Chapter VIII The Yang-Baxter Equation and (Co)Braided Bialgebras

Part II is centered around the now famous Yang-Baxter equation whose solutions are the so-called *R*-matrices. We introduce the concept of braided bialgebras due to Drinfeld. These are bialgebras with a universal *R*-matrix inducing a solution of the Yang-Baxter equation on any of their modules. This provides a systematic method to produce solutions of the Yang-Baxter equation. There is a dual notion of cobraided bialgebras. We show how to construct a cobraided bialgebra out of any solution of the Yang-Baxter equation by a method due to Faddeev, Reshetikhin and Takhtadjian [RTF89]. We conclude this chapter by proving that the quantum groups $GL_q(2)$ and $SL_q(2)$ of Chapter IV can be obtained by this method and that they are cobraided.

VIII.1 The Yang-Baxter Equation

Definition VIII.1.1. Let V be a vector space over a field k. A linear automorphism c of $V \otimes V$ is said to be an R-matrix if it is a solution of the Yang-Baxter equation

$$(c \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes c)(c \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes c)(c \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes c)$$

that holds in the automorphism group of $V \otimes V \otimes V$.

Finding all solutions of the Yang-Baxter equation is a difficult task, as will appear from the examples given below. Let $\{v_i\}_i$ be a basis of the vector space V. An automorphism c of $V \otimes V$ is defined by the family $(c_{ij}^{k\ell})_{i,j,k,\ell}$ of scalars determined by

$$c(v_i \otimes v_j) = \sum_{k,\ell} \ c_{ij}^{k\ell} \, v_k \otimes v_\ell.$$

Then c is a solution of the Yang-Baxter equation if and only if for all i, j, k, ℓ, m, n , we have

$$\sum_{p,q,r,x,y,z} (c_{ij}^{pq} \delta_{kr}) (\delta_{px} c_{qr}^{yz}) (c_{xy}^{\ell m} \delta_{zn}) = \sum_{p,q,r,x,y,z} (\delta_{ip} c_{jk}^{qr}) (c_{pq}^{xy} \delta_{rz}) (\delta_{x\ell} c_{yz}^{mn}),$$

which is equivalent to

$$\sum_{p,q,y} c_{ij}^{pq} c_{qk}^{yn} c_{py}^{\ell m} = \sum_{y,q,r} c_{jk}^{qr} c_{iq}^{\ell y} c_{yr}^{mn}.$$
 (1.1)

for all i, j, k, ℓ, m, n . Solving the non-linear equations (1.1) is a highly nontrivial problem. Nevertheless, numerous solutions of the Yang-Baxter equation have been discovered in the 1980's. Let us list a few examples.

Example 1. For any vector space V we denote by $\tau_{V,V} \in \operatorname{Aut}(V \otimes V)$ the *flip* switching the two copies of V. It is defined by

$$\tau_{V,V}(v_1 \otimes v_2) = v_2 \otimes v_1,$$

for any $v_1, v_2 \in V$. The flip satisfies the Yang-Baxter equation because of the Coxeter relation (12)(23)(12) = (23)(12)(23) in the symmetry group S_3 .

Here is a way to generate new *R*-matrices from old ones.

Lemma VIII.1.2. If $c \in \operatorname{Aut}(V \otimes V)$ is an *R*-matrix, then so are λc , c^{-1} and $\tau_{V,V} \circ c \circ \tau_{V,V}$ where λ is any non-zero scalar.

