COMBINATORICS
 PROBLEM SET 4
 PATHS, NONINTERSECTING PATHS AND MORE

SEminar Problems

Problem 4.1. Consider the square lattice. Up-right paths on this lattice are paths which go only up or right. Diagonal is the line that goes through the points $(0,0),(1,1),(2,2), \ldots$.

We know that the Catalan number C_{n} is the number of up-right paths from $(0,0)$ to (n, n) which never go above the diagonal (see Problem 3.12):

$$
C_{3}=5
$$

ref lection:

(a) Use the paths reflection principle to show that the number of up-right paths from $(0,0)$ to (n, n) which cross ($=$ go above) the diagonal is the same as the number of any up-right paths on the lattice from $(0,0)$ to $(n-1, n+1)$. (This is a bijection argument.)
(b) Using (a) and the definition of the binomial coefficients as numbers of certain up-right paths, deduce $C_{n}=\binom{2 n}{n}-\binom{2 n}{n-1}$. Simplify this to get the known explicit expression for C_{n}.
Problem 4.2. Compute the number of up-right paths on the square lattice from $(0,0)$ to $(n+1, n)$ which never go above the diagonal. Argue as follows:
(a) Use the paths reflection principle to show that the number of up-right paths from $(0,0)$ to $(n+1, n)$ which cross ($=$ go above) the diagonal is the same as the number of all up-right paths on the lattice from $(0,0)$ to $(n-1, n+2)$.
(b) The number of paths we want is $\binom{2 n+1}{n}-\binom{2 n+1}{n-1}$. Simplify this to get the answer.

Problem 4.3. Write KMGLGV matrix $X_{i j}$ ($X_{i j}$ is the number of paths from u_{i} to v_{j}) for the following graph:

Compute the determinant of the matrix. What does it represent?

Problem 4.4. Write KMGLGV matrix $X_{i j}$ ($X_{i j}$ is the sum of weights of all paths from u_{i} to v_{j}) for the following graph with weights:

$$
\begin{aligned}
& \text { weigh }(\vec{\rightarrow})=1 \\
& \text { weight }(\psi)=\alpha>0
\end{aligned}
$$

Compute the determinant of the matrix. What does it represent?
Problem 4.5. Compute the determinant by hand: $\operatorname{det}\left[\begin{array}{lll}C_{0} & C_{1} & C_{2} \\ C_{1} & C_{2} & C_{3} \\ C_{2} & C_{3} & C_{4}\end{array}\right]$.
Problem 4.6. A matrix in which each $i j$ th element depends only on $i+j$, is called a Hankel matrix. Use KMGLGV lemma (= nonintersecting paths lemma) to compute the following determinants of Hankel matrices (C_{n} is the nth Catalan number):
(a) $\operatorname{det}\left[C_{i+j-2}\right]_{i, j=1}^{n}=1$
(b) $\operatorname{det}\left[C_{i+j-1}\right]_{i, j=1}^{n}=1$
(for all $n=1,2, \ldots$).
Problem 4.7. Let $X_{i j}$ be a KMGLGV matrix of some graph; take its square submatrix (formed by some rows and columns). What does the determinant of this submatrix (called a minor of the initial matrix) represent?

Homework

Problem 4.8 (2). Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ be the generating function of a sequence $\left\{a_{n} \ldots\right\}_{n=0}^{\infty}$. Consider the sequence $\left\{\sum_{j=0}^{n} a_{j}\right\}_{n=0}^{\infty}$, i.e., the sequence starts as $a_{0}, a_{0}+a_{1}, a_{0}+$ $a_{1}+a_{2}, \ldots$. Show that the generating function of this new sequence is $\frac{f(x)}{1-x}$.

Problem 4.9. Let $\left\{F_{n}\right\}_{n=0}^{\infty}=\{0,1,1,2,3,5,8,13, \ldots\}$ be the Fibonacci numbers, their generating function is

$$
\sum_{n=0}^{\infty} F_{n} x^{n}=\frac{x}{1-x-x^{2}}
$$

Show (using generating functions) that
(a) (2) $F_{0}+F_{1}+\cdots+F_{n}=F_{n+2}-1$;
(b) (2) $F_{0}+F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1}-1$;
(c) (2) $F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}$;

Problem 4.10 (Motzkin numbers (3)). Motzkin paths are the same as Dyck paths (see Problem 3.7) but can contain steps $(0,1)$:
$M_{4}=9$

Let M_{n} be the nth Motzkin number - the number of Motzkin paths (by definition, paths with steps $(1,1),(1,0)$ and $(1,-1)$ and never going below the x-axis) from $(0,0)$ to (n, n). Show that the Motzkin numbers satisfy the recurrence

$$
M_{n}=M_{n-1}+\sum_{k=0}^{n-2} M_{k} M_{n-2-k}, \quad n \geq 2
$$

(the argument is very similar to the Catalan recurrence). Find the equation on the generating function $1+\sum_{n=1}^{\infty} M_{n} x^{n}$ for M_{n}, and then find the generating function itself.
Problem 4.11 (2). Show that the nth Motzkin number is the number of different ways of drawing non-intersecting chords on a circle between n points:

Problem 4.12. Write KMGLGV matrix $X_{i j}$ ($X_{i j}$ is the number of paths from u_{i} to v_{j}) for the following graphs ((1) for each graph and determinant):

Compute the determinants of these matrices. What do these determinants represent?

