ART-2022 (MATH 8852) HOMEWORK 10

Due December 9, by 2pm — hard copy or email accepted

After the homework is graded, you will have 1 week to resubmit a corrected and revised version

E-mail: leniapetrov+art2022@gmail.com

Course webpage: https://lpetrov.cc/art2022/

1. Area of a continual Young diagram

A continual Young diagram is a function $\omega(u)$, $u \in \mathbb{R}$, such that

- (1) $|\omega(u_1) \omega(u_2)| \le |u_1 u_2|$ for all u_1, u_2 , and
- (2) $\omega(u) = |u z|$ for some $z \in \mathbb{R}$ and all sufficiently large |u|

Show that for z=0, the area under the continual diagram can be computed as the double integral

$$A(\omega) = \frac{1}{2} \iint_{u < v} d(u + \omega(u)) d(v - \omega(v)).$$

2. θ -contents

Let $\theta > 0$.

Recall that the boxes in the Young diagram λ are encoded by their coordinates (i,j), where $1 \leq j \leq \lambda_i$. Fix λ , and let (i_k, j_k) be the coordinates of the boxes which can be added to λ , while (i'_l, j'_l) be the coordinates of the boxes which can be removed from λ . Both sequences are in decreasing order. Denote

$$x_k = (j_k - 1) - \theta(i_k - 1), \qquad y_l = j'_l - \theta i'_l.$$

For example, for $\lambda = (3, 3, 1)$ we have

$$\vec{x} = (3, 1 - 2\theta, -3\theta), \qquad \vec{y} = (3 - 2\theta, 1 - 3\theta).$$

Show that

- (1) The sequences \vec{x}, \vec{y} interlace as $x_1 > y_1 > x_2 > y_2 > \dots > x_{d-1} > y_{d-1} > x_d$.
- (2) We have

$$\sum_{i=1}^{d} x_i - \sum_{j=1}^{d-1} y_j = 0.$$

2

3. θ -contents, down expansion

Let u be a complex variable and consider the following expansion in partial fractions

$$\frac{\prod_{i=1}^{d} (u - x_i)}{\prod_{j=1}^{d-1} (u - y_j)} = u - \sum_{j=1}^{d-1} \frac{\pi_j^{\downarrow}}{u - y_j}.$$

View this as a definition of π_i^{\downarrow} .

Show that

$$\sum_{j=1}^{d-1} \pi_j^{\downarrow} = \theta |\lambda|.$$

4. θ -contents, up expansion

Denote π_i^{\uparrow} from the expansion

$$\frac{\prod_{j=1}^{d-1} (u - y_j)}{\prod_{i=1}^{d} (u - x_i)} = \sum_{i=1}^{d} \frac{\pi_i^{\uparrow}}{u - x_i}$$

Show that

$$\sum_{i=1}^{d} \pi_i^{\uparrow} = 1, \qquad \sum_{i=1}^{d} x_i \pi_i^{\uparrow} = 0, \qquad \sum_{i=1}^{d} x_i^2 \pi_i^{\uparrow} = \theta |\lambda|.$$

5. RSK

Recall what we proved about the RSK and the length of the longest increasing subsequence in a permutation.

If the RSK algorithm is used only to find the length of the longest increasing subsequence of $\pi \in \mathcal{S}_n$, find its computational complexity in the worst case.

6.

Use RSK to prove the Erdős-Szekeres theorem: Given any $\pi \in \mathcal{S}_{nm+1}$, then π contains either an increasing subsequence of length n+1 or a decreasing subsequence of length m+1