PROOF. This follows from the identities

$$(\lambda c \otimes \mathrm{id}_V) = \lambda (c \otimes \mathrm{id}_V), \quad (\mathrm{id}_V \otimes \lambda c) = \lambda (\mathrm{id}_V \otimes c),$$
$$(c^{-1} \otimes \mathrm{id}_V) = (c \otimes \mathrm{id}_V)^{-1}, \quad (\mathrm{id}_V \otimes c^{-1}) = (\mathrm{id}_V \otimes c)^{-1},$$
$$(c' \otimes \mathrm{id}_V) = \sigma (\mathrm{id}_V \otimes c)\sigma^{-1}, \quad (\mathrm{id}_V \otimes c') = \sigma (c \otimes \mathrm{id}_V)\sigma^{-1}.$$

where $c' = \tau_{V,V} \circ c \circ \tau_{V,V}$ and σ is the automorphism of $V \otimes V \otimes V$ defined by $\sigma(v_1 \otimes v_2 \otimes v_3) = v_3 \otimes v_2 \otimes v_1$ for $v_1, v_2, v_3 \in V$.

Example 2. Let us solve the Yang-Baxter equation when $V = V_1 = V_{1,1}$ is the 2-dimensional simple module over the Hopf algebra $U_q = U_q(\mathfrak{sl}(2))$ considered in Chapters VI–VII. More precisely, let us find all U_q -automorphisms of $V_1 \otimes V_1$ that are *R*-matrices. We freely use the notation of the abovementioned chapters. Recall that if v_0 is a highest weight vector of V_1 , then the set $\{v_0, v_1 = Fv\}$ is a basis of V_1 . By the Clebsch-Gordan Theorem VII.7.1 we have $V_1 \otimes V_1 \cong V_2 \oplus V_0$. Lemma VII.7.2 implies that the vectors

$$w_0 = v_0 \otimes v_0$$
 and $t = v_0 \otimes v_1 - q^{-1}v_1 \otimes v_0$

are highest weight vectors of respective weights q^2 and 1. We complete the set of linearly independent vectors $\{w_0, t\}$ into a basis for $V \otimes V$ by setting

$$w_1 = Fw_0 = q^{-1}v_0 \otimes v_1 + v_1 \otimes v_0$$
 and $w_2 = \frac{1}{[2]} F^2 w_0 = v_1 \otimes v_1$

where $[2] = q + q^{-1}$.

Proposition VIII.1.3. Any U_q -linear automorphism φ of $V_1 \otimes V_1$ is diagonalizable and of the form $\varphi(w_i) = \lambda w_i$ (i = 0, 1, 2) and $\varphi(t) = \mu t$ where λ and μ are non-zero scalars. The automorphism φ is an *R*-matrix if and only if

$$(\lambda - \mu)(q\lambda + q^{-1}\mu)(q^{-1}\lambda + q\mu) = 0.$$

PROOF. Since φ is U_q -linear, the image under φ of a highest weight vector is a highest weight vector of the same weight. Now, w_0 and t have different weights (we still assume that $q^2 \neq 1$); therefore, there exist λ and μ such that $\varphi(w_0) = \lambda w_0$ and $\varphi(t) = \mu t$.

As for the remaining basis vectors, we have

$$\varphi(w_i) = \frac{1}{[i]} \, \varphi(F^i w_0) = \frac{1}{[i]} \, F^i \varphi(w_0) = \lambda w_i$$

for i = 1, 2. This completes the proof of the first assertion in Proposition 1.3.

The second assertion results from tedious computation. Let us give some details. We first observe that the matrix Φ of φ with respect to the basis $\{v_0 \otimes v_0, v_0 \otimes v_1, v_1 \otimes v_0, v_1 \otimes v_1\}$ is given by

$$\Phi = \left(\begin{array}{cccc} \lambda & 0 & 0 & 0 \\ 0 & \alpha & \gamma & 0 \\ 0 & \gamma & \beta & 0 \\ 0 & 0 & 0 & \lambda \end{array} \right)$$

where

$$\alpha = \frac{q^{-1}\lambda + q\mu}{[2]}, \quad \beta = \frac{q\lambda + q^{-1}\mu}{[2]}, \quad \gamma = \frac{\lambda - \mu}{[2]}$$

The automorphisms $\varphi \otimes \text{id}$ and $\text{id} \otimes \varphi$ can be expressed, respectively, by the 8 × 8-matrices Φ_{12} and Φ_{23} in the basis consisting of the elements $v_0 \otimes v_0 \otimes v_0, v_0 \otimes v_0 \otimes v_1, v_0 \otimes v_1 \otimes v_0, v_0 \otimes v_1 \otimes v_1, v_1 \otimes v_0 \otimes v_0, v_1 \otimes v_0 \otimes v_1, v_1 \otimes v_1$

and

Now, $\Phi_{12}\Phi_{23}\Phi_{12}-\Phi_{23}\Phi_{12}\Phi_{23}$

	(0	0	0	0	0	0	0	0 \
	0		$-lphaeta\gamma$	0	0	0	0	0
	0	$-lphaeta\gamma$	L	0	$lphaeta\gamma$	0	0	0
	0	0	0		0	$lphaeta\gamma$	0	0
	0	0	$lphaeta\gamma$	0	M	0	0	0
	0	0	0	$lphaeta\gamma$	0	-L	$lphaeta\gamma$	0
	0	0	0	0	0	$lphaeta\gamma$	-M	0
	$\int 0$	0	0	0	0	0	0	0 /

where $K = \alpha((\lambda - \alpha)\lambda - \gamma^2)$, $L = \alpha\beta(\alpha - \beta)$ and $M = \beta(\gamma^2 + \lambda(\beta - \lambda))$. Suppose that we have proved that K, L and M are multiples of $\alpha\beta\gamma$. Then

$$\Phi_{12}\Phi_{23}\Phi_{12}-\Phi_{23}\Phi_{12}\Phi_{23}=\alpha\beta\gamma\times\Psi$$

where Ψ is a non-zero matrix. It follows that Φ is an *R*-matrix if and only if $\alpha\beta\gamma = 0$, which would complete the proof of Proposition 1.3.

It remains to show that K, L and M are multiples of $\alpha\beta\gamma$. An easy computation proves that

$$\lambda - \alpha = q\gamma, \quad \lambda - \beta = q^{-1}\gamma, \quad q^{-1}\lambda - \gamma = q^{-1}\alpha, \quad q\lambda - \gamma = q\beta$$

and $\beta - \alpha = (q - q^{-1})\gamma$. Therefore,

$$K = \alpha \gamma (q\lambda - \gamma) = q \, \alpha \beta \gamma, \quad L = -(q - q^{-1}) \, \alpha \beta \gamma$$

and $M = \beta \gamma (\gamma - q^{-1} \lambda) = -q^{-1} \alpha \beta \gamma.$

To sum up, the *R*-matrices of the U_q -module $V_1 \otimes V_1$ belong to the following three types depending on a parameter $\lambda \neq 0$:

- 1. If $\lambda = \mu$, φ is a homothety.
- 2. If $q\lambda + q^{-1}\mu = 0$, then

$$\Phi = q\lambda \begin{pmatrix} q^{-1} & 0 & 0 & 0\\ 0 & q^{-1} - q & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & q^{-1} \end{pmatrix}.$$

3. If $q^{-1}\lambda + q\mu = 0$, then

$$\Phi = q^{-1}\lambda \begin{pmatrix} q & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & q - q^{-1} & 0\\ 0 & 0 & 0 & q \end{pmatrix}.$$

It is clear that Cases 2 and 3 are equivalent within a change of basis after exchanging q and q^{-1} . As we shall see in the next example, the minimal polynomial of Φ is of degree ≤ 2 .

Example 3. We now give an important class of *R*-matrices with *quadratic* minimal polynomial. Such *R*-matrices will be used in Chapter XII to construct isotopy invariants of links in \mathbb{R}^3 .

