Chapter VIII
 The Yang-Baxter Equation and (Co)Braided Bialgebras

Part II is centered around the now famous Yang-Baxter equation whose solutions are the so-called R-matrices. We introduce the concept of braided bialgebras due to Drinfeld. These are bialgebras with a universal R-matrix inducing a solution of the Yang-Baxter equation on any of their modules. This provides a systematic method to produce solutions of the YangBaxter equation. There is a dual notion of cobraided bialgebras. We show how to construct a cobraided bialgebra out of any solution of the YangBaxter equation by a method due to Faddeev, Reshetikhin and Takhtadjian [RTF89]. We conclude this chapter by proving that the quantum groups $G L_{q}(2)$ and $S L_{q}(2)$ of Chapter IV can be obtained by this method and that they are cobraided.

VIII. 1 The Yang-Baxter Equation

Definition VIII.1.1. Let V be a vector space over a field k. A linear automorphism c of $V \otimes V$ is said to be an R-matrix if it is a solution of the Yang-Baxter equation

$$
\left(c \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes c\right)\left(c \otimes \mathrm{id}_{V}\right)=\left(\mathrm{id}_{V} \otimes c\right)\left(c \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes c\right)
$$

that holds in the automorphism group of $V \otimes V \otimes V$.
Finding all solutions of the Yang-Baxter equation is a difficult task, as will appear from the examples given below. Let $\left\{v_{i}\right\}_{i}$ be a basis of the vector space V. An automorphism c of $V \otimes V$ is defined by the family
$\left(c_{i j}^{k \ell}\right)_{i, j, k, \ell}$ of scalars determined by

$$
c\left(v_{i} \otimes v_{j}\right)=\sum_{k, \ell} c_{i j}^{k \ell} v_{k} \otimes v_{\ell}
$$

Then c is a solution of the Yang-Baxter equation if and only if for all i, j, k, ℓ, m, n, we have

$$
\sum_{p, q, r, x, y, z}\left(c_{i j}^{p q} \delta_{k r}\right)\left(\delta_{p x} c_{q r}^{y z}\right)\left(c_{x y}^{\ell m} \delta_{z n}\right)=\sum_{p, q, r, x, y, z}\left(\delta_{i p} c_{j k}^{q r}\right)\left(c_{p q}^{x y} \delta_{r z}\right)\left(\delta_{x \ell} c_{y z}^{m n}\right)
$$

which is equivalent to

$$
\begin{equation*}
\sum_{p, q, y} c_{i j}^{p q} c_{q k}^{y n} c_{p y}^{\ell m}=\sum_{y, q, r} c_{j k}^{q r} c_{i q}^{\ell y} c_{y r}^{m n} \tag{1.1}
\end{equation*}
$$

for all i, j, k, ℓ, m, n. Solving the non-linear equations (1.1) is a highly nontrivial problem. Nevertheless, numerous solutions of the Yang-Baxter equation have been discovered in the 1980's. Let us list a few examples.

Example 1. For any vector space V we denote by $\tau_{V, V} \in \operatorname{Aut}(V \otimes V)$ the flip switching the two copies of V. It is defined by

$$
\tau_{V, V}\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}
$$

for any $v_{1}, v_{2} \in V$. The flip satisfies the Yang-Baxter equation because of the Coxeter relation $(12)(23)(12)=(23)(12)(23)$ in the symmetry group S_{3}.

Here is a way to generate new R-matrices from old ones.
Lemma VIII.1.2. If $c \in \operatorname{Aut}(V \otimes V)$ is an R-matrix, then so are $\lambda c, c^{-1}$ and $\tau_{V, V} \circ c \circ \tau_{V, V}$ where λ is any non-zero scalar.

Proof. This follows from the identities

$$
\begin{array}{cl}
\left(\lambda c \otimes \operatorname{id}_{V}\right)=\lambda\left(c \otimes \mathrm{id}_{V}\right), & \left(\mathrm{id}_{V} \otimes \lambda c\right)=\lambda\left(\mathrm{id}_{V} \otimes c\right) \\
\left(c^{-1} \otimes \mathrm{id}_{V}\right)=\left(c \otimes \mathrm{id}_{V}\right)^{-1}, & \left(\mathrm{id}_{V} \otimes c^{-1}\right)=\left(\mathrm{id}_{V} \otimes c\right)^{-1} \\
\left(c^{\prime} \otimes \mathrm{id}_{V}\right)=\sigma\left(\mathrm{id}_{V} \otimes c\right) \sigma^{-1}, & \left(\mathrm{id}_{V} \otimes c^{\prime}\right)=\sigma\left(c \otimes \mathrm{id}_{V}\right) \sigma^{-1}
\end{array}
$$

