COMBINATORICS. PROBLEM SET 7. PARTITIONS II

Seminar problems

Problem 7.1. Show that the generating functions of the number of partitions of n with following constraints are:

- (1) partitions into odd parts: $\frac{1}{(1-q)(1-q^3)(1-q^5)(1-q^7)\dots};$ (2) partitions with distinct parts (so-called *strict* partitions): $(1+q)(1+q^2)(1+q^3)(1+q^4)\dots;$
- (3) partitions with distinct odd parts: $(1+q)(1+q^3)(1+q^5)(1+q^7)...;$

Problem 7.2. Show that the number of partitions of n with exactly k parts is the same as the number of strict partitions of $n + \frac{k(k-1)}{2}$ with exactly k parts.

Problem 7.3 (Euler pentagonal theorem). Show that $(1-q)(1-q^2)(1-q^3)\cdots = \sum_{k=-\infty}^{+\infty} (-1)^k q^{\frac{3k^2+k}{2}}$.

Problem 7.4. For a Young diagram λ , let f_{λ} be the number of ways to grow the diagram λ by adding one box at a time (= the number of standard tableaux of shape λ). Show that $\sum_{\lambda: |\lambda|=n} f_{\lambda}^2 = n!$

Problem 7.5. Find the generating function for the number of partitions of *n* with all parts not exceeding N (N is a given fixed number).

Problem 7.6. Let Sym(N) be the space of all symmetric polynomials in N variables z_1, \ldots, z_N . Let $Sym_n(N)$ denote the subspace of homogeneous symmetric polynomials of degree n. Find the generating function for dim $Sym_n(N)$. (Here N is fixed.)

Problem 7.7. Similarly to Problem 7.6, consider the space Sym of all symmetric polynomials in infinitely many variables z_1, z_2, \ldots (examples: $z_1 + z_2 + z_3 + \ldots$, or $z_1 z_2^2 + z_1^2 z_2 + z_1 z_3^2 + z_1^2 z_3 + \ldots$). Find the generating function for the sequence dim Sym_n , where Sym_n is the space of homogeneous symmetric polynomials of degree n.

Problem 7.8. Let c_n be the number of all Young diagrams with *perimeter* n. Find the generating function $\sum_{n=0}^{\infty} c_n q^n.$

Homework

Problem 7.9. Let $psym_n$ be the number of symmetric partitions λ of n (= the number of symmetric wrt transposition Young diagrams with n boxes). Find the generating function $PSYM(q) := \sum_{n=0}^{\infty} psym_n q^n$.

Problem 7.10. Show that the number of all partitions of n is the same as the number of partitions of 2nwith exactly n parts.

Problem 7.11. Show that the number of partitions of n with $\leq k$ parts is the same as the number of *strict* partitions of $n + \frac{k(k+1)}{2}$ with exactly k parts.

Problem 7.12. Using Problem 7.5, find the generating function for the number of partitions of n with < N parts (here N is also a given fixed number). (Hint: use Young diagram representation of partitions.)

Problem 7.13. Let f_{λ} be as defined in Problem 7.4. Find an explicit formula for $f_{(n,n)}$, where (n,n) is the Young diagram with two rows of length $n, n = 0, 1, 2, \ldots$