Let V be a finite-dimensional vector space with a basis $\{e_1, \ldots, e_N\}$. For two invertible scalars p, q and for any family $\{r_{ij}\}_{1 \le i,j \le N}$ of scalars in k such that $r_{ii} = q$ and $r_{ij}r_{ji} = p$ when $i \ne j$, we define an automorphism c of $V \otimes V$ by

$$\begin{array}{lll} c(e_i \otimes e_i) &=& q \, e_i \otimes e_i \\ c(e_i \otimes e_j) &=& \left\{ \begin{array}{ll} r_{ji} \, e_j \otimes e_i & \text{if } i < j \\ r_{ji} \, e_j \otimes e_i + (q - pq^{-1}) \, e_i \otimes e_j & \text{if } i > j. \end{array} \right. \end{array}$$

Proposition VIII.1.4. The automorphism c is a solution of the Yang-Baxter equation. Moreover, we have

$$(c - q \operatorname{id}_{V \otimes V})(c + pq^{-1} \operatorname{id}_{V \otimes V}) = 0,$$

or, equivalently, $c^2 - (q - pq^{-1})c - p \operatorname{id}_{V \otimes V} = 0.$

PROOF. (a) We first show that c is an R-matrix. In order to simplify the proof, let us introduce the following notation. The symbol (ijk) will stand for the vector $e_i \otimes e_j \otimes e_k$, and [i > j] for the integer 1 if i > j and for 0 otherwise. Then c can be redefined as

$$c(e_i \otimes e_j) = r_{ji}e_j \otimes e_i + [i > j]\beta e_i \otimes e_j$$

where $\beta = q - pq^{-1}$.

An immediate computation yields

$$\begin{aligned} (c \otimes id)(id \otimes c)(c \otimes id)((ijk)) \\ &= r_{ji}r_{ki}r_{kj}(kji) + r_{ji}r_{ki}[j > k]\beta(jki) \\ &+ r_{kj}r_{ki}[i > j]\beta(kij) + r_{kj}[i > j][j > k]\beta^{2}(ikj) \\ &+ r_{ji}\Big([j > i][i > k] + [i > j][j > k]\Big)\beta^{2}(jik) \\ &+ \Big(r_{ji}r_{ij}[i > k]\beta + [i > j][j > k]\beta^{3}\Big)(ijk) \end{aligned}$$

and

$$\begin{split} \mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c)((ijk)) \\ &= r_{ji}r_{ki}r_{kj}(kji) + r_{ji}r_{ki}[j > k]\beta(jki) \\ &+ r_{kj}r_{ki}[i > j]\beta(kij) + r_{ji}[i > k][j > k]\beta^{2}(jik) \\ &+ r_{kj}\Big([i > k][k > j] + [i > j][j > k]\Big)\beta^{2}(ikj) \\ &+ \Big(r_{jk}r_{kj}[i > k]\beta + [i > j][j > k]\beta^{3}\Big)(ijk). \end{split}$$

We have to prove that these expressions are equal for all i, j, k. This is clearly the case if i = j = k. If i, j, k are distinct indices, they are equal in view of relations of the type

$$[i > j][i > k] = [i > j][j > k] + [i > k][k > j]$$

which express the fact that for distinct indices, we have i > j and i > kif and only if i > j > k or i > k > j. If exactly two indices are equal, say $i = j \neq k$, then the desired equality is equivalent to $r_{ii}^2 = \beta r_{ii} + p$, which holds since $r_{ii} = q$ and $\beta = q - pq^{-1}$. (b) One computes $c^2 - \beta c - p \operatorname{id}_{V \otimes V}$ on any vector of the form $e_i \otimes e_j$. If

 $i \neq j$, one immediately obtains 0. If i = j, one gets $(q^2 - \beta q - p)(e_i \otimes e_i)$, which is zero because of the value given to β .

Consider the following two special cases:

(i) If $p = q^2$ and $r_{ij} = q$ for all i, j, then c is a homothety. (ii) Take p = 1 and $r_{ij} = 1$ for $i \neq j$. Then c takes the form shown in Case 3 of Example 2 when V is two-dimensional. Thus, Example 2 turns out to be a special case of Example 3.

Braided Bialgebras VIII.2

The aim of this section is to define the concept of a braided bialgebra. The importance of this concept comes from the fact proved in Section 3 that braided bialgebras generate solutions of the Yang-Baxter equation.