COMBINATORICS. PROBLEM SET 9. MÖBIUS FUNCTION AND OTHER ARITHMETIC FUNCTIONS

SEminar/homework problems

Problem 9.1 (1). Show that if the arithmetic function $f(n)$ is multiplicative, then so is the function $g(n):=\sum_{d: d \mid n} f(d)$.

Problem 9.2 (2). Show that if the arithmetic function $f(n)$ is multiplicative, then so is the function $h(n):=\sum_{\delta: \delta \mid n} f(\delta) d\left(\frac{n}{\delta}\right)$, where $d(m)$ is the number of all divisors of m.

Problem 9.3 (1). Let $\lambda(n)=(-1)^{k}$, where k is the number of all prime factors in n counted with multiplicities (e.g., $\lambda(18)=\lambda\left(2 \cdot 3^{2}\right)=3$). Show that $\lambda(n)$ is a multiplicative arithmetic function.

Problem 9.4 (2). Let $\lambda(s)=\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^{s}}$ be the Dirichlet GF of the sequence $\lambda(n)$. Find the Dirichlet GF $\lambda(s) \zeta(s)$, where $\zeta(s)$ is the Riemann zeta function.

Problem 9.5 (1). Show that the Dirichlet GF of the sequence $\{n\}_{n=1}^{\infty}$ is $\zeta(s-1)$.

Problem 9.6 (1). Show that the Dirichlet GF of the sequence $\left\{n^{\alpha}\right\}_{n=1}^{\infty}$ is $\zeta(s-\alpha)$.
Problem 9.7 (2). Show that the Dirichlet GF of the sequence $\{\log n\}_{n=1}^{\infty}$ is $-\zeta^{\prime}(s)$.
Problem 9.8 (2). Show that the Dirichlet GF of the sequence $\left\{\sum_{d: d \mid n} d^{q}\right\}_{n=1}^{\infty}$ is $\zeta(s) \zeta(s-q)$.
Problem 9.9 (2). By using the fact that $\zeta(s) \frac{\zeta(s-1)}{\zeta(s)}=\zeta(s-1)$, show that for $n \geq 2$ one has $\sum_{d: d \mid n} \varphi(d)=n$, where $\varphi(m)$ be the number of numbers among $\{1, \ldots, m-1\}$ which are relatively prime to m.
Problem 9.10 (2). What is the number of necklaces with 14 gems made of emeralds, rubys and diamonds? (one can take any number of gems of any type; we do not distinguish necklaces by rotation, but do distinguish necklaces by mirroring: any necklace has a "face" and "back" sides).