where $c^{\prime}=\tau_{V, V} \circ c \circ \tau_{V, V}$ and σ is the automorphism of $V \otimes V \otimes V$ defined by $\sigma\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=v_{3} \otimes v_{2} \otimes v_{1}$ for $v_{1}, v_{2}, v_{3} \in V$.
Example 2. Let us solve the Yang-Baxter equation when $V=V_{1}=V_{1,1}$ is the 2-dimensional simple module over the Hopf algebra $U_{q}=U_{q}(\mathfrak{s l}(2))$ considered in Chapters VI-VII. More precisely, let us find all U_{q}-automorphisms of $V_{1} \otimes V_{1}$ that are R-matrices. We freely use the notation of the abovementioned chapters. Recall that if v_{0} is a highest weight vector of V_{1}, then
the set $\left\{v_{0}, v_{1}=F v\right\}$ is a basis of V_{1}. By the Clebsch-Gordan Theorem VII.7.1 we have $V_{1} \otimes V_{1} \cong V_{2} \oplus V_{0}$. Lemma VII.7.2 implies that the vectors

$$
w_{0}=v_{0} \otimes v_{0} \quad \text { and } \quad t=v_{0} \otimes v_{1}-q^{-1} v_{1} \otimes v_{0}
$$

are highest weight vectors of respective weights q^{2} and 1 . We complete the set of linearly independent vectors $\left\{w_{0}, t\right\}$ into a basis for $V \otimes V$ by setting

$$
w_{1}=F w_{0}=q^{-1} v_{0} \otimes v_{1}+v_{1} \otimes v_{0} \quad \text { and } \quad w_{2}=\frac{1}{[2]} F^{2} w_{0}=v_{1} \otimes v_{1}
$$

where $[2]=q+q^{-1}$.
Proposition VIII.1.3. Any U_{q}-linear automorphism φ of $V_{1} \otimes V_{1}$ is diagonalizable and of the form $\varphi\left(w_{i}\right)=\lambda w_{i}(i=0,1,2)$ and $\varphi(t)=\mu t$ where λ and μ are non-zero scalars. The automorphism φ is an R-matrix if and only if

$$
(\lambda-\mu)\left(q \lambda+q^{-1} \mu\right)\left(q^{-1} \lambda+q \mu\right)=0 .
$$

Proof. Since φ is U_{q}-linear, the image under φ of a highest weight vector is a highest weight vector of the same weight. Now, w_{0} and t have different weights (we still assume that $q^{2} \neq 1$); therefore, there exist λ and μ such that $\varphi\left(w_{0}\right)=\lambda w_{0}$ and $\varphi(t)=\mu t$.

As for the remaining basis vectors, we have

$$
\varphi\left(w_{i}\right)=\frac{1}{[i]} \varphi\left(F^{i} w_{0}\right)=\frac{1}{[i]} F^{i} \varphi\left(w_{0}\right)=\lambda w_{i}
$$

for $i=1,2$. This completes the proof of the first assertion in Proposition 1.3 .

The second assertion results from tedious computation. Let us give some details. We first observe that the matrix Φ of φ with respect to the basis $\left\{v_{0} \otimes v_{0}, v_{0} \otimes v_{1}, v_{1} \otimes v_{0}, v_{1} \otimes v_{1}\right\}$ is given by

$$
\Phi=\left(\begin{array}{llll}
\lambda & 0 & 0 & 0 \\
0 & \alpha & \gamma & 0 \\
0 & \gamma & \beta & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right)
$$

where

$$
\alpha=\frac{q^{-1} \lambda+q \mu}{[2]}, \quad \beta=\frac{q \lambda+q^{-1} \mu}{[2]}, \quad \gamma=\frac{\lambda-\mu}{[2]} .
$$