Problem 4.13. Write KMGLGV matrix $X_{i j}$ ($X_{i j}$ is the sum of weights of all paths from u_{i} to v_{j}) for the following graphs with weights ((1) for each graph and determinant):

Compute the determinants of these matrices. What do these determinants represent?
Problem 4.14. Compute the following determinants by hand (C_{n} is the nth Catalan number, $\left.C_{0}=C_{1}=1, C_{2}=2, \ldots\right)$:
(a) (1) $\operatorname{det}\left[\begin{array}{lll}C_{1} & C_{2} & C_{3} \\ C_{2} & C_{3} & C_{4} \\ C_{3} & C_{4} & C_{5}\end{array}\right]$
(b) (1) $\operatorname{det}\left[\begin{array}{lll}C_{2} & C_{3} & C_{4} \\ C_{3} & C_{4} & C_{5} \\ C_{4} & C_{5} & C_{6}\end{array}\right]$

Problem 4.15. Compute the following determinants by hand (M_{n} is the nth Motzkin number, see Problem 4.10, $\left.M_{0}=M_{1}=1, M_{2}=2, \ldots\right)$:
(a) (1) $\operatorname{det}\left[\begin{array}{llll}M_{0} & M_{1} & M_{2} & M_{3} \\ M_{1} & M_{2} & M_{3} & M_{4} \\ M_{2} & M_{3} & M_{4} & M_{5} \\ M_{3} & M_{4} & M_{5} & M_{6}\end{array}\right]$
(b) (1) $\operatorname{det}\left[\begin{array}{lll}M_{1} & M_{2} & M_{3} \\ M_{2} & M_{3} & M_{4} \\ M_{3} & M_{4} & M_{5}\end{array}\right]$

Problem 4.16 (4). Use KMGLGV lemma to show that the Hankel determinants $\operatorname{det}\left[M_{i+j-2}\right]_{i, j=1}^{n}$ (M_{n} is the nth Motzkin number) are equal to one for all $n=1,2, \ldots$.
Problem 4.17 (3). Let $k \geq 0$. Arguing as in Problems 4.1 and 4.2 , compute the number of up-right paths on the lattice from $(0,0)$ to $(n+k, n)$ which never go above the diagonal:

Problem 4.18 (4). Consider paths on the square lattice with steps $(0,1)$ (up), (1,0) (right), and $(-1,0)$ (left). Let P_{n} be the number of such paths of length $n(n=1,2, \ldots)$ with no self-intersections (hint: this means that the left and right steps cannot be neighbors):

Find a recurrence relation for the P_{n} 's and show that their generating function is

$$
1+\sum_{n=1}^{\infty} P_{n} x^{n}=\frac{1+x}{1-2 x-x^{2}}
$$

(Such paths serve as a simple model for polymers.)

Supplementary problems

Problem 4.19 (3). Show that (in notation of Problem 4.9) $F_{0}^{2}+F_{1}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.
Problem 4.20 (5). Let a_{n} be the number of ways in which the rectangle $3 \times 2 n$ can be tiled by 1×2 dominoes:

Write a recurrence for a_{n}, and then find the generating function $1+\sum_{n=1}^{\infty} a_{n} x^{n}$.
Problem 4.21 (3). Use KMGLGV lemma ($=$ nonintersecting paths lemma) to compute the following determinant: $\operatorname{det}\left[C_{i+j}\right]_{i, j=1}^{n}=n+1$ (for all $n=1,2, \ldots$).
Problem 4.22. Let $T=1,2, \ldots$, let $0 \leq a_{1}<\cdots<a_{n}$ and $0 \leq b_{1}<\cdots<b_{n}$. Show that the determinant

$$
\operatorname{det}\left[\binom{T+b_{i}-a_{j}}{b_{i}-a_{j}}\right]_{i, j=1}^{n}
$$

is nonnegative.
Here (as usual) we use the agreement $\binom{N}{k}=0$ for $k<0$ or $k>N$. For example, the above determinant of order 3 has the form

$$
\operatorname{det}\left[\begin{array}{ccc}
\binom{T+b_{1}-a_{1}}{b_{1}-a_{1}} & \binom{T+b_{1}-a_{2}}{b_{1}-a_{2}} & \binom{T+b_{1}-a_{3}}{b_{1}-a_{3}} \\
\binom{T+b_{2}-a_{1}}{b_{2}-a_{1}} & \binom{T+b_{2}-a_{2}}{b_{2}-a_{2}} & \binom{T+b_{2}-a_{3}}{b_{2}-a_{3}} \\
\binom{T+b_{3}-a_{1}}{b_{3}-a_{1}} & \binom{T+b_{3}-a_{2}}{b_{3}-a_{2}} & \binom{T+b_{3}-a_{3}}{b_{3}-a_{3}}
\end{array}\right] .
$$

Hint. Use the KMGLGV lemma for the square lattice:

