COMBINATORICS. PROBLEM SET 7. PARTITIONS II

SEminAR PROBLEMS

Problem 7.1. Show that the generating functions of the number of partitions of n with following constraints are:
(1) partitions into odd parts: $\frac{1}{(1-q)\left(1-q^{3}\right)\left(1-q^{5}\right)\left(1-q^{7}\right) \ldots}$;
(2) partitions with distinct parts (so-called strict partitions): $(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right)\left(1+q^{4}\right) \ldots$;
(3) partitions with distinct odd parts: $(1+q)\left(1+q^{3}\right)\left(1+q^{5}\right)\left(1+q^{7}\right) \ldots$;

Problem 7.2. Show that the number of partitions of n with exactly k parts is the same as the number of strict partitions of $n+\frac{k(k-1)}{2}$ with exactly k parts.
Problem 7.3 (Euler pentagonal theorem). Show that $(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right) \cdots=\sum_{k=-\infty}^{+\infty}(-1)^{k} q^{\frac{3 k^{2}+k}{2}}$.
Problem 7.4. For a Young diagram λ, let f_{λ} be the number of ways to grow the diagram λ by adding one box at a time $\left(=\right.$ the number of standard tableaux of shape λ). Show that $\sum_{\lambda:|\lambda|=n} f_{\lambda}^{2}=n!$

Problem 7.5. Find the generating function for the number of partitions of n with all parts not exceeding N (N is a given fixed number).

Problem 7.6. Let $\operatorname{Sym}(N)$ be the space of all symmetric polynomials in N variables z_{1}, \ldots, z_{N}. Let $\operatorname{Sym}_{n}(N)$ denote the subspace of homogeneous symmetric polynomials of degree n. Find the generating function for $\operatorname{dim} \operatorname{Sym}_{n}(N)$. (Here N is fixed.)

Problem 7.7. Similarly to Problem 7.6, consider the space Sym of all symmetric polynomials in infinitely many variables z_{1}, z_{2}, \ldots (examples: $z_{1}+z_{2}+z_{3}+\ldots$, or $z_{1} z_{2}^{2}+z_{1}^{2} z_{2}+z_{1} z_{3}^{2}+z_{1}^{2} z_{3}+\ldots$). Find the generating function for the sequence $\operatorname{dim} S y m_{n}$, where $S y m_{n}$ is the space of homogeneous symmetric polynomials of degree n.

Problem 7.8. Let c_{n} be the number of all Young diagrams with perimeter n. Find the generating function $\sum_{n=0}^{\infty} c_{n} q^{n}$.

Homework

Problem 7.9. Let psym_{n} be the number of symmetric partitions λ of $n(=$ the number of symmetric wrt transposition Young diagrams with n boxes). Find the generating function $\operatorname{PSYM}(q):=\sum_{n=0}^{\infty} p s y m_{n} q^{n}$.
Problem 7.10. Show that the number of all partitions of n is the same as the number of partitions of $2 n$ with exactly n parts.
Problem 7.11. Show that the number of partitions of n with $\leq k$ parts is the same as the number of strict partitions of $n+\frac{k(k+1)}{2}$ with exactly k parts.
Problem 7.12. Using Problem 7.5, find the generating function for the number of partitions of n with $\leq N$ parts (here N is also a given fixed number). (Hint: use Young diagram representation of partitions.)
Problem 7.13. Let f_{λ} be as defined in Problem 7.4. Find an explicit formula for $f_{(n, n)}$, where (n, n) is the Young diagram with two rows of length $n, n=0,1,2, \ldots$.