The automorphisms $\varphi \otimes \mathrm{id}$ and $\mathrm{id} \otimes \varphi$ can be expressed, respectively, by the 8×8-matrices Φ_{12} and Φ_{23} in the basis consisting of the elements $v_{0} \otimes v_{0} \otimes v_{0}, v_{0} \otimes v_{0} \otimes v_{1}, v_{0} \otimes v_{1} \otimes v_{0}, v_{0} \otimes v_{1} \otimes v_{1}, v_{1} \otimes v_{0} \otimes v_{0}, v_{1} \otimes v_{0} \otimes v_{1}$, $v_{1} \otimes v_{1} \otimes v_{0}$, and $v_{1} \otimes v_{1} \otimes v_{1}$ of $V \otimes V \otimes V$ where

$$
\Phi_{12}=\left(\begin{array}{cccccccc}
\lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha & 0 & \gamma & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha & 0 & \gamma & 0 & 0 \\
0 & 0 & \gamma & 0 & \beta & 0 & 0 & 0 \\
0 & 0 & 0 & \gamma & 0 & \beta & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right)
$$

and

$$
\Phi_{23}=\left(\begin{array}{cccccccc}
\lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha & \gamma & 0 & 0 & 0 & 0 & 0 \\
0 & \gamma & \beta & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha & \gamma & 0 \\
0 & 0 & 0 & 0 & 0 & \gamma & \beta & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{array}\right) .
$$

Now, $\Phi_{12} \Phi_{23} \Phi_{12}-\Phi_{23} \Phi_{12} \Phi_{23}$

$$
=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & K & -\alpha \beta \gamma & 0 & 0 & 0 & 0 & 0 \\
0 & -\alpha \beta \gamma & L & 0 & \alpha \beta \gamma & 0 & 0 & 0 \\
0 & 0 & 0 & -K & 0 & \alpha \beta \gamma & 0 & 0 \\
0 & 0 & \alpha \beta \gamma & 0 & M & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha \beta \gamma & 0 & -L & \alpha \beta \gamma & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha \beta \gamma & -M & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $K=\alpha\left((\lambda-\alpha) \lambda-\gamma^{2}\right), L=\alpha \beta(\alpha-\beta)$ and $M=\beta\left(\gamma^{2}+\lambda(\beta-\lambda)\right)$. Suppose that we have proved that K, L and M are multiples of $\alpha \beta \gamma$. Then

$$
\Phi_{12} \Phi_{23} \Phi_{12}-\Phi_{23} \Phi_{12} \Phi_{23}=\alpha \beta \gamma \times \Psi
$$

where Ψ is a non-zero matrix. It follows that Φ is an R-matrix if and only if $\alpha \beta \gamma=0$, which would complete the proof of Proposition 1.3.

It remains to show that K, L and M are multiples of $\alpha \beta \gamma$. An easy computation proves that

$$
\lambda-\alpha=q \gamma, \quad \lambda-\beta=q^{-1} \gamma, \quad q^{-1} \lambda-\gamma=q^{-1} \alpha, \quad q \lambda-\gamma=q \beta
$$

and $\beta-\alpha=\left(q-q^{-1}\right) \gamma$. Therefore,

$$
K=\alpha \gamma(q \lambda-\gamma)=q \alpha \beta \gamma, \quad L=-\left(q-q^{-1}\right) \alpha \beta \gamma
$$

and $M=\beta \gamma\left(\gamma-q^{-1} \lambda\right)=-q^{-1} \alpha \beta \gamma$.

To sum up, the R-matrices of the U_{q}-module $V_{1} \otimes V_{1}$ belong to the following three types depending on a parameter $\lambda \neq 0$:

1. If $\lambda=\mu, \varphi$ is a homothety.
2. If $q \lambda+q^{-1} \mu=0$, then

$$
\Phi=q \lambda\left(\begin{array}{cccc}
q^{-1} & 0 & 0 & 0 \\
0 & q^{-1}-q & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & q^{-1}
\end{array}\right)
$$

3. If $q^{-1} \lambda+q \mu=0$, then

$$
\Phi=q^{-1} \lambda\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

It is clear that Cases 2 and 3 are equivalent within a change of basis after exchanging q and q^{-1}. As we shall see in the next example, the minimal polynomial of Φ is of degree ≤ 2.

Example 3. We now give an important class of R-matrices with quadratic minimal polynomial. Such R-matrices will be used in Chapter XII to construct isotopy invariants of links in \mathbf{R}^{3}.

