in the conjectural limiting barcode kernel Kbarcode(s, t) (7.11)

prefactorFromG[s_, t_] := (

-q^(1 - s) * Sqrt[-\[Kappa]^2 / (1 - \[Kappa]^2 * q^(2 - t)) / (1 - \[Kappa]^2 * q^(1 - s))]

)

KLimitBarcodeHalf[s_, t_][M_] := (

(-1)^(s - t) * q^((M + 1) * (s - t)) * q^((s - 1)/2) * prefactorFromG[s, t] *

(-Sum[

(-q^n)^(t - 1 - s) * F[n, -(t - 2)/2] * F[n, -(s - 1)/2] / fsqnorm[n],

{n, 0, M + 1/2, 1/2}

])

)

KLimitingBarcode[s_, t_][M_] := If[s >= t,

KLimitBarcodeHalf[s, t][M],

KLimitBarcodeHalf[t, s][M]

]
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