Chapter VIII

The Yang-Baxter Equation and
(Co)Braided Bialgebras

Part II is centered around the now famous Yang-Baxter equation whose so-
lutions are the so-called R-matrices. We introduce the concept of braided
bialgebras due to Drinfeld. These are bialgebras with a universal R-matrix
inducing a solution of the Yang-Baxter equation on any of their mod-
ules. This provides a systematic method to produce solutions of the Yang-
Baxter equation. There is a dual notion of cobraided bialgebras. We show
how to construct a cobraided bialgebra out of any solution of the Yang-
Baxter equation by a method due to Faddeev, Reshetikhin and Takhtadjian
[RTF89]. We conclude this chapter by proving that the quantum groups
GL,(2) and SL,(2) of Chapter IV can be obtained by this method and
that they are cobraided.

VIII.1 The Yang-Baxter Equation

Definition VIIL.1.1. Let V be a vector space over o field k. A linear
automorphism ¢ of V. ® V is said to be an R-matriz if it is a solution of
the Yang-Baxter equation
(c®idy)(idy ® ¢)(e®idy) = (idy ® c){c®idy)(idy ® ¢)
that holds in the automorphism group of V@V @ V.
Finding all solutions of the Yang-Baxter equation is a difficult task, as

will appear from the examples given below. Let {v;}, be a basis of the
vector space V. An automorphism ¢ of V ® V' is defined by the family
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(C%)i,j, x.¢ of scalars determined by
c(v; ® v, Z Cii U @y

Then ¢ is a solution of the Yang-Baxter equation if and only if for all
i,7,k, €, m,n, we have

Z
Z (Cp 6kr)( pxcg:)( ;;(szn) - Z (5zpcg;)(cpq6rz)(6x£c;n)7
P,4,TT,Y,2 P,4,7T,Y,2
which is equivalent to
Z Cpq yn Zm . Z cqr Zy mn (1 1)
ij Cak py Cig Cyr - ’
P,ay Y.q,r

for all 4, 4, k, £,m, n. Solving the non-linear equations (1.1) is a highly non-
trivial problem. Nevertheless, numerous solutions of the Yang-Baxter equa-
tion have been discovered in the 1980’s. Let us list a few examples.

Example 1. For any vector space V we denote by 7y, € Aut(V ® V) the
flip switching the two copies of V. It is defined by

Ty (V1 ® vg) = vy ® vy,

for any vy,v, € V. The flip satisfies the Yang-Baxter equation because of
the Coxeter relation (12)(23)(12) = (23)(12)(23) in the symmetry group
Sy.

Here is a way to generate new R-matrices from old ones.

Lemma VIIL1.2. Ifc € Aut(V ®V) is an R-matriz, then so are Ac, ¢!
and Ty, 1 0 co Ty where X\ is any non-zero scalar.

PROOF. This follows from the identities
(Ac®idy) = AMe®idy), (@dy @ Ac) = A(idy ® ¢),

(c'eidy) = (c®idy)™!, (dy®@c ) =(dy®c)7,
(¢ ®idy,) = o(idy ®c)o™ !, (idy @) = olc®idy)o !,

where ¢’ = Tyy ocoTyy and o is the automorphism of V@V @V defined
by 0(v; @ vy ® V3) = U3 ® Vg @ vy for vy, vy,v5 € V. O

Example 2. Let us solve the Yang-Baxter equation when V =V, =V, , is
the 2-dimensional simple module over the Hopf algebra U, = U, (sl(2)) con-
sidered in Chapters VI-VIL. More precisely, let us find all U -automorphisms
of V; ® V| that are R-matrices. We freely use the notation of the above-
mentioned chapters. Recall that if v, is a highest weight vector of V}, then
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the set {vy,v; = Fuv} is a basis of V. By the Clebsch-Gordan Theorem
VIL.7.1 we have V, ® V, 2V, @ V;. Lemma VIL.7.2 implies that the vectors

wy =1, ®v, and t=v,®v; —q v, @y,

are highest weight vectors of respective weights ¢ and 1. We complete the
set of linearly independent vectors {w, ¢t} into a basis for V®V by setting

1
w) = Fwy=q vy @, + v, ®vy and w, = — F2w, = v, @ v,

2l
where [2] = q+q7".
Proposition VIIL1.3. Any U -linear automorphism p of V, ®V, is dia-
gonalizable and of the form p(w,;) = Aw,; (i =0,1,2) and p(t) = ut where
A and p are non-zero scalars. The automorphism ¢ s an R-matriz if and
only if
A=) (@A + a7 ) (g™ A +qp) = 0.

PROOF. Since ¢ is U -linear, the image under ¢ of a highest weight vector
is a highest weight vector of the same weight. Now, w, and t have different
weights (we still assume that g* # 1); therefore, there exist A and u such
that p(w,) = Aw, and (t) = pt.

As for the remaining basis vectors, we have

g —i fo(wgy) = Aw,
SO(U%):W‘P(FU’O)—[Z.]F‘P( 0) = Aw;

for ¢ = 1,2. This completes the proof of the first assertion in Proposition
1.3.

The second assertion results from tedious computation. Let us give some
details. We first observe that the matrix ® of ¢ with respect to the basis
{vg ® vy, vy ® vy, v ® vy, v ® vy} is given by

A0 0 O
1 0 a v O
® = 0 v 8 0
00 0 A
where . .
ao A g e p Ak
P P 2]

The automorphisms ¢ ® id and id ® ¢ can be expressed, respectively, by
the 8 x 8-matrices ®,, and ®,4 in the basis consisting of the elements
Uy ® Uy RV, Vg @V QU Vg Qv Q Uy, Vg QU1 Uy, U1 @ Uy @V, V3 @V BV,
v, @ v, Qug, and v; Qv @ v, of VRV ®V where
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A0 0 0 0 0 0 O

0O A0 0 0 O0O0OTUO

0 0o 0Oy 0 0O

& 0 00 a 04 00

2710 0 v 0 8 0 0 0

00 0 ~ 0 B 00

000 00O 0 X O

00 0 00O 0O 0 A

and

A0 0 0 0 O0 OO

0O a v 00 0 0 O

0 00 0 0O

o 00 0OXO0OO0OO0UO

27100 0 0 X0 00O

0 0000 aa v O

0 000 0~ B 0

0 0 0O0O 0O 0 0 X

Now, @1,P53P15 — Py3P,,P5

0 0 0 0 0 0 0 0
0 K —afy 0 0 0 0 0
0 —afy L 0 aBy O 0 0
10 0 0 -K 0 a8y 0 O
I 0 afy 0 M 0 0 0
0 0 0 afy 0 —L afy O
0 0 0 0 0 aBy —-M O
0 0 0 0 0 0 0 O

where K = a((A — a)A —+?), L = af(a — B) and M = B(v* + A\(B — N)).
Suppose that we have proved that K, L and M are multiples of a3v. Then
P15Py3P1y — Pg3 P15 Py3 = affy X ¥

where ¥ is a non-zero matrix. It follows that ® is an R-matrix if and only
if afBvy = 0, which would complete the proof of Proposition 1.3.

It remains to show that K,L and M are multiples of afBvy. An easy
computation proves that

A—a=qy, A\=B=q"y, ¢ A—v=qgla, gA-—7=¢p
and 8 — a = (¢ — ¢~ ')7. Therefore,
K=oay(gh\—v) =qapy, L=—(q—q ")apy

and M = By(y —q7'A) = —¢"'apy. 0
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To sum up, the R-matrices of the U ,-module V; ® V; belong to the
following three types depending on a parameter A # 0:
1. If A =y, @ is a homothety.

2. If g\ + ¢ ' = 0, then

qg! 0 0 0
- 0 g'—qg 1 0
P=ar| 1 0 0
0 0 0 ¢!
3. If ¢ A+ qu = 0, then

qg O 0 0
0 0 1 0

-1
®=qA 0 1 g-qgt 0
0 0 0 q

It is clear that Cases 2 and 3 are equivalent within a change of basis after
exchanging ¢ and ¢~!. As we shall see in the next example, the minimal
polynomial of ® is of degree < 2.

Example 3. We now give an important class of R-matrices with guadratic
minimal polynomial. Such R-matrices will be used in Chapter XII to con-
struct isotopy invariants of links in R3.

Let V be a finite-dimensional vector space with a basis {e;,...,ex}. For
two invertible scalars p,q and for any family {Tz'j}lgi,jg w of scalars in k

such that r; = ¢ and r;7;; =p when i # 7, we define an automorphism ¢
of V®V by
cle;®e;) = ge; D¢,
r..e; e, if i<y
. . = Jv -3 B R
cle; ® ) { rie; Qe +(q—pg e, ®e; if P>

Proposition VIIL.1.4. The automorphism c is a solution of the Yang-
Bazxter equation. Moreover, we have

(c — qidygy)(c+pg~lidygy) =0,
or, equivalently, > — (¢ —pg~")c — pidy gy = 0.

PROOF. (a) We first show that ¢ is an R-matrix. In order to simplify the
proof, let us introduce the following notation. The symbol (ijk) will stand
for the vector ¢; ® e; ® ey, and [¢ > j] for the integer 1 if ¢ > j and for 0
otherwise. Then ¢ can be redefined as

cle; ® ej) =70, Q€+ [i > j]fBe, ® e;

where = q—pg~'.
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An immediate computation yields
(c®id)(id ® ¢)(c ® id)((ijk))
= 7Ty (kJ8) + 1m0 > k] B(5KD)
7yt > 518(kig) + gl > G5 > k6% (ikj)
(> 410 > K+ [ > ) > K]) B(iik)
+(Tjirij [i > k]G +[i > j]lj > k]ﬂj) (ijk)
and

(id ® ¢)(c®id)(id ® ¢)((i7k))
= 1TkiTri (KJE) + 1m0 > KB (ki)
+7i il > J18(kig) + 7yl > k7 > k)3° (jik)
i (1 > Kl > 51+ i > 5115 > k1) 6 (ik3)
+(ryurigli > KB+ (i > 11l > K18°) (igk).

We have to prove that these expressions are equal for all 7,7, k. This is
clearly the case if i = j = k. If 4, §, k are distinct indices, they are equal in
view of relations of the type

[i > jlli > k] = [i > jllj > k] + [i > K][k > j]

which express the fact that for distinct indices, we have ¢ > j and ¢ > k
ifand only if ¢ > 7 > k or i« > k > j. If exactly two indices are equal, say
i = j # k, then the desired equality is equivalent to r?i = Br,;, + p, which
holds since r,; =q and § =¢q — pg~ L.

(b) One computes ¢® — Bc — pidy gy on any vector of the form e; ®e;. If
i # j, one immediately obtains 0. If i = j, one gets (¢> — 8g — p)(e; ® €,),
which is zero because of the value given to . o

Consider the following two special cases:

(i) If p = ¢° and r;; = q for all 7, j, then c is a homothety.

(ii) Take p = 1 and r;; = 1 for i # j. Then c takes the form shown in
Case 3 of Example 2 when V is two-dimensional. Thus, Example 2 turns
out to be a special case of Example 3.

VIIL.2 Braided Bialgebras

The aim of this section is to define the concept of a braided bialgebra. The
importance of this concept comes from the fact proved in Section 3 that
braided bialgebras generate solutions of the Yang-Baxter equation.