Let V be a finite-dimensional vector space with a basis $\left\{e_{1}, \ldots, e_{N}\right\}$. For two invertible scalars p, q and for any family $\left\{r_{i j}\right\}_{1 \leq i, j \leq N}$ of scalars in k such that $r_{i i}=q$ and $r_{i j} r_{j i}=p$ when $i \neq j$, we define an automorphism c of $V \otimes V$ by

$$
\begin{aligned}
& c\left(e_{i} \otimes e_{i}\right)=q e_{i} \otimes e_{i} \\
& c\left(e_{i} \otimes e_{j}\right)= \begin{cases}r_{j i} e_{j} \otimes e_{i} & \text { if } i<j \\
r_{j i} e_{j} \otimes e_{i}+\left(q-p q^{-1}\right) e_{i} \otimes e_{j} & \text { if } i>j .\end{cases}
\end{aligned}
$$

Proposition VIII.1.4. The automorphism c is a solution of the YangBaxter equation. Moreover, we have

$$
\left(c-q \operatorname{id}_{V \otimes V}\right)\left(c+p q^{-1} \operatorname{id}_{V \otimes V}\right)=0
$$

or, equivalently, $c^{2}-\left(q-p q^{-1}\right) c-p \mathrm{id}_{V \otimes V}=0$.
Proof. (a) We first show that c is an R-matrix. In order to simplify the proof, let us introduce the following notation. The symbol $(i j k)$ will stand for the vector $e_{i} \otimes e_{j} \otimes e_{k}$, and $[i>j]$ for the integer 1 if $i>j$ and for 0 otherwise. Then c can be redefined as

$$
c\left(e_{i} \otimes e_{j}\right)=r_{j i} e_{j} \otimes e_{i}+[i>j] \beta e_{i} \otimes e_{j}
$$

where $\beta=q-p q^{-1}$.

An immediate computation yields

$$
\begin{aligned}
(c \otimes \mathrm{id})(\mathrm{id} & \otimes c)(c \otimes \mathrm{id})((i j k)) \\
= & r_{j i} r_{k i} r_{k j}(k j i)+r_{j i} r_{k i}[j>k] \beta(j k i) \\
& +r_{k j} r_{k i}[i>j] \beta(k i j)+r_{k j}[i>j][j>k] \beta^{2}(i k j) \\
& +r_{j i}([j>i][i>k]+[i>j][j>k]) \beta^{2}(j i k) \\
& +\left(r_{j i} r_{i j}[i>k] \beta+[i>j][j>k] \beta^{3}\right)(i j k)
\end{aligned}
$$

and

$$
\begin{aligned}
&(\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)((i j k)) \\
&= r_{j i} r_{k i} r_{k j}(k j i)+r_{j i} r_{k i}[j>k] \beta(j k i) \\
&+r_{k j} r_{k i}[i>j] \beta(k i j)+r_{j i}[i>k][j>k] \beta^{2}(j i k) \\
&+r_{k j}([i>k][k>j]+[i>j][j>k]) \beta^{2}(i k j) \\
&+\left(r_{j k} r_{k j}[i>k] \beta+[i>j][j>k] \beta^{3}\right)(i j k) .
\end{aligned}
$$

We have to prove that these expressions are equal for all i, j, k. This is clearly the case if $i=j=k$. If i, j, k are distinct indices, they are equal in view of relations of the type

$$
[i>j][i>k]=[i>j][j>k]+[i>k][k>j]
$$

which express the fact that for distinct indices, we have $i>j$ and $i>k$ if and only if $i>j>k$ or $i>k>j$. If exactly two indices are equal, say $i=j \neq k$, then the desired equality is equivalent to $r_{i i}^{2}=\beta r_{i i}+p$, which holds since $r_{i i}=q$ and $\beta=q-p q^{-1}$.
(b) One computes $c^{2}-\beta c-p \operatorname{id}_{V \otimes V}$ on any vector of the form $e_{i} \otimes e_{j}$. If $i \neq j$, one immediately obtains 0 . If $i=j$, one gets $\left(q^{2}-\beta q-p\right)\left(e_{i} \otimes e_{i}\right)$, which is zero because of the value given to β.

Consider the following two special cases:
(i) If $p=q^{2}$ and $r_{i j}=q$ for all i, j, then c is a homothety.
(ii) Take $p=1$ and $r_{i j}=1$ for $i \neq j$. Then c takes the form shown in Case 3 of Example 2 when V is two-dimensional. Thus, Example 2 turns out to be a special case of Example 3.

VIII. 2 Braided Bialgebras

The aim of this section is to define the concept of a braided bialgebra. The importance of this concept comes from the fact proved in Section 3 that braided bialgebras generate solutions of the Yang-Baxter equation.

